
Formation Control of Autonomous Air Vehicles
Valter Roldão

Abstract—This paper presents a strategy for motion coordin-
ation of a group of autonomous vehicles using a leader-following
approach. The coordination is separated in two steps: a first
step in which the motion of the leader is passed to a trajectory
planner and a second step in which the trajectories generated
are passed to the vehicles.

Using a Lyapunov-based approach, the planner prescribes the
motion of a group of virtual vehicles, modelled as unicycles,
so as to keep the leader in a predefined configuration in their
reference frame. By constraining the motion of these vehicles,
the planner naturally guarantees the generation of adequate
formation trajectories, bypassing the onerous task of obtaining
path parametrizations.

In the second step the trajectories of the virtual vehicles are
used as reference trajectories for a group of real vehicles, in this
case quadrotors. To test the concept in simulation a trajectory
tracking controller is designed and a model of the plant derived.
Finally, results of experimental tests are presented demonstrating
the performance of the proposed solution for autonomous vehicle
motion coordination.

I. INTRODUCTION

The problem of robot coordination poses an important
challenge to automatic control. It has been the scope of a
number of publications and experimental results are beginning
to appear [1]–[7].

Robot coordination have proven to be advantageous in
carrying out a variety of tasks such as surveillance and area
exploration [2], where it results in a faster and more efficient
process, or load transportations [3], where the employment of
multiple robots allows for the use of smaller vehicles.

Several methodologies for coordinated motion have been
developed over the past 15 years. Most of them employ the
concept of artificial potentials to control the robot constella-
tion. One such example is the work developed in [4]. With that
strategy it is possible to control the shape and orientation of the
formation by proper positioning some of the vehicles, called
virtual leaders, although generating their trajectories may be
difficult. Other strategies making use of artificial potentials
may be found in [5] and [6]. However, these later strategies
do not enforce a definite vehicle configuration, only driving
the vehicles to fixed distances relative to each other.

In contrast to the foregoing strategies, which might be used
as higher level controllers for the vehicle formation, generating
trajectories to be tracked by lower level controllers, it is
possible to design integrated controllers that act directly on
each plant inputs to promote vehicle formation. Such concept
is developed for a group of quadrotors in [7]. The development
of this type of approach is more complex as it is necessary to
take into account the dynamical model of the vehicles, instead
of using a simpler model. Furthermore it cannot be applied to
other types of vehicles as the control law is specific to the
model considered.

The strategy for coordinated movement presented in this
paper separates the coordination part from the control of each
vehicle. A trajectory planner is responsible for generating
trajectories that are tracked by the vehicles, in the present case,
quadrotors. The trajectories are generated based solely on the
movement of the leader, also a quadrotor, which is describing
a pre-assigned trajectory unknown to the followers.

The constrained motion of the followers allows for the gen-
eration of valid formation trajectories by simply guaranteeing
that the position of the leader in the reference frame of each
follower converges to a desired constant vector.

The trajectory planner consists of a group of virtual vehicles
(virtual followers) trying to follow the leader and whose
trajectories are used as reference to the real vehicles. In
contrast to the strategies proposed in [4], [5], and [6], where
vehicles are modelled as point particles, the nonholonomic
model of the unicycle is used to model the virtual vehicles.

Each virtual vehicle is controlled using a law developed
according to the backstepping procedure. Backstepping is a
well known technique extensively used for control of nonlinear
systems (see for example [8]). Although backstepping is not
normally applicable to underactuated systems, writing the
errors in terms of the body frame allowed to concentrate the
control inputs in one vector.

For the purpose of testing in simulation the concept for
coordination applied to quadrotors, a trajectory tracking con-
troller was designed using a backstepping procedure similar
to what is described in [9]. The main difference is the intro-
duction of a saturation in the contribution of both position and
velocity errors to the subsequent steps of backstepping. This
saturation ensures that the actuation does not grow unbounded
with the errors.

This paper is structured in V sections. Section II contains
a description and simulated results of the designed strategy
for coordinated movement. Section III presents the developed
concept to flight coordination applied to quadrotors. The plant
model is described and a control law for trajectory tracking
is described. Also simulated results are included. Section IV
contains the experimental part of the work. The set-up is
described and results are presented and discussed. The last
section (section V) summarises the content of this paper.

II. TRAJECTORY PLANNER

Consider a two-dimensional world where a group of follow-
ers tries to follow a leader whose movement is known up to the
second derivative {pL, ṗL, p̈L}. The objective of the vehicles
is to move in such a way as to ’see’ the leader always in the
same relative position.

Each follower moves independently of its peers. Thus, for
most of the coming description a generic follower is used.



A. Vehicle Model

The followers are modelled as nonholonomic vehicles that
can move forward and backward and rotate but cannot move
sideways and do not slip. Such vehicle is similar to a four
wheeled car whose wheels can move independently in pairs
but cannot steer (see figure 1).
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Figure 1. Illustration of the vehicle moving in the 2D-Space.

Consider the use of two different frames: a fixed inertial
frame {I}, and a frame {F}, attached to the follower vehicle
geometric centre and with the first vector of the basis aligned
with the vehicle’s direction of movement. The configuration of
{F} with respect to {I}, can be expressed using an element of
the special euclidean group, (R,pF ) =

(
I
FR, IpF

)
∈ SE(2).

The matrix R may be parametrised with an angle θ, repres-
enting the angular displacement between the two frames.

R =

[
cos θ − sin θ
sin θ cos θ

]
(1)

The kinematic equations describing the motion of a follower
may be written as

Ṙ = RS (ω) (2)
ṗF = Riu (3)

where u ∈ R and ω ∈ R are respectively the linear and
angular speeds and i = [1 0]T . S (x) is a skew-symmetric
matrix of its scalar argument. These kinematic equations
completely describe the motion of the vehicle. However, in
order to be possible to know the acceleration of the system,
the state is extended to include the derivatives of the angular
and linear speeds, respectively, which will be considered as
actuations.

u̇ = T (4)
ω̇ = τ (5)

B. Controller Design

The objective of this control law is to drive the vehicle to
such that the position of the leader in its frame (frame {F})
equals a desired position d, i.e.

FpL = RT (pL − pF ) = d (6)

Let a position error be defined as

e1 = FpL − d (7)

and consider a first Lyapunov candidate function given by

V1 =
1

2
eT1 e1 (8)

Computing the time derivative of V1 yields

V̇1 =eT1 ė1

=eT1
[
−S(ω)FpL +RT ṗL − ui

]
=eT1

[
−S(ω) (e1 + d) +RT ṗL − ui

]
=eT1

[
−S(ω)d +RT ṗL − ui

]
=− k1e1

Tσ(e1)

+ k1e1
T

[
σ(e1) +

1

k1

(
−S(ω)d +RT ṗL − ui

)]
(9)

Notice that eT1 S(ω)e1 was removed from the equation using
the mathematical property aTS (b) a = 0. The term σ(.) is a
sigmoidal saturation function, applied element wise, which is
introduced to limit the influence of the position error on the
actuation and is given by

σ(e1) = pmax tanh (x/pmax) (10)

where pmax is a configurable parameter.
Following the backstepping procedure, a new error is cre-

ated and the Lyapunov candidate function extended to include
it.

e2 = σ(e1) +
1

k1

(
−S(ω)d +RT ṗL − ui

)
(11)

V2 =
1

2

2∑
i=1

ei
Tei (12)

The time derivative of V2 is given by

V̇2 =V̇1 + eT2 ė2

=V̇1 + eT2 σ̇(e1)

− eT2
k1

(
S (τ) d + S(ω)RT ṗL −RT p̈L + iT

)
=V̇1 + eT2 σ̇(e1)

− eT2
k1

([
1 −dy
0 dx

] [
T
τ

]
+ S(ω)RT ṗL −RT p̈L

)
(13)

The algebraic manipulation carried out in the last step con-
centrated the vehicle’s actuation in only one vector, multiplied
by a constant matrix, which is invertible provided that dx 6= 0.
Defining

Γ =

[
1 −dy
0 dx

]
(14)

µ =

[
T
τ

]
(15)

δ = −S(ω)RT ṗL +RT p̈L (16)

V̇2 can be rewritten as

V̇2 = V̇1 +
eT2
k1

(k1σ̇(e1) + δ − Γµ) (17)



To force the convergence of the errors even in the presence of
any perturbation, an integral state is introduced.

ξ̇ = e2 (18)

Consider a new Lyapunov candidate function given by

V3 = V2 +
k3
2
ξT ξ (19)

The time derivative of V3 is given by

V̇3 =V̇2 + k3ξ
Te2

=V̇1 +
eT2
k1

(k1σ̇(e1) + δ + k1k3ξ − Γµ) (20)

As a control law for µ, consider

µ = Γ−1
(
δ + k1σ̇(e1) + k21k2e2 + k1k3ξ

)
(21)

which is well defined for any dx 6= 0. At this point, it is
possible to state the following result.

Theorem 1. Consider the simplified vehicle model described
in equations (2)-(5) and the error system consisting of the
errors e1 (7) and e2 (11). The control law (21) with k1 > 0,
k2 > 1, and k3 > 0, renders the origin of the error system
globally asymptotically stable.

Proof: Substituting µ, ė2 becomes

ė2 = −Γµ+ δ + σ̇(e1) = −k1k2e2 − k1k3ξ

and the system of equations for e2 and ξ can be written as

ẋ =

[
ξ̇
ė2

]
= −

[
0 −1

k1k3 k1k2

] [
ξ
e2

]
(22)

For k1, k2, and k3 > 0, the origin of (22) is globally
exponentially stable, which implies that there exist positive
scalars λ and α such that

‖x‖ ≤ α‖x(0)‖e−λt

To prove that the origin is asymptotically stable consider
the substitution of equation (21) into (13) yielding

V̇3 =− k1eT1 σ(e1) + k1e
T
1 e2 − k1k2eT2 e2

≤− k1‖e1‖‖σ(e1)‖+ k1‖e1‖‖e2‖ − k1k2‖e2‖2

which is negative whenever either ‖e2‖ ≤ ‖σ(e1)‖ or ‖e1‖ ≤
k2‖e2‖ is verified. If k2 > 1, then there exists ‖e1‖ > 0 for
which ‖e1‖ = k2‖σ(e1)‖ = k2c. When ‖e2‖ ≤ c, V̇3 becomes
negative definite.

Since ‖e2‖ ≤ ‖x‖ ≤ α‖x(0)‖e−λt, there is a time t1 when,
for t > t1, V̇3 becomes negative semi-definite. Since the error
systems is autonomous, we can apply LaSalle’s Invariance
Principle to conclude that the origin is globally asymptotically
stable.

C. Inner Dynamics Analysis

Having the error system stable does not imply that the
intrinsic variables of the vehicle are stable. For a given leader’s
position and a given d there are infinite solutions satisfying the
condition (6) which indicates the existence of a zero dynamics
, whose stability needs to be analysed. Towards that end,
consider the limit condition when the errors have converged
to zero. In that situation it is possible to write:[

u

θ̇

]
= Γ−1RT ṗL (23)

Let us define ṗL as

ṗL = VL

[
cos θL
sin θL

]
(24)

with VL and θL continuous functions representing the norm
and direction of movement of the leader, respectively. Using
these definitions, equation (23) can be rearranged into the form

[
u

θ̇

]
=

VL cos (θL − θ) +
VLdy
dx

sin (θL − θ)
VL
dx

sin (θL − θ)

 (25)

It is worth noting that the second equation has solely one
variable, θ (apart from the inputs), and that it does not depend
on dy .

Applying the change of variables θd = θ − θL, the zero-
dynamics can be written as

θ̇d = −VL
dx

(sin θd + dxκL) (26)

where κL = ωL/VL is the curvature of the leader’s path.
The analysis that follows is divided in two cases: a) traject-

ories with κ̇L = 0; and b) trajectories with κ̇L 6= 0.
For κ̇L = 0: Trajectories with κ̇L = 0 can be either a

circumference, when κL 6= 0, or a line, otherwise. For this
type of trajectories it is possible to prove stability. Towards
that end consider the candidate Lyapunov function

Vθ =
1

2
(sin θd + dxκL)

2 (27)

whose time derivative is given by

V̇θ = (sin θd + dxκL)
(

cos θdθ̇d + dxκ̇L

)
=− VL

dx
cos θd (sin θd + dxκL)

2
= −2

VL
dx

cos θd Vθ

which is zero for θd = ±π/2 and for sin θd = −dxκL.
Analysing the stability of these points it can be seen that only

θd = − arcsin(dxκL) (28)

corresponds to a stable equilibrium point. Therefore, for any
pair {dx, κL} there is only one stable value of θd. It can also
be seen that no stable solution can be found for dxκL > 1.
Such situation is equivalent to having dx greater than the
circumference radius, dx > κ−1L .



For κ̇L 6= 0: When the trajectory being tracked has a
time-varying curvature the analysis is more difficult. How-
ever, analysing equation (26) it is possible to conclude the
following:
• when dxκL 7→ 0, θ̇d ≈ −VL

dx
sin θd which means that

θd 7→ 0. Since θ = θd + θL, θ will approach θL which
means that the movement of the follower will be similar
to the leader’s.

• when dxκL 7→ ∞, θ̇d ≈ −ωL. In such situation θd ≈
−θL+c, where c is a constant that depends on the initial
conditions. Writing this result in terms of θ, one sees that
θ 7→ c. This result indicates that, for large values of dx,
θ is slow varying. As one can imagine, if the follower is
far way from the leader it does not have to move much
in order to ’see’ the leader in the same position.

This limit analysis indicates that, for intermediate values of
dxκL a trade-off between these two behaviours is to be
expected. When the value of dxκL is small, the movement
of a follower resembles the one described by the leader. On
the other hand, as dxκL grows, the differences between the
trajectory described by the leader and the one described by a
follower intensify until the motion of the later starts depending
on its initial conditions. It is therefore of interest to find limits
on the parameters prevent such behaviour.

Rewriting the first part of equation (25) as

u

VL
= cos θd −

dy
dx

sin θd

one sees that u depends only on VL and θd. In particular, one
sees that, for small values of θd, the minimum value of u/VL
corresponds to the maximum value of the former

u

VL

∣∣∣∣
min

= cos |θd|max −
∣∣∣∣dydx

∣∣∣∣ sin |θd|max

For the movement of a follower to be similar to the movement
of the leader no inversion in the direction of movement of the
former may occur, which means

0 = cos θd −
dy
dx

sin θd ⇔ tan θd =
dx
dy

may never be verified, which is guaranteed if

|θd|max < arctan |dx/dy| (29)

From evaluation of equation (26) we see that

|θd|max = arcsin
(
dx κL|θdmax

)
≤ arcsin |dxκL|max (30)

which is a bound for θd. Having arcsin dxκLmax <
arctan |dx/dy| guarantees that no inversion occurs. This con-
dition can be used to, given d, set limits on the trajectory the
leader can describe and vice-versa.

D. Simulation Results
This sub-section presents the results of a simulation for the

generation of a formation trajectory where two virtual vehicles
were set to follow a leader describing a trajectory given by

pref =

[
2 cos(0.25t)

sin(0.5t)

]
(31)

Follower 1 has d1 = [0.35 0.35]
T and its initial state is

pF1(0) = [3 3]
T , uF1(0) = 0.5, ωF1(0) = −0.5, θF1(0) =

3π/2. Follower 2 has d2 = [0.35 − 0.35]
T , pF2(0) = [3 1]

T ,
uF2(0) = 0, ωF2(0) = 0.5, θF2(0) = 0. The controller
parameters are k1 = 0.2, k2 = 2, k3 = 0, and pmax = 5.
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Figure 2. Position (L) and distance between vehicles (R) during a simulation.
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Figure 3. Followers states (T) and errors (B) during a simulation.

Although the trajectories of both followers are different
(figure 2 left), their angular speed and position converge to
one another. This is in accordance with the analysis made in
subsection II-C, where it was concluded that these variables do
not depend on dy , the only parameter that is different between
followers in this simulation.

The right image of figure 2 indicates that the distance
between followers and between these and the leader converge
to fixed values. The later is a direct implication of the asymp-
totic stability of the error system. The former, the distance
between followers, is a result of the independence of each
follower’s u, ω and θ from dy . The limit to which this distance
converges is equal to the sum of the followers distance, in



this case 0.35 + 0.35 = 0.7m. These results indicate that, a
formation where all the followers have the same value of dx
is asymptotically a rigid formation.

E. Three-dimensional trajectories
So far only two-dimensional motion has been considered.

However, to generate trajectories for quadrotors it is necessary
to consider three-dimensional motion. Instead of deriving a
law for the entire state space, a separate control law is designed
to drive the vertical coordinate of the virtual follower to
a desired distance to the leader. Consider that the desired
vectorial distance d is extended to include a third component
dz and let ez be the vertical position error given by

ez = pLz − pFz − dz (32)

A simple control law that stabilises ez , might be

p̈Fz = σz (p̈Lz + kz1ez + kz2ėz) (33)

where, σz(x) is given by

σz(x) =

{
x if |x| < zmax

sign(x)zmax if |x| > zmax

(34)

This saturation is introduced to protect the followers from any
unexpected acceleration of the leader. The control law guar-
antees asymptotic stability of ez if the condition p̈Lz < zmax

is verified.
The equations that govern the trajectory generation are

summarised as follows

p̈F =

[
RS(ω)iu+RiT

σz (p̈Lz + kz1ez + kz2ėz)

]
(35)

Ṙ = RS(ω) (36)
u̇ = T (37)
ω̇ = τ (38)[
T
τ

]
= Γ−1

(
δ + k1σ̇(e1) + k21k2e2 + k1k3ξ

)
(39)

As was observed in simulation, during the formation ini-
tialisation inversions in the direction of movement of the
virtual followers are likely to occur. To prevent the following
vehicles from being affected the virtual followers are started
at their intended initial positions. Using information from the
reference trajectory of the leader, the virtual followers are
placed initially with null errors with respect to the reference
trajectory, and oriented in the initial planar direction of the
reference trajectory, i.e. the normalised projection of the
reference velocity at t = 0.

Until both the leader and follower vehicles approach the
initial reference and virtual followers, respectively, the control-
lers of the virtual vehicles are turned off. Once that happens
these controllers are turned on and the leader starts tracking the
reference trajectory. The start of the tracking is triggered when
the positional errors of every quadrotor enter a set e1 < emax

(e1 defined in next section)

trigger =(‖e1L‖ < emax) ∧ (‖e1F1
‖ < emax)∧

∧ · · · ∧ (‖e1Fn‖ < emax) (40)

III. QUADROTORS IN FORMATION

A. Quadrotor model

The quadrotor is modelled as a rigid body that is actuated
in force and torque. Consider a fixed inertial frame {I} and
another frame {B} attached to the vehicle’s centre of mass.
The configuration of the body frame {B} with respect to {I}
can be viewed as an element of the Special Euclidean group,
(R,p) = (IBR, IpB) ∈ SE(3). The kinematic and dynamic
equations of motion for the rigid body can be written as

Ṙ = RS (ω) (41)
ṗ = Rv (42)

v̇ = −S (ω) v +
1

m
fext (43)

ω̇ = −J−1S (ω) Jω + J−1mext (44)

In the foregoing equations, ω ∈ R3 and v ∈ R3 denote the
angular and linear velocities and vectors fext and mext rep-
resent the external forces and moments acting on the vehicle,
respectively, all expressed in the body frame. S (.) is a skew
symmetric matrix of its argument verifying S (a) b = a× b,
for any a and b ∈ R3. Lastly, m is the mass of the vehicle
and J its tensor of inertia.

The most commonly adopted model for quadrotors (e.g. [9])
consider that torques can be generated in any direction and
that the only actuation force is the thrust T , aligned with the
body’s vertical axis. The external force is then given by

fext = −Tk +mgRTk (45)

where k = [0 0 1]T and g is the gravitational acceleration. As
the plant has full torque actuation, the input transformation

mext = Jτ + S (ω) Jω (46)

can be used to reduce equation (44) to an integrator form

ω̇ = τ (47)

From equations (45) and (46) one sees that the quadrotor
has only 4 actuation variables for 6 degrees of freedom, being
an underactuated vehicle.

B. Quadrotor trajectory tracking controller

Let the desired trajectory be given by pd(t) ∈ R3, a function
of time and at least of class C4. In the sequel, time dependence
will be omitted to lighten notation. The procedure that follows
consists in deriving a control law for the thrust associated
to the concepts of desired thrust and desired thrust direction.
From that point onwards backstepping is used until unveiling
the other control inputs.

Consider the position error e1 given by

e1 = p− pd (48)

and the velocity error which equals ė1

e2 = ė1 = Rv − ṗd (49)



The time derivative of e2 is given by

ė2 =ë1 =
1

m
Rf − p̈d = − T

m
Rk + gk− p̈d

=− σe(k1e1 + k2e2)

+

(
− T
m

Rk + gk− p̈d + σe(k1e1 + k2e2)

)
where σe(·) is an element wise saturation function introduced
to limit the influence of errors e1 and e2 in the actuation and
is given by

σe(x) = σmax
xi√
c+ x2i

(50)

where σmax and c are configurable parameters. Henceforth,
the dependence of σe on k1e1 + k2e2 is omitted for lighter
notation.

Let Td and r3d be the desired thrust and desired thrust
direction, respectively, given by

Td = m‖gk− p̈d + σe‖ (51)

r3d =
gk− p̈d + σe
‖gk− p̈d + σe‖

(52)

The desired thrust direction is not well defined for Td = 0.
To guarantee that Td remains positive the limits of σe must
be chosen carefully. Concentrating on the third component of
r3d and recalling that, by equation (33), |kT p̈d| is limited to
zmax, an upper limit to σmax is given by

σmax < g − zmax (53)

Using this saturation, Td = 0 is never be verified.
At this point, consider a control law for the thrust given by

T = rT3dr3Td (54)

Substitution of (54) into ė2 allows it to be rewritten as

ė2 =− σe +
1

m
(Tdr3d − Tr3)

=− σe −
Td
m

S(r3)2r3d

Consider a Lyapunov candidate function Vσ given by

Vσ =
1

2

[
σTe eT2

]
P

[
σe
e2

]
+

∑
i=x,y,z

k1e1i+k2e2i∫
0

σe(u)du

(55)
where P is a constant, symmetric and positive definite matrix
given by

P =

[
p11I3 −p12I3
−p12I3 p22I3

]
(56)

with p11, p22 > 0 and p212 < p11p22 and where I3 represents
the identity matrix. The first term of (55) is quadratic and thus
positive. The second term is the integral of a monotonically

increasing function, which is also positive. Therefore (55) is a
positive function. Computing the time derivative of V yields

V̇σ =
[
σTe eT2

]
P

[
σ̇e
ė2

]
+ σTe · (k1ė1 + k2ė2)

=
[
σTe eT2

]
P

[
σ′e · (k1ė1 + k2ė2)

−σe −
Td
m

S(r3)2r3d

]

+ σe ·
[
k1e2 − k2

(
σe +

Td
m

S(r3)2r3d

)]
The apostrophe on σ′e denotes the partial derivative of σe
with respect to its argument, ∂

∂xσe(x), which is a diagonal
matrix, since the saturation function is element wise. Some
mathematical manipulation allows V̇σ do be rewritten in the
form

V̇σ = −
[
σTe eT2

]
Q

[
σe
e2

]
− δ (e1, e2)

T Td
m

S(r3)2r3d (57)

where,

δ (e1, e2) = k2σ
′
e (p11σe − p12e2) + (k2 − p12)σe + p22e2

(58)
and Q is a block matrix composed by

Q11 = (k2 − p12)I3 + p11k2σ
′
e

Q12 = Q21 = −k1p11 + k2p12
2

σ′e −
k1 − p22

2
I3

Q22 = p12k1σ
′
e

With a proper choice of gains and coefficients of P, matrix
Q can be made positive definite. Choosing k1 = p22 and
k2 = p11p22/p12, Q becomes

Q =

p11p22 − p212p12
I3 +

p211p22
p12

σ′e −p22p11σ′e
−p22p11σ′e p12p22σ

′
e

 (59)

Since Q is a block matrix, its determinant is given by

det (Q) = det(Q22) · det(Q11 −Q12Q
−1
22 Q21)

= det (p12p22σ
′
e) · det

(
p11p22 − p212

p12
I3

)
=p22(p11p22 − p212) det (σ′e)

Since σe is diagonal with positive elements, its determinant
is positive. From the imposition of positive definiteness of P
it follows that p22 > 0 and p212 < p11p22. These conditions
imply Q to be positive definite.

For a more compact writing consider the introduction of a
positive function Wσ(e1, e2) given by

Wσ(e1, e2) =
[
σTe eT2

]
Q

[
σe
e2

]
(60)

Using this definition, (57) becomes

V̇σ = −Wσ(e1, e2)− Td
m

rT3dS(r3)2δ (e1, e2) (61)

The first term of equation (61) is negative definite, whereas
the second term is indefinite. To drive the second term to zero



a new error is created and the candidate Lyapunov extended
to include it.

e3 = r3 − r3d (62)

V3 = Vσ +
1

2
eT3 e3 (63)

Computing the time derivative of V3 yields

V̇3 =V̇σ − rT3dṙ3 − rT3 ṙ3d

=V̇σ + rT3dRS(k)
(
ω −RTS (r3d) ṙ3d

)
=−Wσ(e1, e2)− k3rT3dS(r3)TS(r3)r3d

+ rT3dRS (k)
(
ω −RTS (r3d) ṙ3d

)
− rT3dRS (k)

2

(
k3R

T r3d +
Td
m

RT δ (e1, e2)

)
=−W3(e1, e2, r3, r3d)

+ rT3dRS (k)
(
ω −RTS (r3d) ṙ3d

)
− rT3dRS (k)

2

(
k3R

T r3d +
Td
m

RT δ (e1, e2)

)
(64)

where use was made of the fact that S (r3) = RS (k) RT .
Since the control input does not appear yet in the equation,

another error e4 and respective Lyapunov candidate function
are created.

e4 =S (k)
(
ω −RTS (r3d) ṙ3d

)
− S (k)

2
RT

(
k3r3d +

Td
m
δ (e1, e2)

)
(65)

V4 =V3 +
1

2
eT4 e4 (66)

The time derivative of V4 gives

V̇4 =V̇3 + eT4 ė4

=V̇3 + eT4 S (k)

(
τ − d

dt

{
RTS (r3d) ṙ3d

})
− eT4 S (k)

2 d

dt

{
RT

(
k3r3d +

Td
m
δ (e1, e2)

)}
The remaining input τ has finally been unveiled and there-

fore it is now possible to write the final control law.

τ =S (k)
(
k4e4 + RT r3d

)
+

d

dt

{
RTS (r3d) ṙ3d

}
+ kτz

+ S (k)
d

dt

{
RT

(
k3r3d +

Td
m
δ (e1, e2)

)}
(67)

where τz corresponds to the third component of τ , and can be
arbitrarily set. For the present controller, it was chosen to use
it simply to drive ωz to zero, and therefore

τz = −kzωz (68)

At this point, the result of this development is presented.

Theorem 2. Let the quadrotor model be described by equa-
tions (41)-(44) and consider the control laws (54) and (67).
Choosing ki > 0 renders the origin of the error system
asymptotically stable and guarantees global convergence of
the tracking error to zero.

Proof: Substitution of τ into V̇4 yields

V̇4 =−
[
σTe eT2

]
Q

[
σe
e2

]
− k3rT3dS(r3)TS(r3)r3d − k4eT4 e4

(69)

which is negative semi-definite, being negative everywhere
besides the set {σe = 0, e2 = 0, r3 = ±r3d, e4 = 0}. Noting
that σe = 0 ⇒ e1 + k2e2 = 0, having e2 = 0 imply e1 = 0.
This deduction is valid for any initial conditions. Therefore,
errors e1, e2, and e4 converge to zero for any initial conditions,
meaning that trajectory tracking is achieved globally.

C. Simulation

The vehicles used in the simulations are all equal, weighing
0.1kg and having Ixx = Iyy = 1 × 10−3kg ·m2 and Iyy =
2 × 10−3kg ·m2. The products of inertia are assumed to be
0. These values are typical of small scale plants similar to
the ones used in the experimental test of section IV. Each
quadrotor controller is configured with the same parameters,
being k1 = 0.5, k2 = 1.5, k3 = 10, k4 = 0.5, kz = 1,
σmax = 5, c = 50, p22 = 0.5, p11 = 1, p12 = 1/3.

Quadrotor controller test: In this simulation the quad-
rotor is set to track a planar trajectory described by equation
(31) at a constant height h = −1.5m. In order to demonstrate
the performance of the controller, the quadrotor is initially
placed at p(0) = [−5 10 − 10]T , with φ(0) = π and
ψ(0) = 0 = θ(0). The velocities (linear and angular) are
initially zero. This is an extremely unfavourable configuration,
in which the vehicle is turned upside down. This fact causes
the plant to rapidly rotate, as can be observed in figure 4
through the snapshots of the plant actuation taken at each
second, or in the plot of the error e3 in figure 5 by the rapid
evolution of the third component of the error, which indicates
an inversion in direction of vector r3.
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Figure 4. Trajectory described by the vehicle (blue), its attitude at initial
moment and first 5 seconds, and the reference trajectory (red).
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Figure 5. Controller errors over time.

As can be seen in figure 5, the time required for the
convergence of the errors is approximately 10 seconds. During
the first 1 to 2 seconds a faster convergence of the errors e3

and e4 is observed, at the cost of growing the error e2. The first
two errors are the slower to converge and even after t = 10s
a reminiscent error is noticeable, vanishing by the end of the
simulation.

Quadrotors in formation: The results of a simulation with
the trajectory planner and the quadrotor controller are now
presented. In this simulation the leader, a quadrotor, is set
to follow the same trajectory of the previous simulation. The
motion of the leader (position, velocity, and acceleration) is
passed to the planner, which generates two different traject-
ories with identical dx to be passed as reference to two other
quadrotor vehicles.

The quadrotors are initially at rest in the floor. The
leader is at pL(0) = [0 0 0]

T , follower 1 at pF1(0) =
[−0.5 − 1 0]

T and follower 2 at pF2(0) = [−2 1 0]
T . The

vectors d for each follower were d1 = [0.35 0.35 − 0.3]
T

and d2 = [0.35 − 0.35 − 0.3]
T . The parameters of the

controllers of the planner were k1 = 0.2, k2 = 2, k3 = 0,
kz1 = 0.2, kz2 = 2, and pmax = 5.

To assess the robustness of the coordination strategy, noise
was added to the state measurement of each quadrotor. As
the trajectory generation depend on the leader’s state, the
addition of noise to the state indirectly introduces noise in the
trajectory generation. The noise added is white and gaussian
with zero mean and has a standard deviation of 0.2m for
the position, 0.1m/s for the linear velocity, 0.01m/s2 for the
acceleration, 0.02◦/s for the angular velocity and 0.02◦ for
the attitude measurement. These values are typical for low
cost sensors. In the planar position plot (see figure 3.7), the
symbols I represent the initial point of each of the vehicles
(both quadrotors and virtual followers) and the symbols �
their positions at the end of the simulation.

Figure 6 shows that the quadrotors are able to track the
trajectories generated by the planner. At the beginning, they
rapidly converge to the starting points of the trajectories, while
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Figure 6. Position of the quadrotors, generated trajectories and reference.
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Figure 7. Time evolution of quadrotor’s controller errors of both followers.
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Figure 8. Time evolution of the errors of both virtual followers.
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Figure 9. Time evolution of distance between leader and followers (and
between them).

the planner is stopped. Once they approach these points the
planner is finally started and the leader starts describing the
eight trajectory.

It is noticeable the effect noise has on the trajectory gener-
ation. Figure 6 (R) shows that the variations in height of the
leader, which were not contained in the reference trajectory,
are visible in the height evolution of the followers.

Lastly, figure 9 shows that the distance between quadrotors
is kept approximately constant, not varying more than 0.1m



between leader and followers and 0.15m between followers,
which corresponds to approximately 20% of their average
values.

IV. EXPERIMENTAL EVALUATION

This section presents the results of an experimental test
carried out at the Sensor-Based Cooperative Robotics Research
Laboratory – SCORE Lab of the Faculty of Science and
Technology of the University of Macau.

Three quadrotors Blade R© mQX were employed. These
vehicles weigh 78g, have a length of 353mm and are actuated
in terms of thrust and angular velocity. They are designed to be
human piloted with remote controls. However, it was possible
to identify the radio chip inside the remote control and connect
the serial interface of the RF module to a computer serial port.

A VICON R© system, composed of 12 high speed cameras
and a set of markers attached to the plants, was used to capture
the motion and attitude of the vehicles at 50Hz.

Two computers were used in this experiment, one running
the VICON software and a Simulink R© model which generates
the command signals sent to the other computer through
Ethernet; and a second one that sends them through serial port
to the RF module at 44Hz. The decision to separate control and
communications was made to avoid jitter in the transmission
of the serial-port signals to the RF module. A block diagram
of the overall architecture is presented in figure 10.

Figure 10. System architecture.

The Simulink model used contains the trajectory planner
developed and three quadrotor controllers. This controller is an
adaptation of the one presented in [9] and requires the desired
position and its derivatives up to the third to be provided.
However, in the present test, only position and its first two
derivatives were provided.

The VICON system outputs a pre-filtered position of the
vehicle and with single differences it is possible to obtain a
clean estimation of the velocity. However, double differences
are highly contaminated with noise, degrading the performance
of the estimation. To overcome this problem it is necessary
to low-pass filter the measurements. Using experimental data
taken from earlier tests performed with a quadrotor it was
possible to test the performance of various filters, with differ-
ent dimensions. The best trade-off between responsiveness and
smoothing was achieved with a moving average filter with 100
coefficients, which introduces a delay of approximately 1s.

A. Results
In this experimental test the leader is tracking a trajectory

given by

pref =


3

2

sin (γ/3)

1 + sin2(γ/3)
3

4

sin (2γ/3)

1 + sin2(γ/3)
−1.6

 (70)

where γ̇ =
√

1 + sin2 γ, in order to produce a constant linear
speed. The trajectory is rotated by π/4 counter-clockwise, to
better use the space available in the laboratory.

At the beginning of the test the quadrotors are at rest.
The leader is at pL(0) = [−1 0.48 0]

T , follower 1 at
pF1(0) = [−0.57 − 0.37 0]

T and follower 2 at pF2(0) =
[−1.26 − 0.77 0]

T . The vectors d for each follower were
d1 = [0.35 0.35 − 0.3]

T and d2 = [0.35 − 0.35 − 0.3]
T .

The parameters of the controllers of the planner were k1 = 0.3,
k2 = 1.1, k3 = 0.17, kz1 = 0.2, kz2 = 1, and pmax = 5.
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Figure 11. Position of the leader, generated trajectories and followers.
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Figure 12. Time evolution of velocities for both the followers.

In figure 14 it is noticeable an oscillatory behaviour of the
virtual errors. This oscillation is a result of the gain trade-off
found between mitigation of virtual error e1 and limiting the
sensitiveness of the trajectories to the perturbations in leader’s
movement. It is possible to maintain the virtual errors close
to the origin, but at the cost of degrading the performance of
the following quadrotors.

The trajectories generated capture the essence of leader’s
movement, while neglecting the higher frequency perturba-
tions. See for example figure 11 (R), and note the similarities
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Figure 14. Time evolution of the errors of both virtual followers.

between the dark blue line and the light blue one. The longer
and slower variations found in the leader’s height can also
be found in the height of the virtual followers (the green
line cannot be seen for being shadowed by the light blue
one). On the other hand, the more instantaneous changes in
leader’s height are filtered and do not appear in the generated
trajectory. This process results in smooth trajectories that can
easily be tracked by the controller, as can be seen from the
time evolution of velocities and errors (figures 12 and 13).

V. CONCLUSION

This paper presented a strategy for motion coordination
of autonomous vehicles. Concerning the trajectory planner,
global and asymptotic convergence of the errors of the virtual
vehicles was demonstrated. It has also been shown that when
all the virtual followers have equal value of desired longit-
udinal distance to the leader, the vehicles move in a fixed
configuration with respect to a local frame.

The quadrotor controller developed is capable of steering
the plant to the desired trajectory, even when started in
unfavourable conditions.

Both the simulated and experimental tests of quadrotor
formations demonstrated the applicability of the planner to
carry out the task, showing that the generated trajectories are
easily tracked by aerial vehicles. Although only the leader’s
position was being measured in the experimental test, the com-
putation of smoothed single and double differences allowed
for an accurate tracking of generated trajectories. However, it
could be done at the cost of degrading the performance of the
planner.

Directions of future work include:
• exploring other possibilities of virtual vehicle models;
• developing collision avoidance capabilities for the plan-

ner;
• improving and optimising the motion estimation.

REFERENCES

[1] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mobile
sensor networks: Adaptive gradient climbing in a distributed environ-
ment,” IEEE Transactions on Automatic Control, vol. 49, pp. 1292–1302,
2004.

[2] S. Waharte, N. Trigoni, and S. Julier, “Coordinated search with a
swarm of uavs,” in Sensor, Mesh and Ad Hoc Communications and
Networks Workshops, 2009. SECON Workshops ’09. 6th Annual IEEE
Communications Society Conference on, pp. 1 –3, june 2009.

[3] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and
transportation with aerial robots,” Autonomous Robots, vol. 30, pp. 73–86,
january 2011.

[4] N. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and co-
ordinated control of groups,” in Decision and Control, 2001. Proceedings
of the 40th IEEE Conference on, vol. 3, pp. 2968 –2973 vol.3, 2001.

[5] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms
and theory,” Automatic Control, IEEE Transactions on, vol. 51, pp. 401
– 420, march 2006.

[6] E. Justh and P. Krishnaprasad, “Equilibria and steering laws for planar
formations,” Systems and Control Letters, vol. 52, no. 1, pp. 25 – 38,
2004.

[7] J. Guerrero and R. Lozano, “Flight formation of multiple mini rotorcraft
based on nested saturations,” in Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pp. 634 –639, October 2010.

[8] P. Kokotovic, “The joy of feedback: nonlinear and adaptive,” Control
Systems, IEEE, vol. 12, pp. 7 –17, june 1992.

[9] D. Cabecinhas, R. Cunha, and C. Silvestre, “Rotorcraft path following
control for extended flight envelope coverage,” in Decision and Control,
2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pp. 3460
–3465, dec. 2009.


	Introduction
	Trajectory Planner
	Vehicle Model
	Controller Design
	Inner Dynamics Analysis
	Simulation Results
	Three-dimensional trajectories

	Quadrotors in Formation
	Quadrotor model
	Quadrotor trajectory tracking controller
	Simulation

	Experimental Evaluation
	Results

	Conclusion
	References

