
Vision Based Pose Computation from Landmarks: an application to Quadrotors i

Vision Based Pose Computation from Landmarks: an application to
Quadrotors

André Filipe Marques da Silva

ISR & Instituto Superior Técnico, Technical University of Lisbon, Portugal.
andremsilva@ist.utl.pt

Abstract

Worldwide, UAVs have become an important tool for the realization of different tasks that, otherwise, would have to be
performed by humans in, sometimes, difficult and dangerous conditions. Even so, there is plenty of space for improving the
technical capabilities and functionalities of these vehicles. Particularly, this thesis aims at the development of a module for
providing pose error measurements to help stabilize the vehicle’s position when it is airborne. This module is composed
by lightweight hardware components that can easily be attached to an UAV and uses visual information acquired by a
camera for error estimation. The first part of this thesis presents the theoretical background needed to the rest of the work
developed. Consisting of some basic computer vision concepts such as camera models and image transformations and the
description and analysis of features detectors and descriptors algorithms. The second part presents the developed solution,
its implementation and the experimental results. The developed module was attached to a robotic arm and, by closing the
loop with a control feedback law, the tests performed shown that the end effector’s pose error is correctly estimated and
can be driven to zero.

Keywords: Unmanned Aerial Vehicles; Visual Pose Estimation; Features Detectors; Features Descriptors

1 INTRODUCTION

1.1 Context, Motivation and Problem Description

The main objective of this project is to develop advanced robotic
tools and techniques for the inspection of critical infrastructures,
like bridges and dams. Considering the case of dams, for example,
these infrastructures require a periodic monitoring program. This
program, normally consists of a team of technicians who have to
examine, possibly using climbing equipment or mobile platforms,
all the infrastructure looking for damages, such as cracks. A more
practical and safer alternative to this possibly dangerous activity,
would be to use an autonomous unmanned aerial vehicle (UAV)
that could capture images from the whole infrastructure surface
and send them to a base station. For a UAV to navigate over
all the infrastructure surface, it will need a navigation, guidance
and control system. One of the most basic functionalities of these
systems is to stabilize the vehicle around a desired position. The
present paper aims at developing a module that helps on this
activity.

Consider the following example of usage: the vehicle is tele-
operated into a desired pose where a wall is seen by the camera.
Due to winds and other factors, the vehicle will be dragged from
the desired pose. Using only a camera and the reference image
captured, the developed solution will have to be able to calculate
the error of translation and rotation, from the current pose to the
desired one. Providing this information to a control feedback law
that can the vehicle to the desired pose.

1.2 Related Work

Altüg et al. used a camera located on the ground to estimate the
pose of a quadrotor in order to achieve a stable flight [1]. Later,
they extended their work by using a second camera on-board the
quadrotor[2]. Earl and D’Andrea estimated the quadrotor by us-

ing a kalman filter with on board gyroscopes measurements and
off board vision sensor measurements [3]. Regarding the challenge
of flying a quadrotor indoors, Romero et al., proposed a simple
vision system using off board computation hardware [4]. All these
solutions require a ground station to process the visual informa-
tion, making the vehicle dependent upon a continuous connection
with ground. Concerning on board only solutions, Mondragón et
al., Martinez et al. and Bourquardez et al. works estimate the
pose of an UAV at real time using an on board camera [5] [6] [7].
Similarly to the approach chosen on this paper, they explore the
information obtained by the projective transformation of planar
opbjects into a calibrated camera. But the plane that is cap-
tured is previously known, such as a landmark or an helipad for
example.

1.3 Main Contributions

We developed a modulw which we called Gumstix-and-Camera
module. It is composed by ultra-compact and lightweight hard-
ware: a Gumstix Computer-On-Module, for performing all the
computations, and a Caspa VL camera, for image capturing. To-
gether with the developed algorithm , this module is able to com-
pute the camera pose error in relation to a reference image, with-
out the need of special visual marks or of any other type. The
only restriction is that the scene captured at the reference image
is planar. Finally, the Gumstix-and-Camera module is attached
to a robotic arm and is used to close the control loop driving
the arm end effector into the pose corresponding to the reference
image, making the pose error converge to zero.

1.4 Outline

The remaining of this paper is organized as follows. Section 2
provides basic concepts from computer vision necessary for the
work developed. Section 3 discusses the algorithms available to

André F. M. da Silva October 2011

Vision Based Pose Computation from Landmarks: an application to Quadrotors ii

detect and describe features on images. Section 4 describes the
algorithm developed and the hardware used to test it. Section 5
shows the results of the tests realized. On the final sections, the
results are discussed and final remarks are provided along with
possible future work.

2 BACKGROUND

Camera pinhole model. Using the Camera Pinhole model
[8], a point coordinates in 3-D, X = (X,Y, Z, 1)T can be related
to its correspond 2-D image coordinates, x = (x, y, , 1)T by

x =
1

Z
K[I|0]X. (1)

where

K =

 f 0 px
0 f py
0 0 1

 (2)

is the camera calibration matrix

Planar Homography Consider two images of an object that
are captured by a camera from two different positions. The image
of the object is not the same in both images. Nevertheless, the
two images may be related by a 2-D transformation [9], i.e., a
transformation that occurs in the 2D plane. A particular case of
2-D transformation is called homography, projective transform or
perspective transform. It has the form

x′ = Hx =

 h00 h01 h02

h10 h11 h12

h20 h21 h22

x (3)

The matrix H is homogeneous and, as so, is defined up to a scale
factor. Two matrices that differ only by a scale represent the
same transformation.

Consider two images of points p on a 2D plane P in 3-D space
(Figure 1). Assuming that the optical center of the camera never
passes through the plane, it is possible to define a transformation
that maps a image x1 of a point p ∈ P into the second image
x2 of the same point. To this transformation we will call planar
homography [10].

Figure 1: Planar homography

Consider two orthonormal reference frames with origins o1 and
o2 located at the optical centers of the cameras that took the two
different images of the same scene. For simplicity, and without
loss of generality, assume the world frame to be one of the cam-
eras. If we call the 3-D coordinates relative to the camera frame

of a point p, X1 ∈ R3 and X2 ∈ R3, then the following relation
holds

X2 = RX1 + t (4)

where R is a 3x3 rotation matrix and t is a 3x1 translation vector
that relate the two reference frames. Defining the unit normal
vector of the plane P with respect to the first camera frame as
n = [n1, n2, n3]T and the distance from the plane P to the optical
center of the first camera as d > 0 the following relation holds

ntX1 = n1X + n2Y + n3Z = d ⇔ 1

d
ntX1 = 1, ∀X1 ∈ P

(5)
Applying equation (5) in equation (4) we get

X2 = RX1 + t = RX1 + t
1

d
ntX1 =

(
R +

1

d
tnt

)
X1. (6)

Defining the matrix

H =

(
R +

1

d
tnt

)
(7)

which represents the transformation from X1 to X2 leads to

X2 = HX1. (8)

Matrix H is called the planar homography matrix and, as it can be
seen, depends on the motion parameters (R, t) and the structure
parameters (n, d). Because the translation vector is scaled by the
distance d in the term 1

d
tnt, it can only be expected to extract

the direction. but not the module of the vector.
Considering image coordinates we can write

λ1x1 = X1, λ2x2 = X2, X2 = HX1 (9)

and obtain
λ2x2 = Hλ1x1 ⇔ x2 ∼ Hx1 (10)

This last equation is known as planar homography mapping [10].
Having the correspondence between points of two images, the

planar homography matrix can be calculated by using RANSAC
[11], for examble, to eliminate outliers. Then to decompose the
planar homography matrix into R and 1

d
t the method described

in [10] can be used. The form of the four solutions provided by
this method are summarized in Table 1.

Table 1: The four possible solutions to the decomposition of the planar
homography matrix

R1 = W1U
T
1 R3 = R1

Solution 1 n1 = S(v2)uT
1 Solution 3 n3 = −n1

1
dt1 = (H −R1)n1

1
dt3 = − 1

dt1

R2 = W2U
T
2 R4 = R2

Solution 2 n2 = S(v2)uT
2 Solution 4 n4 = −n2

1
dt2 = (H −R2)n2

1
dt4 = − 1

dt2

Two solutions can be eliminated by applying the positive depth
constraint, i.e. by imposing nT e3 = n3 > 0. For the remaining
two, a third image of the same plane or a second plane on the same
images can be used [12]. Either way, a new homography matrix

André F. M. da Silva October 2011

Vision Based Pose Computation from Landmarks: an application to Quadrotors iii

will be available. After decomposing this second homography and
getting two new possible solutions, it is only a question of finding
the common solution on the two sets of solutions. A third option
is available, one can calculate a rotation matrix from an IMU
readings, compare it with the two possible solutions and choose
the closest one.

3 Image Features

As seen in section 2, if a planar scene is being captured by a
camera, it is necessary to have the correspondence between the
2-D coordinates of points to extract the information about the
camera pose change between images.

Common requirements of the applications that require a visual
tracking system are the system to be robust and fast enough to
be computed in real time. Although some systems work with op-
tical flow, we are only interested in feature-based visual tracking
because optical flow is prone to long-term drift, as the motion
estimates and therefore the errors are integrated over time, and
is only feasible for smooth motion.

Although different, all feature-based approaches start with two
essential steps: interest points detection and features description.

Mainly, three types of points detectors can be found among the
literature: Corner Detectors [13], [14] and [15], Blob Detectors
[16], [17] and[18] and Affine-Invariant Detectors like [17].

On the field of feature descriptors there are a few approaches
that stand out. There are some earlier ones such as [19], that use
derivatives to achieve rotation invariance, or [20] that make use
of derivatives of Gaussians of different order. But, is the work
of Lowe with SIFT [17] that really stands out. It is invariant
to changes in scale and rotation by assigning a local reference
frame in relation to a dominant scale and rtotaion previously
computed around the feature point, using local histograms on a
square grid. As a faster alternative to SIFT, Bay et al. [18] intro-
duced Speeded-Up Robust Features (SURF). It uses similar SIFT
approaches but makes use of integral images [21] and approxima-
tions of the expensive Gaussian filters using response box filters
to speed up the computations to constant time. More recently,
Calonder et al. [22], developed the Binary Robust Independent
Elementary Features (BRIEF), which uses only binary strings as
an efficient alternative for feature point description. It makes use
of the Hamming distance which is very efficient to compute when
compared to the L2 norm usually used. Other approaches such
as [23] and [24] exist that use trained classifiers but they have the
drawback of previously requiring a training phase.

Taking into account the good results documented in the lit-
erature regarding SURF and BRIEF , these are the main two
approaches that are tested in the project.

SURF

Interest points detection In the task of finding an object
in an image, instead of searching for the object as a whole, it is
usual to search for objects interest points. This type of approach
is chosen for several reasons, from which the main ones are the
computational cost of searching in such a high-dimensional data
as the one stored in images, and the high level of redundancy
incorporated, because pixels do not move independently and have
a high level of correlation. There are several methods to define
and detect interest points, ranging from the ones that consider

corners as interest points to the ones that consider blobs instead.
SURF’s implementation used the fast hessian detector [18] that
detects blob-like features (Figure 2)..

Figure 2: An example of the type of features that the Fast Hessian Detector
detects

Features detection is performed at different scales because in-
terest points may be compared between images where they are
seen at different scales. The scale space is implemented as an
image pyramid. Without box filters, usually, image pyramid is
built by repeatedly smooth the image with a Gaussian and then
sub-sample it in order to achieve a higher level of the pyramid.
Fortunately, with box filters and integral images, there is not the
need to filter the image iteratively and sub-sample it. Instead,
it is the filter that is up-scaled and applied at exactly the same
speed on the original image.

In order to classify a point a of interest or not a non-maximum
suppression in a 3×3×3 is applied in scale and image space. Each
sample is compared to its 8 neighbors in the current image and
the 18 neighbors of the “bigger” and “smaller” images in scale
space. If it has the biggest score (Hessian matrix determinant) of
its neighbors then it is considered an interest point, otherwise it
is discarded.

Once it is classified as an interest point, the location is refined
to subpixel accuracy by fitting a parabola to the sample point
and its immediate neighbors [25].

Interest point orientation assignment To achieve rota-
tion invariance, Haar wavelet filters are used wavelet responses
are calculated around a circular neighborhood that depend of the
scale at which the feature was detected.

The filter responses are weighted with a Gaussian centerd at
the point and represented in Cartesian coordinates system. Using
a orientation sliding window (Figure 3), the sum of all responses
within the window are calculated. The orientation of the window
that has the greatest summed value is the orientation that is
assigned to the point.

Descriptor vector The standard SURF descriptor consists
of a vector with 64 entries. To build this vector, a square region,
centered at the interest point and with the orientation selected in
the previous step is used. This region is split up into 4×4 square
sub-regions. Using Haar wavelets filters, the filter responses at
5 × 5 equally spaced sample points are calculated in the x and
y direction. Note that these directions are defined in relation to
the square region orientation. But instead of rotating the image
itself, the filter responses are calculated in the unrotated image
and then interpolated.

André F. M. da Silva October 2011

Vision Based Pose Computation from Landmarks: an application to Quadrotors iv

Figure 3: Sliding window used to assign the orientation

After weighting the filter responses using a Gaussian with σ =
3.3 centerd at the interest point, four sums in each sub-region are
calculated: the sums of dx and dy and, to have information about
the polarity of the intensity changes, the sums of |dx| and |dy|.

An interest point in one image, is considered to match another
interest point in other image if they are close enough in the near-
est neighbor sense. For this purpose the FLANN library [26] is
used. It is a C++ library for performing fast approximate nearest
neighbor searches in high dimensional spaces.

BRIEF The main difference between BRIEF and SURF are
described next.

BRIEF descriptor The BRIEF descriptor differs from the
SURF descriptor in the sense that it directly computes binary
strings from image patches. Each bit is obtained by comparing
intensities of pairs of points. Also, by constructing the descriptor
this way, it enables the possibility of using the Hamming distance
to compare strings. The use of this distance has the advantage of
only requiring a bitwise XOR operation and a bit count which can
be performed much faster than other standard distance measures.

Intensity test The test τ to determine each descriptor’s bit
is defined as follows:

τ(p;x,y) :=

{
1 if p(x) < p(y)
0 otherwise

, (11)

where p is the S×S image patch and p(x) is the smoothed pixel
intensity at coordinates x = (u, v)T . So, if the pixel intensity
at x is lower than the one at y the correspondent bit will be 1,
otherwise it will be 0.

Spatial arrangement of tests The authors of [22] found
that the patch positions at which the tests will be performed that
leads to the highest recognition rate are the ones that are sampled
from an isotropic Gaussian distribution. The locations following
this distribution are calculated on the initialization phase of the
algorithm, from there, the locations will be the same for every
feature descriptor that is calculated.

Descriptor bitstring Finally, having the location pairs
(x,y) defined, the nd-dimensional descriptor string is defined as

fnd(p) :=
∑

1≤i≤nd

2i−1τ(p;xi,yi). (12)

The authors of [22] conclude that, for image pairs with short
baseline, using nd = 256 yields near optimal results and that for
all other cases nd = 512 perform better.

Feature detector Calonder et al., do not propose any spe-
cial feature detector, any option available on the literature can
be used. The chosen one was FAST (Features from Accelerated
Segment Test) [27].

FAST is based on the Accelerated Segment Test (AST). This
test, which is simplified version of SUSAN (Smallest Univalue
Segment Assimilating Nucleus) [28], consists on defining a circle
of radius r around the candidate point (Figure 4). Then, if at least
n contiguous pixels are all brighter or all darker than the center
pixel by at least t, the point is considered a feature. Specifically,
FAST’s tests shown that better results are achieved by using r =
3 (circunference of 16 pixels) and n = 9. The order by which
the circle pixels are tested can speed up considerably the overall
performance. This order is chosen by building a decision tree
from the ID3 algorithm [29] applied to a training set of images.
Contrasting to SURF’s Fast Hessian Detector, that detects blob-
like features, FAST detects corner-like features.

Figure 4: Illustration of the test circle. The pixel at p is the center of
a candidate corner. The arc indicated by the dashed line passes through
12 contiguous pixels which are brighter than p by more than the t. Figure
adapted from [27].

Scale and Rotation Invariance On the original work from
Calonder et al., BRIEF is not invariant to scale change or rota-
tion. To achieve that, a pyramidal approach was used. When the
template image is being processed, several copies of the original
image are generated by scaling it and rotating within a 360 de-
grees span. To each of these generated imaged FAST and BRIEF
algorithms are applied. This will lead to several descriptors of
the same features but rotated and scaled, thus, achieving scale
and rotation invariance.

4 Implementation

Concerning the main algorithm developed, it is divided into two
main parts. The first one, consists in detecting the template
plane present on a video stream. The two features detectors and
descriptors described before were implemented in order to do so.
By doing this, it will be possible to compare them, regarding
computational efficiency, robustness and precision (see Chapter
5). The second main part of the developed algorithm consists of
using the coordinates of the frame already detected on the video
stream to estimate the pose of the camera that is acquiring it.
This is done by calculating the homography matrix that maps
the coordinates of the template plane detected on the current
frame into the coordinates of the template plane on the reference
frame. With this matrix, the homography decomposition method
is applied and two possible solutions, each one consisting of a
translation vector and a rotation matrix, are calculated. The
true solution is chosen by, either using the IMU data of the vehicle
where the camera is attached, or by using a third image containing
the reference plane too but captured at a different pose.

André F. M. da Silva October 2011

Vision Based Pose Computation from Landmarks: an application to Quadrotors v

All code was written using the C++ language for computa-
tional efficiency. Because C++ does not natively provide an API
to easily work with matrices, the OpenCV library [30] was also
used. It is a computer vision library that is free for academic and
profession use and provides an API with several computer vision
algorithm already implemented.

Regarding the hardware where the code will run, because one
of the final objectives of the developed algorithm is to be used
on board of aerial vehicles, it was necessary to define a commit-
ment between cost, computation power and size. It is required
that the hardware is lightweight enough, but at the same time
powerful enough to, hopefully, run the code at real time speed.
Considering these requirements, the hardware that seemed more
appropriate was the Gumstix Overo Fire. It belongs to the COM
(Computer On Module) hardware class. Basically, it has an ARM
Cortex-A8 CPU, RAM memory, storage memory and networking
capabilities, all on a single board with an approximate size of a
gum stick. It runs the Linux OS, and many expansion boards to
extend the capabilities are available. For capturing video, firstly
the e-cam50 camera module was considered, but due to better
technical specifications the Caspa VL was chosen.

Although, as already stated, the main objective is to use the
developed application on board of aerial vehicles, and a quadrotor
is available at ISR labs. This was not the test bench used. Getting
a quadrotor in the air requires a team of several people, and this
is not practical to perform every time there is the need test some
modifications on the code. Instead, a robotic arm was used. It
is more practical to operate, requires only a single person and
is conceptually identical to estimate the pose of a quadrotor, or
the pose of the camera attached to the arm’s end effector. The
robotic arm available on the university facilities is the PUMA 500
model from Unimation with 6-DOF.

The remaining of this chapter is organized as follows. Section
4 contains a flowchart of the developed algorithm and explain the
order of the steps performed. Sections 4, 4 and 4 describes with
more detail all the hardware used. Finally, Section 4 shows all
the hardware is connected, it provides a global view of the testing
setup architecture.

Developed Algorithm The developed algorithm works as fol-
lows: the program starts acquiring frames from the camera.
When the camera is at the desired pose the user sends a com-
mand and the template image is stored and learned by the chosen
method (either SURF, BRIEF or TAG features are extracted).
Then the main loop starts. A new frame is acquired and the
features are extracted. Now, the features of the current frame
are matched with the template frame features. Matched features
coordinates are undistorted using the camera calibration matrix
and distortion coefficients. The homography matrix is calculated
using RANSAC and then decomposed into rotation matrix and
translation vector. From the two possible solutions, the correct
one is chosen based, either on a previously second frame taken
from the same template or on the vehicle IMU. From the cor-
rect solution, the control command is calculated using the chosen
control law and fed into the vehicle actuators. This procedure is
repeated until the user requests the program to be stopped.

Gumstix Overo Fire The Gumstix series computers are very
small, general purpose computers for embedded systems applica-

tions shiped with Linux 2.6 operating system. The name “gum-
stix” is due to the fact that each one of these computers are a
COM (Computer On Module) with dimensions really close to a
common stick of gum. The model used in this particular work is
the Gumstix Overo Fire COM. It consists of a OMAP3530 pro-
cessor from Texas Instruments (TI) based on ARM Cortex-A8
architecture with a working frequency of 600Mhz a DSP. Also, it
features a 256MB RAM unit, a 256MB flash drive and Bluetooth
and WiFi connectivity.

To provide the COM basic communication interfaces and ex-
pand its functionalities small expansion boards exist that are
attached to the main COM board. The model chosen was the
Tobi expansion board. It supports numerous interfaces such
as 10/100baseT Ethernet, DVI-D (HDMI), USB OTG mini-AB,
USB host standard A, Stereo audio in/out, USB Serial Console
among others.

All these flexible features and processing capacities make the
Gumstix Overo Fire a powerful and versatile COM very suitable
for our project.

Caspa VL Camera To integrate imaging capacities with the
Gumstix Overo Fire, a Caspa VL Camera module is connected to
it. It consists of an ultra-compact camera which weights only 22.9
g. It can capture images with up to 720×480 pixels of resolution
with a framerate of 60 fps. Due to its technical features and to
the fact that it is an affordable and lightweight hardware, it was
chosen to be used in this project.

The mechanical support that hold the Overo Fire together with
the Caspa VL Camera is hand made. This module provides the
protection and robustness needed to easily attach and detach the
Gumstix to a vehicle.

This set will, from now on, be designated by Gumstix-and-
Camera module (G-C module) and is shown in Figure 5.

Figure 5: The Gumstix-and-Camera module

PUMA 560 Robotic Arm To test the developed algorithm
with real data in a real context. the Gumstix-and-Camera mod-
ule was attached to a 6-DOF PUMA (Programmable Universal
Machine for Assembly) 560 robotic arm (Figure 6). With this
platform, it is possible to test all the algorithms, to analyze their
performance, improve them and correct any errors without jeop-
ardizing the hardware.

When working with PUMA it was possible to understand that
its operation conditions are not ideal anymore. Maybe due to
the fact that it is a 15 years old robotic arm and no regular

André F. M. da Silva October 2011

Vision Based Pose Computation from Landmarks: an application to Quadrotors vi

Figure 6: The Puma 500 Robotic Arm with the G-C module.

maintenance has been made. For example, when a single joint
is ordered to move the all arm “shakes” a bit. Also, if the end
effector is ordered to go to a specific position, and then joints
readings are requested, the reported position has an error in the
order of centimeters.

Overall Architecture The architecture of the test bench cre-
ated is illustrated in Figure 7. As already stated, the controller
computer is only used as interface to the robotic arm. Is the
PUMA PC that does the calculations regarding the inverse kine-
matics (conversion from the desired arm pose in the Cartesian
Space to the individual joints desired positions). This PC re-
ceives the desired positions from the main laptop. By its turn,
the main laptop is connected to the G-C module. Two options
exist, the main laptop can do all the calculations for estimating
the camera pose and the G-C module is only used as a simple net-
work camera that sends the captured images over the network,
or, all the calculations are performed on the G-C modules and
the main laptop only operates as an interface. Either way, after
each frame is processed, the mail laptop send the desired next
position to the PUMA PC that, by its turn, order the PUMA
arm to move.

Figure 7: Gumstix Overo Fire attached to the Tobi expansion board

5 Experimental Results

Considering computation times, table 2 presents the time needed
to process one frame of 752 × 480 pixels resolution either by us-
ing SURF or BRIEF on a Dual Core at 2.2GHz PC and on the
Gumstix. SURF requires much more time than BRIEF. On PC
real-time speed is achieved, but on Gumstix, even when choosing
brief, only an average of 3-4 fps.

Regarding SURF, 85% of processing time is spent calculating

Table 2: Computation times

Algorithm PC Gumstix

SURF 256 ms 5 s
BRIEF 27 ms 330 ms

the features descriptors, thus representing the bottleneck. Almost
all the operations on this task are floating point, which are not
very efficiently performed on the Gumstix CPU.

5.1 Simulation

Synthetic Dataset We want to simulate what a real camera
sees if it travels along a certain trajectory. By defining the signals
of rotation and translation over time, we can calculate the respec-
tive homography that describes the transformations suffered by
the image seen by the camera.

To build the dataset a template image was chosen. Then, start-
ing from this image, the homographies that correspond to the
rotations and translations chosen are calculated using equation
7. To each of these homographies the following transformation is
applied to take into account that the image is uncalibrated:

T = KHK−1. (13)

These consecutive perspective transformations are applied to the
template image. And, this way, the movie frames are generated.

The purpose of these movies is to test the correctness and
the robustness of the solution given by the algorithm developed.
Which is possible because the true exact ground truth is available
(actually is chosen) and can be used to calculate the error of the
solution found by the algorithm developed.

The actual dataset is composed of 10 movies, 5 different tra-
jectories each applied to two different template images. One of
the template images is shown in Figure 8.

The the purpose of four different trajectories is to evaluate the
behavior of the algorithm under various conditions:

• Pure Rotation dataset: The camera is rotated along its
y axis.

• Scale Change dataset: The camera is moved along its z
axis without rotating. This causes the template on the image
to get consecutively small. To test the scale invariance of the
descriptors.

• Pure Rotation Z dataset: The camera is rotated along
its z axis. To test rotation invariance of the descriptors.

• Perspective Distortion dataset: Starting perpendicular
to the object, the camera moves down in an arc resulting in
strong perspective distortion

It worth to mention that because the axis-angle representation
was chosen, to avoid the degenerate case, none of the trajectories
contain a pose where there is no rotation. For example, in the
Scale Change dataset there is a constante rotation along the z
axis of 10 degrees.

Some examples of the movie frames are shown in Figure 8.

André F. M. da Silva October 2011

Vision Based Pose Computation from Landmarks: an application to Quadrotors vii

(a) Scene 1

Figure 8: Some examples of dataset frames.

Results Analysis In order to evaluate the precision of the al-
gorithm, some performance indexes had the be defined. Consid-
ering the translation vector error, and taking into account that,
by construction, the scale factor is always unknown, we can only
evaluate the correctness of the direction. So the angle between
the true and calculated translation vector was used as the error
measurement. For the rotation, the axis-angle representation was
chosen. The error between the true and the calculated rotation
angle, as well as the angle between the true and the calculated
rotation axis, are used as error measurements.

The three graphics for each of the four trajectories are repre-
sented in Figures 9 and 10. The results were pretty similar for
both template images so, the errors represented are the average
of both templates errors. Both SURF and BRIEF descriptors
were tested. If the plots are not continuous and there are points
missing it means that the algorithm failed to detect the template
in the correspondent frame.

Regarding the Pure Rotation dataset on Figures 9(a), 9(c) and
9(e) it can be seen that the translation error is relatively small,
between 1 and 7 degrees for both BRIEF and SURF. The rotation
axis error is higher when the angle of rotation tends do zero. But,
at the same time, because the rotation angle itself tends to zero
along with the rotation angle error, this becomes negligible.

In the Scale Change data set (Figures 9(b), 9(d) and 9(f)), both
BRIEF and SURF remain more or less precise until the template
is reduced by a scale factor of 0.4. The translation error oscillates
between 1 and 7 degrees and, once again, the rotation axis error
is negligible. From a scale factor of 0.4 and beyond, BRIEF fails
to detect the template and the SURF estimation becomes more
unstable, although still reliable.

Considering the Pure Rotation Z dataset (Figures 10(a), 10(c)
and 10(e)), BRIEF and SURF are both very invariant to rota-
tions, with translation error between 0 and 4 degrees and rotation
error almost always zero. Still, SURF performed slightly better
around rotation angles of 90 degrees.

The Perspective Distortion dataset in Figures 10(b), 10(d) and
10(f) shows that with angles greater than 50 degrees the estima-
tions became unreliable. For angles between 0 and 50 degrees,
translation errors are no greater than 13 degrees, rotation axis
errors are almost always lower than 15 degrees, just like the ro-
tation angle error. SURF estimation are little more accurate.

5.2 Closed Loop Control with Real Videos tests

In order to fully demonstrate that the proposed solution allows
the correct pose determination of a camera, a feedback control law
was used to close the loop and drive the camera to the desired
pose.

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

tr
an

sl
at

io
n

ve
ct

or
 (

de
g)

Pure Rotation Dataset − translation error

SURF
BRIEF

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

Scale factor

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

tr
an

sl
at

io
n

ve
ct

or
 (

de
g)

Scale Change Dataset − translation error

SURF
BRIEF

(b)

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

ro
ta

tio
n

ax
is

 (
de

g)

Pure Rotation Dataset − rotation axis error

SURF
BRIEF

(c)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Scale factor

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

ro
ta

tio
n

ax
is

 (
de

g)

Scale Change Dataset − rotation axis error

SURF
BRIEF

(d)

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Rotation angle (deg)

R
ot

at
io

n
an

gl
e

er
ro

r
(d

eg
)

Pure Rotation Dataset − rotation angle error

SURF
BRIEF

(e)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

Scale factor

R
ot

at
io

n
an

gl
e

er
ro

r
(d

eg
)

Scale Change Dataset − rotation angle error

SURF
BRIEF

(f)

Figure 9: Error of pose detection under several different conditions.

In this section, the control law used is described, some im-
plementation considerations and modifications explained and the
final results are presented.

Vision-Based control for rigid body stabilization and im-
plementation on the PUMA 500 robotic arm The follow-
ing is a summary of Cunha et al. [31] to describe the control law
used. Here the notation is a little different from the rest of the
paper in order to be in agreement with the original work.

Considering a fully-actuated rigid-body, with an attached co-
ordinate frame {B}, and an inertial frame {F} attached to the
feature plane, let (p,R) = (BpF ,

B
F R) represent, respectively, the

translation and rotation of the {F} with respect to the body
frame. The equation that describes the motion of the body over
time can be written as:

ṗ = −v − S(ω)p (14)

Ṙ = −S(ω)R (15)

where v and ω ∈ R3 are the linear and angular velocities, respec-
tively. If the rigid-body desired pose is represented by (p∗,R∗)
which are considered constant over time, we can introduce the
following error variables

pe = p− p∗, Re = RR∗
T

(16)

André F. M. da Silva October 2011

Vision Based Pose Computation from Landmarks: an application to Quadrotors viii

−180 −160 −140 −120 −100 −80 −60 −40 −20 0
0

0.5

1

1.5

2

2.5

3

3.5

4

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

tr
an

sl
at

io
n

ve
ct

or
 (

de
g)

Pure Rotation Z Dataset − translation error

SURF
BRIEF

(a)

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

tr
an

sl
at

io
n

ve
ct

or
 (

de
g)

Perspective Distortion Dataset − translation error

SURF
BRIEF

(b)

−180 −160 −140 −120 −100 −80 −60 −40 −20 0
0

20

40

60

80

100

120

140

160

180

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

ro
ta

tio
n

ax
is

 (
de

g)

Pure Rotation Z Dataset − rotation axis error

SURF
BRIEF

(c)

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

ro
ta

tio
n

ax
is

 (
de

g)

Perspective Distortion Dataset − rotation axis error

SURF
BRIEF

(d)

−180 −160 −140 −120 −100 −80 −60 −40 −20 0
0

2

4

6

8

10

12

14

Rotation angle (deg)

R
ot

at
io

n
an

gl
e

er
ro

r
(d

eg
)

Pure Rotation Z Dataset − rotation angle error

SURF
BRIEF

(e)

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

Rotation angle (deg)

R
ot

at
io

n
an

gl
e

er
ro

r
(d

eg
)

Perspective Distortion Dataset − rotation angle error

SURF
BRIEF

(f)

Figure 10: Error of pose detection under several different conditions.

and write the corresponding state equations

ṗe = −v − S(ω)(pe + p∗) (17)

Ṙe = S(ω)Re (18)

Denoting the current and desired calibrated coordinates of the
image features by y and y∗, respectively, and by α the homogra-
phy matrix scale factor (see Chapter 2), the control law developed
can be written as

v =

{
k1(αy − y∗) until ||αy − y∗|| < γ
k2(αy − y∗)− ẑ∗S(ω)αy afterwards

(19)

ω =

{
k3S(y∗)αy until ||αy − y∗|| < γ
k4S
−1(ReM −MRT

e) afterwards
(20)

with the update law for the estimate of the desired depth ẑ∗ given
by

˙̂z∗ =

{
0 until ||αy − y∗|| < γ
kzy

∗S(ω)αy afterwards
(21)

where γ, k1, k2, k3, k4 and kz are positive scalars. ẑ∗, is a estima-
tor for the desired depth. This control law relies on an adaptive

scheme and can be divided in two sequential objectives. First, it
will drive the translation vector p to an arbitrarily small neigh-
borhood of p∗. Then, it will ensure the convergence of (p,R)
to (p∗,R∗) using a controller that enforces feature visibility by
guaranteeing that the camera not only points towards the fea-
tures, but also remains in front of them.

As stated on the original work, the described control law guar-
antees that the desired equilibrium point is an almost global at-
tractor.

For the implementation on the PUMA robotic arm, a few con-
siderations had to be made due to some PUMA limitations. The
control law had to be discretized because the arm can only receive
inputs in position and not in velocity.

Denoting the inertial arm frame by {A}, the position and ori-
entation of the body frame {B}, with respect to {A}, can be
written as

ApB =A pF −A
F RRTp, (22)

A
BR =A

F RRT (23)

respectively, where (ApF ,
A
B R) denotes the pose of {F} expressed

in {A}. Using (14) and (15), the kinematics for ApB and A
BR can

be written as

AṗB = A
BRv (24)

A
BṘ = A

BRS(ω) (25)

Using the Euler method, the solution of (24) can be approximated
by

ApB(k + 1) =A pB(k)−∆t(ABR(k)v(k)), (26)

where ∆t is the sampling time. The zero-order hold discretization
of (25) is given by

A
BR(k + 1) =A

B R(k) rot(∆tω(k)) (27)

Also, the true current pose of the camera had to be estimated by
reading the PUMA joints encoders to know the current transfor-
mation from the arm frame to the camera frame. This was due
to the fact that PUMA accepts position inputs expressed in the
arm frame {A} instead of in the feature frame {F}.

Results Analysis The results are presented next. Figure 11
shows the template frame used, the image seen at the start pose,
and the image seen at the final pose to where the PUMA end
effector converged. As it can be seen, the image captured at the
final pose is very similar to the reference template frame.

(a) Template frame (b) Image at start pose (c) Achieved image at
final pose

Figure 11: Template frame and some examples of dataset frames.

The evaluation over time of the error measure ||αy−y∗|| used
on the control law is shown in Figure 12. Overall, the error tends

André F. M. da Silva October 2011

Vision Based Pose Computation from Landmarks: an application to Quadrotors ix

to zero but, there are moments where its norm increases. This
is caused by the way that the controller outputs are sent to the
PUMA arm. As already stated, the controller is discretized. At
each sample time, the controller outputs are calculated consid-
ering the sample rate and the PUMA actuators are activated to
move the arm to next position according to the controller out-
puts. The trajectory that the arm travels between two sample
positions is not externally controlled and depends on the inter-
nal joints controllers. So, the temporary increases on the error
norm were predictable. If the arm could accept commands in lin-
ear and angular velocities, the control law could be used on its
original version and it is expectable that the error norm curve
thus becomes monotonically decreasing. It is also important to
note that the final error is not zero. At the final pose, controller
outputs were still being calculated and sent to PUMA, but the
end-effector was not moving. This is caused by the low precision
commands accepted by the PUMA arm. Nevertheless, according
to the actuators readings, the translation error norm between the
desired and the achieved pose is only 1.9 cm.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Error evolution

Frames

E
rr

or
 m

ea
su

re

Figure 12: Error norm evolution over time

6 Conclusions

A solution to the problem of taking a rigid-body into a desired
pose was developed. This solution only requires a image of planar
scene acquired at the desired pose and a video stream captured
by a camera on board of the vehicle containing the planar scene
inside the FOV. Real-time performance was achieved when using
a regular PC. Using the lightweight Gumstix-and-Camera hard-
ware module an average of 3-4 fps are possible.

To achieve the described solution, Concepts from computer
vision such as the Camera Pinhole Model, image transformations
like planar homographies and methods for the extraction of 3-
D information from the planar homograhy matrix were learned.
To solve the problem of finding correspondence between image
features, several algorithms were studied.

These algorithm are designed as image features extraction and
description algorithms and mainly two were studied and imple-
mented: SURF and BRIEF. From the tests performed, it was
possible to conclude that both can be used to detect the reference
planar scene on a video stream. Nevertheless, both have its own
advantages and disadvantages. In general, SURF is more robust
in extreme situations, like strong image scale changes or perspec-

tive distortion. Besides that, there are conditions where BRIEF
totally fails detecting the scene and SURF estimation is not ro-
bust. But, at least SURF provides a estimate, which, if a control
feedback law is used, can be sufficient to take the rigid-body into
a pose where robustness is recovered. On the other hand, BRIEF
wins with the incredible speed at which the required computa-
tions are performed. Plus, the fact that BRIEF fails sooner than
SURF may not be a problem, since if the feedback control law is
working properly the rigid-body pose error will probably not be
very big and BRIEF will always succeed on detecting the refer-
ence scene. That is why, when considering applications requiring
real time performance, BRIEF is chosen over SURF.

A test bench for testing the developed algorithm was built, con-
sisting of synthetically generated video and true video captured
from a PUMA robotic arm with the G-C module attached to its
end effector. After long years of inactivity, the PUMA robotic
arm was reanimated and its existence given a purpose. This al-
lowed to verify the correctness of the algorithm, its performance
and robustness. With this test bench it was possible to confirm
that, when using an appropriate control law, the pose error tends
to zero, thus demonstrating the correctness of the algorithm.

7 Future Work

The frame rate of the algorithm running on the G-C module
can be improved if the integrated DSP is used to compute the
Hamming distance, required for matching the BRIEF descrip-
tors. Also, if Moore’s law remains valid, new and more powerful
Gumstix’s like COMs will be available.

Further testing the algorithm with a real vehicle, like the
quadrotor available at the ISR labs, would be interesting by not
discretizing the control law and using its original version.

Regarding, the features detection. A different technique was
studied, where circular TAG’s are used instead of the regular fea-
tures extractors and descriptors algorithms. This has the draw-
back of requiring the scene to contain a TAG but, under the scope
of the AIRTICI project this may not be an issue. On the other
hand, this has the advantage of not being as computationally
intensive as SURF or BRIEF algorithms. The TAG detection
algorithm originally developed by Reverse Engineering company
personell was studied and adapted to calculate homographies be-
tween images. Unfortunately, due to time restrictions, it was not
integrated on the main developed algorithm.

References

[1] E. Altüg, J. Ostrowski, and R. Mahony, “Control of a
quadrotor helicopter using visual feedback,” Robotics and
Automation, 2002.

[2] E. Altüg, J. Ostrowski, and C. Taylor, “Quadrotor control
using dual camera visual feedback,” Robotics and Automa-
tion, 2003.

[3] M. Earl and R. D’Andrea, “Real-time attitude estimation
techniques applied to a four rotor helicopter,” Robotics and
Automation, 2003.

[4] H. Romero, R. Benosman, and R. Lozano, “Stabilization and
location of a four rotor helicopter applying vision,” American
Control Conference, 2006.

André F. M. da Silva October 2011

Vision Based Pose Computation from Landmarks: an application to Quadrotors x

[5] I. F. Mondragón, P. Campoy, C. Mart́ınez, and M. A.
Olivares-Mendez, “3d pose estimation based on planar object
tracking for uavs control,” IEEE International Conference
on Robotics and Automation, 2010.

[6] C. Mart́ınez, I. F. Mondragón, M. A. Olivares-Méndez, and
P. Campoy, “On-board and ground visual pose estimation
techniques for uav control,” Intelligence Robotics Systems,
2011.

[7] O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette,
T. Hamel, and L. Eck, “Image-based visual servo control
of the translation kinematics of a quadrotor aerial vehicle,”
IEEE Transactions on Robotics, 2009.

[8] R. Hartley and A. Zisserman, Multiple View Geometry in
computer vision. Cambridge University Press, 2003.

[9] R. Szeliski, Computer Vision: Algorithms and Applications.
Springer, 2010.

[10] Y. Ma, S. Soatto, J. Kosecká, and S. Sastry, An Invitation
to 3-D Vision. Springer, 2004.

[11] M. A. Fischler and R. C. Bolles, “Random sample consen-
sus: A paradigm for model fitting with applications to im-
age analysis and automated cartography,” American Control
Conference, 1981.

[12] O. Faugeras and F. Lustman, “Motion and structure from
motion in a piecewise planar environment,” International
Journal of Pattern Recognition and Artificial Intelligence,
1988.

[13] C. Harris and M. Stephens, “A combined corner and edge
detector,” Proceedings of the 4th ALVEY vision conference,
p. 147 151, 1988.

[14] P. R. Beaudet, “Rotationally invariant image operators,” In-
ternational joint conference on pattern recognition, 1978.

[15] L. Kitchen and A. Rosenfeld, “Gray-level corner detection,”
Pattern Recognition Letters, pp. 95 – 102, 1982.

[16] T. Lindeberg, “Scale-space theory: A basic tool for analysing
structures at different scales,” Journal of Applied Statistics,
pp. 224 – 270, 1994.

[17] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, pp.
91 – 110, 2004.

[18] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up
robust features surf,” Computer Vision and Image Under-
standing, 2008.

[19] C. Schmid and R. Mohr, “Local greyvalue invariants for im-
age retrieval,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1997.

[20] W. T. Freeman and E. H. Adelson, “The design and use
of steerable filters,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1991.

[21] F. C. Crow, “Summed-area tables for texture mapping,”
Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, p. 207 212, 1984.

[22] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief:
Binary robust independent elementary features,” ECCV’10,
2010.

[23] M. Özuysal, P. Fua, and V. Lepetit, “Fast keypoint recog-
nition in ten lines of code,” IEEE conference on computer
vision and pattern recognition, 2007.

[24] S. Taylor, E. Rosten, and T. Drummond, “Robust feature
mathing in 2.3us,” IEEE conference on computer vision and
pattern recognition, 2009.

[25] M. Brown and D. lowe, “Invariant features from interest
point groups,” BMVC, 2002.

[26] M. Muja and D. G. Lowe, “Fast approximate nearest neigh-
bors with automatic algorithm configuration,” International
Conference on Computer Vision Theory and Applications
(VISAPP’09), 2009.

[27] E. Rosten and T. Drummond, “Machine learning for high-
speed corner detection,” European Conference on Computer
Vision, 2006.

[28] S. M. Smith and J. M. Brady, “Susan - a new approach to low
level image processing,” International Journal of Computer
Vision, 1997.

[29] J. R. Quinlan, “Induction of decision trees,” Machine Learn-
ing, 1986.

[30] Opencv: Open source computer vision. [Online]. Available:
http://http://opencv.willowgarage.com/

[31] R. Cunha, C. Silvestre, J. Hespanha, and A. P. Aguiar,
“Vision-based control for rigid body stabilization,” Automat-
ica, 2011.

André F. M. da Silva October 2011

