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Abstract—This paper presents the design, analysis, perfor-
mance evaluation and preliminary experimental validation of
an integrated simultaneous localization and mapping algorithm
(SLAM) with application to unmanned aerial vehicles (UAV). The
SLAM problem is first formulated in a sensor-based framework
and modified in such a way that the system structure may be
regarded as time-varying for observability analysis purposes,
from which a Kalman filter with globally asymptotically stable
error dynamics follows naturally. The proposed solution includes
the estimation of both body-fixed linear velocity and rate-gyro
measurement biases. Furthermore, the formulation, solution, and
validation of the problem of estimating the inertial map and
trajectory with uncertainty using the sensor-based map provided
by the SLAM filter are also addressed. An optimization problem
with a closed-form solution is formulated, and its uncertainty
description is derived resorting to perturbation theory. Both
simulation results and preliminary experimental results, using
an instrumented quadrotor equipped with a RGB-D camera,
are included in this work to illustrate the performance of the
algorithm under realistic conditions.

Keywords—Simultaneous localization and mapping, Filtering,
Optimization, Sensor Fusion, Unmanned Aerial Vehicles

I. INTRODUCTION

AUTONOMOUS robot missions, especially those taking
place in environments where absolute positioning sys-

tems may not be used, either because of their absence or
unreliability, raise the need for dependable navigation and
positioning algorithms. One of the answers to this prob-
lem is probabilistic Simultaneous Localization and Mapping
(SLAM), spanning solutions as diverse as EKF SLAM, graph-
based SLAM, or particle filters [1]. SLAM is the problem of
navigating a vehicle in an unknown environment, by building
a map of the area and using this map to deduce its location,
without the need for a priori knowledge of location. Despite
significant advances, there are still no global convergence
results for the most popular strategies, to the best of the
author’s knowledge. Among all the algorithms that implement
SLAM, there are two which bear resemblance to the procedure
proposed in this work: the robocentric map joining [2], in the
sense that the filtering process takes place in the sensor space,
and the RGB-D SLAM [3] for its use of a RGB-D camera for
acquisition of images that are processed through a SURF/SIFT
algorithm for landmark detection.

The main contributions of the first part or this work
are the design, analysis, and validation of a novel sensor-
based SLAM filter for tridimensional environments. This work
extends that presented in [4], where a bidimensional (2-D)
sensor-based SLAM filter was addressed. The assumption that
the environment is structured vertically, needed in the 2-D
case, is dropped in this work, where only the immobility
of the landmarks is assumed. The second part of this work
proposes a methodology for obtaining the inertial map and
the pose of the vehicle, by building on the work in [5],
using the formulation of the extended Procrustes problem there

presented, and providing the uncertainty characterization of the
obtained transformation. The proposed integrated algorithm
1) has globally asymptotically stable (GAS) error dynamics;
2) resorts to the linear and angular motion kinematics that are
exact; 3) uses the low-cost Microsoft Kinect™, in opposition
to the 2-D landmark approach, which demands the use of
considerably more expensive laser range finders; 4) builds
on the well-established linear time-varying Kalman filtering
theory; 5) explicitly estimates the rate-gyro bias, fusing high
bandwidth dynamic measurements with information on static
landmarks; 6) finds the vehicle pose in the inertial frame by
solving an optimization problem; and 7) has fully character-
ized uncertainty, both provided by a Kalman filter and by the
proposed novel formulation.

The paper is organized as follows. Section II presents a
short description of the problem, with the definition of the
system dynamics. The observability analysis is performed in
Section III. The filter design is described in Section IV, which
includes not only the standard Kalman Filter prediction and
update steps, but also landmark detection, data association and
loop closing procedures. Section V presents the optimization
problem to obtain the inertial map and trajectory and its
uncertainty description. In Section VI the complete algorithm
is described and, finally, simulation results are presented in
Section VII and preliminary experimental results using an
instrumented quadrotor are detailed in Section VIII.

a) Problem Statement: The problem addressed in this
paper is that of developing and online SLAM algorithm for
an unmanned aerial vehicle (UAV), such as a quadrotor, by
designing 1) a SLAM filter in the space of sensors, providing
a sensor-based map and the velocity of the vehicle, producing
maps represented by tridimensional landmarks, which may
include up to three directions for each position landmark;
and 2) an Inertial Map and Trajectory Estimation algorithm
resultant of an optimization process by using the sensor-based
estimate of the SLAM filter.

b) Notation: The superscript I indicates a vector or
matrix expressed in the inertial frame {I}. For the sake of
clarity, when no superscript is present, the vector is expressed
in the body-fixed frame {B}. In is the identity matrix of
dimension n, and 0n×m is a n by m matrix filled with zeros.
If m is omitted, the matrix is square. S[a] is a special skew-
symmetric matrix, henceforth called the cross-product matrix,
as S[a]b = a× b with a,b ∈ R3.

II. DESCRIPTION OF THE PROBLEM

This paper addresses the problem of designing a navigation
system for a vehicle operating in an unknown environment.
This problem is solved resorting to a novel Sensor-based
SLAM filter, where no linearization or approximation is used
whatsoever and an optimization-based Inertial Map and Tra-
jectory Estimation algorithm fully characterized by an approx-
imate uncertainty description. The only available sensors are a
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triaxial rate-gyro, and a RGB-D camera, such as the Microsoft
Kinect™, which provide angular rate measurements and RGB-
D images, from where 3-D landmarks may be extracted.

A. Nonlinear System Dynamics
Let R(t) ∈ SO(3) be the rotation matrix from the body-

fixed frame {B} to the inertial frame {I}, with Ṙ(t) =
R(t) S[ω(t)], where ω(t) ∈ R3 is the angular velocity
expressed in body-fixed coordinates. Then, the position and
velocity of a landmark expressed in the body-fixed frame,
pi(t) ∈ R3 and ṗi(t) ∈ R3, satisfy

pi(t) =RT (t)
(
Ipi(t)− Ip(t)

)
(1)

and
ṗi(t) =− v(t)− S[ω(t)] pi(t), (2)

respectively, where Ip(t) ∈ R3 represents the vehicle position
(as well as the origin of the body-fixed frame) in the inertial
frame {I} at time t, Ipi(t) ∈ R3 is the position of landmark
i expressed in the same frame, and v(t) ∈ R3 denotes the
velocity of the vehicle expressed in the body-fixed frame. Note
that landmarks are assumed to be static in the inertial frame.
It is important to notice that ω(t) is available through noisy
and biased rate-gyros measurements

ωm(t) = ω(t) + bω(t) + nω(t), (3)
where the bias bω(t) ∈ R3 is assumed constant and nω(t) ∈
R3 corresponds to the rate-gyro noise, which is assumed to be
zero-mean white Gaussian noise with standard deviation σnω

in each component, i.e., nω(t) ∼ N(0, σ2
nω

I3). Taking this
into account, and using the property a × b = −b × a, it is
possible to rewrite (2), in a deterministic setting, as

ṗi(t) = −v(t)− S[pi(t)] bω(t)− S[ωm(t)] pi(t). (4)
The vehicle-related variables, i.e., the linear velocity and

the angular measurement bias will constitute the vehicle state,
xV (t) :=

[
vT (t) bTω (t)

]T ∈ R6, with simple dynamics
given by

ẋV (t) = 0, (5)

which means that both are assumed, in a deterministic setting,
as constant. In the filtering framework, the inclusion of state
disturbances allows to consider them as slowly time-varying.

It is now possible to derive the full state dynamics. For
that purpose consider the position landmark dynamics (4),
which may now be expressed as a function of the state vector,
yielding

ṗi(t) = AMVi
(pi(t)) xV (t)− S[ωm(t)]pi(t), (6)

where AMVi
(pi(t)) = [−I3 −S[pi(t)]]. Finally, the ob-

served, also designated as visible, landmarks xO(t) and the
unobserved or non-visible ones xU (t) are concatenated in the
landmark-based state vector, xM (t) :=

[
xTO(t) xTU (t)

]T
. The

two state vectors here defined constitute the full state vector
xF (t) =

[
xTV (t) xTM (t)

]T
, with the full system dynamics

reading as {
ẋF (t) = AF (t,xM (t))xF (t)

y(t) = xO(t)
, (7)

with
AF (t,xM (t)) =

[
0nV

0nV ×nM

AMV (xM (t)) AM (t)

]
,

where
AMV (xM (t)) =

[
AT
MV1

(p1(t)) · · · AT
MVNM

(pNM (t))
]T

and AM (t) = diag (−S[ωm(t)], · · · ,−S[ωm(t)]). From (7) it
follows that the system may be expressed in a way similar to
the usual linear dynamical system form. However, it is obvious
to conclude that the system above is nonlinear, as the dynamics
matrix depends on the landmarks that may be visible or not.
Note that no linearization was performed.

III. OBSERVABILITY ANALYSIS

Observability is of the utmost importance in any filtering
problem, and the work presented in this section aims at
analysing the observability of the dynamical system previously
exposed. It is important to notice that, although system (7)
is inherently nonlinear, discarding the non-visible landmarks
xU (t) makes it possible to regard the resulting system as linear
time-varying (LTV).

Consider the new state vector x(t) =
[
xTV (t) xTO(t)

]T
,

which does not include the non-visible landmarks, for which
the resulting system dynamics can be written as{

ẋ(t) = A(t,y(t))x(t)

y(t) = Cx(t)
, (8)

where A(t,y(t)) =

[
0nV

0nV ×nO

AMVO
(y(t)) AMO

(t)

]
and C =

[0nO
× nV InO ]. Note that the matrix A(t,y(t)) depends

not only on time but also on the system output. Nevertheless,
the dependency on the system state is now absent and the
system output is known, thus, the system can be seen as a
linear time-varying system for observability analysis purposes.
According to [6, Lemma 1, Section 3], if the observability
Gramian associated with a system with a dynamics matrix
depending on the system output is invertible, then the system
is observable. This result will be used throughout this section.
Before proceeding with this analysis the following assumption
is needed.

Assumption 1: Any two detected position landmarks are
assumed to be different and nonzero, i.e., yi(t),yj(t) 6= 0
and yi(t) 6= yj(t) for all t ≥ t0 and i, j ∈ IO, where IO
denotes the set of visible landmarks.
Notice that this is a very mild assumption, as it is physically
impossible to have two collinear landmarks, let alone equal,
visible at the same time, because of the intrinsic characteristics
of the camera: its angle of view is always inferior to 180◦.
Also, as in the body-fixed frame, in which the output is
expressed, the origin denotes the position of the vehicle, it
is impossible to have it coincide with a landmark.

The following theorem states the analysis of the observabil-
ity of system (8).

Theorem 1: Consider system (8) and let T := [t0, tf ] and
{t1, t2, t3} ∈ T . The system is observable on T in the sense
that, given the system output, the initial condition is uniquely
defined, if at least one of these conditions hold:

(i) There are, at least, three visible position landmarks at
the same time t1 that define a plane.

(ii) There exist two visible position landmarks in the interval
[t1, t2] such that at least one of the landmark sets
{p1(t1),p2(t1),p2(t2)} and {p1(t1),p2(t1),p1(t2)}
defines a plane.

(iii) There is a visible time-varying position landmark whose
coordinates, {p1(t1),p1(t2),p1(t3)}, define a plane.
Proof: The proof follows by transforming the system in

question by means of a Lyapunov transformation [7, Chapter
1, Section 8], and then proving that the observability Gramian
of the transformed system is non-singular.

Let T(t) be a Lyapunov transformation such that
z(t) = T(t) x(t), (9)

where T(t) = diag (InV
,Rm(t), · · · ,Rm(t)) and Rm(t) ∈

SO(3) is a rotation matrix respecting Ṙm(t) = Rm(t)S[ω(t)].
A Lyapunov transformation preserves the observability prop-
erties of a system, hence it suffices to prove that the new,
transformed system is observable. This approach has been used
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successfully in the past, see [6] and [8]. The computation of
the new system dynamics and output is simple, yielding{

ż(t) = A(t,y(t))z(t)

y(t) = C(t) z(t),
(10)

with
A(t,y(t)) =

[
0nV 0nV ×nO

AMV (t,y(t)) 0nO

]
,

C(t) =
[
0nO×nV diag

(
RT
m(t), · · · ,RT

m(t)
)]
,

where
AMV (y(t)) =

[
AT
MV 1

(y1(t)) · · · AT
MVNO

(yNO (t))
]T
,

and
AMV i(t) = [−Rm(t) −Rm(t)S[pi(t)]] .

Before proceeding to computing the observability Gramian
associated with (10), it is necessary to know its transition
matrix. A simple computation of z(t) as a function of z(t0)
by solving z(t) = z(t0) +

∫ t
t0
A(τ, y(τ))z(τ)dτ yields

φ(t, t0) =

[
InV

0nV ×nO

φMV (t, t0) InO

]
, (11)

where
φMV (t, t0) =
−
∫ t
t0

Rm(σ)dσ −
∫ t
t0

Rm(σ)S [p1(σ)] dσ
...

...
−
∫ t
t0

Rm(σ)dσ −
∫ t
t0

Rm(σ)S [pNO
(σ)] dσ

 .
Finally, the observability Gramian is

W(t0, tf ) =

tf∫
t0

φT (τ, t0)CT (τ)C(τ)φ(τ, t0)dτ, (12)

and, if W(t0, tf ) is invertible, the system (10) is observable,
in the sense that given the system input and output, the initial
condition z(t0) is uniquely defined. The next step is to prove,
by contradiction, that this is the case, i.e, by assuming that
W(t0, tf ) is singular. In that case, there exists a unit vector
c =

[
cT1 cT2 cT3 · · · cT2+NO

]T ∈ R(6+3NO), such that,
cTW(t0, tf )c = 0. (13)

Expanding (13) gives

cTW(t0, tf )c =

tf∫
t0

‖g(τ, t0)‖2 dτ, (14)

where g(τ, t0) = diag (Rm(τ), · · · ,Rm(τ))C(τ)φ(τ, t0)c.
The evaluation of g(τ, t0) and its derivative yields

g(τ, t0) := [φMV (τ, t0) InO ] c = c3 −
∫ τ
t0

Rm(σ)c1dσ −
∫ τ
t0

Rm(σ)S [p1(σ)] c2dσ

...
c2+NO −

∫ τ
t0

Rm(σ)c1dσ −
∫ τ
t0

Rm(σ)S [pNO (σ)] c2dσ

 ,
(15)

dg(τ, t0)

dτ
=

 −Rm(τ)c1 −Rm(τ)S [p1(τ)] c2

...
−Rm(τ)c1 −Rm(τ)S [pNO

(τ)] c2

 . (16)

In order for (13) to be true, both g(τ, t0) and
dg(τ, t0)

dτ
must

be zero for all τ ∈ T , which implies thatI3 S [p1(τ)]
...

...
I3 S [pNO

(τ)]

[c1

c2

]
= 0, ∀τ ∈ T . (17)

Thus, it remains to show that, if the observability Gramian is
singular the conditions of Theorem 1 cannot hold. Consider
then the situation where there are three visible landmarks
pi(t1), i ∈ {1, 2, 3}. In this case (17) can be rewritten as[

I3 S [p1(t1)]
03 S [p2(t1)− p1(t1)]
03 S [p3(t1)− p1(t1)]

] [
c1

c2

]
= 0. (18)

From this, it is simple to find that either c2 = c1 = 0 thus
contradicting the hypothesis of an unit vector c or

c2 = α (p2(t1)− p1(t1)) = β (p3(t1)− p1(t1)) . (19)
The second possibility implies that all three landmarks form
a line, thus contradicting the hypothesis of the theorem. In
the case where any of the remaining conditions applies, an
equation similar to (18) may be constructed, this time with the
sets {p1(t1),p2(t1),p2(t2)} or {p1(t1),p2(t1),p1(t2)}, for
condition (ii) and {p1(t1),p1(t2),p1(t3)} for condition (iii).
Hence, if the observability Gramian is not invertible, none of
the hypothesis of the theorem can hold, which means that, if at
least one of the conditions of Theorem 1 holds, then W(t0, tf )
is invertible on T , and, using [6, Lemma 1, Section 3], it
follows that (10) is observable. Moreover, as the Lyapunov
transformation (9) preserves observability, the system (8) is
also observable, thus concluding the proof of the theorem.

Given the sufficient conditions for observability, a Kalman
Filter for the nonlinear system (7), with globally asymp-
totically stable error dynamics, can be designed following
the classical approach. The following result addresses the
equivalence between the state of the nonlinear system (8),
regarded as LTV, and that of the nominal nonlinear system
(7), when the non-visible landmarks are not considered.

Theorem 2: Consider that the conditions of Theorem 1
hold. Then,

(i) the initial state of the nonlinear system (7), discarding
the non-visible landmarks, is uniquely determined, and
is the same of the nonlinear system (8), regarded as LTV;

(ii) a state observer with uniformly globally asymptotically
stable error dynamics for the LTV system is also a
state observer for the underlying nonlinear system, with
uniformly globally asymptotically stable error dynamics.
Proof: Consider the transformed system (10), whose

state, and therefore initial condition, is related with the state
of the nonlinear system (8), regarded as LTV. The proof
follows with the transformed system for simplicity of anal-
ysis. Let the initial condition for this system be given by
z̄(t0) =

[
v̄T (t0) b̄Tω (t0) z̄Tp1(t0) · · · z̄TpN (t0)

]T
, where

z̄pi(t) = Rm(t)yi(t), which comes from y(t) = C(t)z(t).
Recall that z(t) = φ(t, t0)z̄(t0), which then yields y(t) =
C(t)φ(t, t0)z̄(t0). The i-th component of the output of the
system is given by

yi(t) = RT
m(t)Rm(t0)yi(t0)

−RT
m(t)

t∫
t0

Rm(σ)
(
v̄(t0) + S[yi(σ)]b̄ω(t0)

)
dσ,

(20)

where the relation between yi(t) and z̄i(t0) was used. The
next steps include left multiplying this expression by Rm(t),
differentiating, and further simplifying by left-multiplying
both sides by Rm(t)T , yielding the first derivative of yi(t),

ẏi(t) = −v̄(t0)− S[yi(t)]
(
b̄ω(t0)− ω(t)

)
. (21)

Now consider the nonlinear system (7). The ini-
tial condition of this system is given by x(t0) =[
vT (t0) bTω (t0) pT1 (t0) · · · pTN (t0)

]T
, where pi(t) =
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yi(t) for all pi(t) ∈ IO. The output of the system is related
to the state by y(t) = C

∫ t
t0

A(x(σ), σ)x(σ)dσ + Cx(t0),
which, after a simple computation and substituting pi(t) by
yi(t), yields

yi(t) = yi(t0)−
t∫

t0

(v(t0) + S[yi(σ)] (bω(t0)− ω(σ))) dσ,

with first time derivative given by
ẏi(t) = −v(t0)− S[yi(t)] (bω(t0)− ω(t)) . (22)

Comparison of (21) with (22) yields the following equation
0 = (v̄(t0)− v(t0))− S[yi(t)]

(
b̄ω(t0)− bω(t0)

)
(23)

for all t in T and i ∈ IO. When the conditions of Theorem 1
hold, this system yields v̄(t0) = v(t0) and b̄ω(t0) = bω(t0)
by a similar reasoning to that used to prove the sufficiency
of those conditions to the observability of the system. As
mentioned before, the initial condition z̄(t0) is related to that
of the nonlinear system (8) by the Lyapunov transformation
T(t). Hence, under the conditions of Theorem 1, the initial
state of the nonlinear system (8), regarded as LTV, and the
initial state of the nonlinear system (7), discarding the non-
visible landmarks, are the same and uniquely defined.

The first part of the theorem, now proved, gives insight for
the proof of the second part. An observer designed for a LTV
system with globally asymptotically stable error dynamics
has an estimation error convergent to zero, implying that the
estimates asymptotically tend to the true state. Therefore, if
the true state of the nonlinear system and the state of the LTV
system are one and the same, as proved, the estimation error
of the state of the nonlinear system converges to zero too.

Given that a GAS observer for system (8) is an observer for
the nominal nonlinear system, the design of a globally asymp-
totically stable observer for the LTV system follows. This step
requires that the pair (A(t,y(t)),C) is uniformly completely
observable as declared in [9]. The following theorem states
the conditions for this property to be verified.

Theorem 3: Consider system (8). The pair (A(t,y(t)),C)
is uniformly completely observable, if there exists a δ > 0
such that, for all t ≥ t0, it is possible to choose {t1, t2, t3} ∈
Tδ , Tδ = [t, t + δ], such that at least one of the following
conditions hold:

(i) There are at least three visible landmarks p1(t),
p2(t) and p3(t) such that (p1(t1)− p2(t1)) ×
(p1(t1)− p3(t1)) 6= 0,

(ii) There exist two visible position landmarks at times
t1, t2 such that at least one of the landmark sets
{p1(t1),p2(t1),p2(t2)} or the {p1(t1),p2(t1),p1(t2)}
forms a plane,

(iii) There is a visible time-varying position landmark whose
coordinates, at three different instants of time {t1, t2, t3},
form a plane.
Proof: The proof follows similar steps to the proof of

Theorem 1 but considering uniform bounds for all t ≥ t0 and
intervals [t, t+δ], and is therefore omitted. The overall concept
of the proof can be found in [10], with different dynamics.

IV. SENSOR-BASED SLAM FILTER DESIGN

This section addresses the design of the sensor-based 3D-
SLAM filter. A discrete Kalman filter is designed, considering
the sample-based/digital characteristics of both sensors needed
for this work: an IMU (or more precisely a triad of rate-
gyros) and a depth camera (or other tridimensional relative
position sensor). Hence, it is important to obtain the discrete-
time version of the dynamic system under analysis.

A. Discrete Dynamics
Denoting the synchronized sampling period of both sensors

as Ts, the discrete time steps can be expressed as tk = kTs+t0,
where k ∈ N0 and t0 is the initial time. Thus, the discretized
system is characterized by the state xk := x(tk), the dy-
namics matrix Ak(yk) := A(tk, y(tk)) and the output matrix
Ck := C(tk). Finally, the Euler discretization of the system
dynamics (8), including system disturbance and measurement
noise, yields {

xk+1 = Fk(yk)xk + ξk
yk+1 = Hk+1xk+1 + θk+1

, (24)

where Fk(yk) := Inx + TsAk(yk) and Hk+1 := Ck+1. The
disturbance vector ξk and the measurement noise vector θk are
both zero-mean discrete white Gaussian noise, with 〈ξkξTk 〉 =
Ξk and 〈θkθTk 〉 = Θk, where 〈.〉 denotes the expected value
of its arguments.

B. Prediction Step
System (24) does not include the non-visible landmarks,

which must be propagated in open-loop using (7). Thus, with
the full state vector, xFk

:=
[
xTk xTMk

]T
, the prediction step

of the Kalman filter is given by{
x̂Fk+1|k = FFk|k(yk, x̂Uk|k)x̂Fk|k

ΣFk+1|k = FFk|kΣFk+1|kFTFk|k
+ ΞFk

, (25)

where FFk|k(yk, x̂Uk|k) = Inx + TsAFk|k(yk, x̂Uk|k)
and ΞFk

= diag(Ξk,ΞUk
), with AFk|k(yk, x̂Uk|k) :=

AF (tk,yk, x̂Uk|k). This prediction step uses the measurements
of the rate-gyros, propagating the state every time a reading
is available.

C. Update Step
The update step is divided in two different stages, land-

mark association and the update equations. This step occurs
every time 2-D colour and depth images are available from
the Kinect. Then, an implementation of SURF [11] detects
features in the 2-D picture of the environment. The resulting
features are then matched to a pointcloud built with the depth
image, returning a set of observed tridimensional landmarks
in cartesian coordinates. The SLAM filter does not know a
priori if a landmark from this set is in the current map or if it
is the first time it is seen. This is when data association takes
place, associating the measured data with the known, existing,
landmarks. Wrong associations may have a very negative
effect on the estimation, so this is a field where a lot of
research effort has been put, yielding various algorithms from
the community. The algorithm used, the Joint Compatibility
Branch and Bound [12], performs a depth-first search only
expanding nodes when the joint associations are jointly com-
patible in a probabilistic sense. Note that both the landmark
detection and association algorithms may be substituted by
others, as they are independent from the filtering technique
described in this paper. The association algorithm provides the
innovation vector and its covariance matrix, and also redefines
the new sets of visible and non-visible landmarks,{

νk+1 = yk+1 −Hk+1x̂k+1|k
Σνk+1

= Hk+1Σk+1|kH
T
k+1 + Θk+1.

(26)

The update equations are standard, and given by
Kk+1 = Σk+1|kH

T
k+1Σ

−1
νk+1

x̂k+1|k+1 = x̂k+1|k + Kk+1νk+1

Σk+1|k+1 = Σk+1|k −Kk+1Hk+1Σk+1|k.

(27)
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D. Loop Closing
The loop closing problem is very important in any SLAM

algorithm, as it enables the recognition of previously visited
places, allowing the reduction of the uncertainty associated
with the landmarks. The rather naive loop closing algorithm
used consists on using only a subset of the state landmarks
in the association algorithm, namely the more recent ones
Irec, and separating the full state into three subsets, the
current, the old, Iold, and the ones in between, Igap. This
allows the duplication of landmarks when an area is revisited.
Then, periodically, the loop closing algorithm tries to associate
landmarks in Irec and Iold using an adapted version of the
association algorithm. If the number of jointly compatible
associations passes a certain predefined threshold, a loop
closure takes place. The loop closure is then incorporated in
the filter by means of a noise free measurement: an association
between landmark i ∈ Irec and landmark j ∈ Iold. This
procedure is similar to the one proposed in [4]. Note that
neither the association algorithm or the loop closing procedure
are the focus of this work, but rather a demonstration that the
filter is able to provide consistent estimates. Furthermore, they
can be easily replaced by any other method.

V. TRIDIMENSIONAL INERTIAL MAP AND TRAJECTORY
ESTIMATION

The framework of the proposed SLAM filter is completely
independent of the inertial frame, as every input and state are
expressed in the body-fixed frame. Therefore, the localization
of the vehicle is trivial, being the origin of the referred
frame. Nevertheless, the usual SLAM algorithms perform the
mapping and localization in an inertial frame, and many
applications require the inertial map and the trajectory of
the vehicle. The sensor-based map is readily available, and,
if an inertial estimate is provided, the pose of the vehicle
can be estimated by the comparison of these two maps.
The problem of computing the transformation that maps the
two sets of points is usually called the Procrustes Problem.
Its generalization for rotation, translation and scalling can
be traced back to [13] and [14]. This section presents an
Online Tridimensional Inertial Map and Trajectory Estimate
algorithm, henceforth denoted as the esTIMATE algorithm,
that solves the extended Procrustes problem and provides a
measure of the uncertainty associated with its outputs.

A. Definition and Solution of the Optimization Problem
Consider the existence of two landmark sets, IIk and

IBk
, which contain, respectively, the landmarks expressed in

the inertial frame and those in the body-fixed frame. Each
landmark I p̂ik ∈ IIk corresponds to a landmark p̂ik ∈ IBk

,
with i ∈ {1, . . . , NM}, and that correspondence is expressed
by

I p̂ik = I p̂k + R̂kp̂ik , (28)

where the pair
(
R̂k,

I p̂k

)
, namely the orientation and position

of the vehicle in frame {I}, fully defines the transformation
from the body-fixed frame {B} to the inertial frame, as it
represents the estimated rotation and translation from {B} to
{I}. Given the relation between the two sets, it is possible to
define the error function

Ieik = I p̂ik − R̂kp̂ik − I p̂k, (29)
that represents the error between the inertial landmark esti-
mate i ∈ IIk and its sensor-based homologous, rotated and

translated with the estimated transformation. Obtaining the
pair

(
R̂k,

I p̂k

)
is the purpose of the optimization problem

that results from minimizing this error function,(
R∗k,

Ip∗k
)

= arg min
R̂k ∈ SO(3)
I p̂k ∈ R3

G
(
R̂k,

I p̂k

)
, (30)

where the functional G
(
R̂k,

I p̂k

)
=

NT∑
i=1

σ−2
ik
‖Ieik‖2 is given,

in matrix form, by

G
(
R̂k,

I p̂k

)
=

1

NT

∥∥∥(Yk − R̂kXk − I p̂k1
T
)

Σ
−1/2
Iek

∥∥∥2

,

(31)
where Yk =

[
I p̂1k

· · · I p̂NT k

]
and Xk =

[p̂1k
· · · p̂NT k

], Yk,Xk ∈ R3×NT , are the concatenation
of the landmark vectors expressed in the inertial and body-
fixed frames, respectively, 1 = [1 · · · 1]

T ∈ RNT is a
vector of ones, and the weight matrix ΣIek

is a diagonal
matrix whose entries are the individual weights σ2

1k
, . . . , σ2

NT k

that model the uncertainty of each landmark pair, and that
are conservatively defined as

σ2
ik

= λmax

(
ΣIpik

)
+ λmax

(
Σpik

)
≥ λmax

(
ΣIpik

+ RkΣpik
RT
k

) (32)

because the true ΣIek
is not known. Note that NT may be

different from NM , as the landmarks used in the algorithm
may be only subsets of IIk and IBk

.
The work of [13] proposes a closed-form solution to a

similar optimization problem, where no weights were used.
The derivation of the solution for (30) follows closely that
of the referred work, and is therefore omitted, due to lack
of space. However, the introduction of the normalization
weight matrix Wk := Σ−1

Iek
− 1

NWk
Σ−1

Iek
11TΣ−1

Iek
, where

NWk
= 1TΣ−1

Iek
1, is needed before presenting the actual

solution
The optimal translation vector follows directly from rear-

ranging of the function G
(
R̂k,

I p̂k

)
, yielding

Ip∗k =
1

NWk

(Yk −R∗kXk) Σ−1
Iek

1 (33)

It is straightforward to show that this vector translates the
centroid of the body-fixed landmarks rotated to the inertial
frame to the centroid of the inertial landmarks.

Finally, it remains to find the optimal rotation from the
body-fixed frame onto the inertial frame. [13, Lemma, Section
II] shows that the optimal rotation for this problem is given
by

I
Bk

R̂∗k = U diag(1, 1, |U|) diag(1, 1, |V|)VT , (34)
where

UDVT = svd(BT
k ), (35)

and Bk := XkWkY
T
k .

B. The esTIMATE algorithm
In fact, as the landmarks in II are static, the correspondence

in (28) is also valid between I p̂ik+1
and p̂ik , i ∈ {1, . . . , NM}.

This step is of the utmost importance in the design of the
algorithm, because it is only possible to compute the pair(
R̂k,

I p̂k

)
having, a priori, both landmark sets. However,

the computation of I p̂ik requires the transformation between
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frames to be available. This algebraic loop is averted by using
the update equation

I p̂ik+1
= I p̂k + R̂kp̂ik , (36)

after the computation of the optimal translation and rotation
using the sensor-based estimate of instant k and the inertial
estimate computed in the previous one. Note that the solution
of the Procrustes problem uses only a subset containing the
most recently visible landmarks in IBk

, provided that the
dimension of the resulting set IBT k

is greater, if possible,
than a predefined threshold. This is done in order to make
the algorithm more computationally efficient, as well as to
avoid using older landmarks whose estimation may be possibly
worse.

C. Uncertainty Description of the Inertial Estimates

The work exposed in this section, including the estimates
for the vehicle pose, given by (33) and (34), and the update
equations (36), allows the real time computation of the vehicle
trajectory and of the inertial map. However, the tridimensional
inertial map and trajectory estimation algorithm here de-
scribed, apart from having uncertainties involved, requires the
knowledge of the uncertainty of both the inertial and sensor-
based landmark estimates. The latter is directly provided by
the Kalman filter, but the former is yet to be described. These
statistical properties have been the subject of study in works
such as [15] and [16]. In these works, perturbation theory
was employed. However, some rather limiting assumptions
were taken, namely, the absence of weighting in the functional
G
(
R̂k,

I p̂k

)
, the use of small rotations, and the same covari-

ance for each landmark. The scope of this section is to provide
approximate uncertainty descriptions for the parameters output
by this algorithm. That is done by building on the referred
work and considering arbitrary rotations and translations,
individual weights, and a total covariance matrix for the whole
inertial map. A similar approach for the bidimensional case is
hinted at [5].

The error models of the known sensor-based and inertial
variables are defined as follows

p̂ik = p̂
(0)
ik

+ ε p̂
(1)
ik

+O(ε2) (37a)
I p̂ik = I p̂

(0)
ik

+ ε I p̂
(1)
ik

+O(ε2) (37b)
I p̂k = I p̂

(0)
k + ε I p̂

(1)
k +O(ε2) (37c)

I p̂ik+1
= I p̂

(0)
ik+1

+ ε I p̂
(1)
ik+1

+O(ε2), (37d)

where ε is the smallness parameter and the notation O(εn)
stands for all the terms of order n or superior, the zero
order terms are deterministic, i.e, 〈a(0)〉 = a(0), and the
first order terms, a

(1)
i , are assumed to be Gaussian distributed

with zero mean and covariance matrices defined by Σaijk
:=

〈a(1)
i a

(1)
j

T
〉.

The rotation matrix from {B} to {I} is assumed to have
the special structure

R̂k = exp (S [Ωk]) R̂
(0)
k =

[
I + ε S [Ωk] +O(ε2)

]
R̂

(0)
k ,

(38)
where Ωk ∈ R3 denotes the rotation error and R

(0)
k the true

rotation matrix. With all the error models defined, the next
step is to compute the expressions that define I p̂

(0)
ik+1

, I p̂(1)
ik+1

,
I p̂

(0)
k , I p̂

(1)
k , and Ωk as well as their expected values and

covariance matrices.

1) Rotation uncertainty: The rotation matrix obtained by
the optimization process described before belongs to the spe-
cial orthogonal group SO(3), which yields the two constraints
RT
kRk = I and |Rk| = 1. It is straightforward to see that

R̂
(0)
k also belongs to SO(3), as it must to be considered the

true rotation matrix, using the restraints of the space and the
error models.

Knowing the properties of the deterministic term in Rk,
it remains to compute the uncertainty associated, which was
assumed in (38) to be related to the rotation error Ωk. Thus,
the next steps describe the computation of this rotation error
and its statistical properties, starting with some properties
associated with the closed-form solution of the optimization
problem (30). Consider the matrix that was used to compute
the estimated rotation, Bk. This matrix can be described in
terms of its error model, using that of matrices Xk and Yk,
which are a generalization of (37a) and (37b), yielding

Bk = B
(0)
k + ε B

(1)
k , (39)

with B
(0)
k = X

(0)
k WkY

(0)
k

T
, and B

(1)
k = X

(1)
k WkY

(0)
k

T
+

X
(0)
k WkY

(1)
k

T
. From the proof of [13, Lemma, Section II],

it is known that the matrix BkRk is symmetrical, and thus,
using the error model (38) and (39) the following expression
may be derived

skew (BkRk)

= skew
(
B

(0)
k R̂

(0)
k

)
+ ε skew

(
B

(1)
k R̂

(0)
k + B

(0)
k S [Ωk] R̂

(0)
k

)
= 0,

which shows that each skew operator is null, thus yielding

skew
(
B

(0)
k S [Ωk] R̂

(0)
k

)
= − skew

(
B

(1)
k R̂

(0)
k

)
. (40)

The final objective of this step, as well as of the following, is
to compute Ωk. For that purpose, the last relation is rearranged
and computed element by element in order to extract the
underlying linear matrix equation

AkΩk = bk, (41)
where Ak :=

[
tr(Ak) I3 −AT

k

]
, and the vector bk ∈ R3 is

defined as bk := [c23 − c32 c31 − c13 c12 − c21]
T , cij ∈ R

being the element on the i-th row and j-th column of Ck =

R̂
(0)
k B

(1)
k and Ak = R̂

(0)
k B

(0)
k .

Note that from the linear equation now derived it is straight-
forward to obtain Ωk, as long as Ak is invertible. The next
step in finding Ωk is then to unveil the conditions in which
Ak is invertible, if any. For that purpose, rewriting it as a sum
of terms involving the landmarks (both inertial and sensor-
based) provides a better insight on its properties. Consider the
matrices B

(0)
k and Ak expressed as summations,

B
(0)
k =

NT∑
i=1

σ−2
ik

[
p̂
(0)
ik

I p̂
(0)
ik

T
− 1

NWk

NT∑
j=1

σ−2
jk

p̂
(0)
ik

I p̂
(0)
jk

T

]
, (42)

and

Ak =

NT∑
i=1

σ−2
ik

R̂
(0)
k

[
p̂
(0)
ik

I p̂
(0)
ik

T
− 1

NWk

NT∑
j=1

σ−2
jk

p̂
(0)
ik

I p̂
(0)
jk

T

]
,

(43)
respectively. If Ak is non-singular, the only solution for the
following expression is the trivial solution u = 0.

uTAku = 0, u ∈ R[3] (44)
A long process of expanding and rearranging (43), (42) and
uTAku = 0, using the equality I p̂

(0)
ik

= I p̂
(0)
k + R̂

(0)
k p̂

(0)
ik

allows to show, using the triangle and Young’s inequalities,
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that, if at least two landmarks are non collinear, matrix Ak is
invertible, provided that Assumption 1 is true. This yields

Ωk = A−1
k bk. (45)

With Ωk determined, the next step is to compute its sta-
tistical properties, namely its expected value and covariance
matrix. The expected value of the rotation error is
〈Ωk〉 = A−1

k 〈[c23 − c32 c31 − c13 c12 − c21]
T 〉 = 0,

as it is straightforward to show that Ck has zero mean. As Ωk

is a zero mean quantity, its covariance matrix is simply given
by

ΣΩk
= 〈ΩkΩ

T
k 〉 = A−1

k 〈bkbTk 〉A−1
k

T

= A−1
k

[
〈(Ck −CT

k )2〉 − 1

2
tr〈(Ck −CT

k )2〉 I3

]
A−1
k

T
.

(46)
After a long computation that is omitted here due to lack of
space, it is shown that the three components of 〈(Ck−CT

k )2〉
are given by

〈CkCk〉 =
NT∑
i,j=1

σ−2
jk

[
R̂

(0)
k p̂

(0)
ik

p̂
(0)
jk

T
R̂

(0)
k

T
〈a(1)
ik

a
(1)
jk

T
〉

+R̂
(0)
k Σpijk

R̂
(0)
k

T
a
(0)
ik

a
(0)
jk

T
]

〈CkC
T
k 〉 =

NT∑
i,j=1

σ−2
ik
σ−2
jk

[
R̂

(0)
k p̂

(0)
ik

p̂
(0)
jk

T
R̂

(0)
k

T
tr(a

(1)
ik

a
(1)
jk

T
)

+R̂
(0)
k Σpijk

R̂
(0)
k

T
a
(0)
ik

T
a
(0)
jk

]
〈CT

kCk〉 =
NT∑
i,j=1

σ−2
ik
σ−2
jk

[
p̂
(0)
ik

T
p̂
(0)
jk
〈a(1)
ik

a
(1)
jk

T
〉

+tr(Σpijk
)a

(0)
ik

a
(0)
jk

T
]
,

(47)
with

〈a(1)
ik

a
(1)
jk

T
〉 = ΣIpijk

+
1

N2
Wk

NT∑
r,s=1

σ−2
r σ−2

s ΣIprsk

− 1

NWk

NT∑
r=1

σ−2
r

(
ΣIpirk

+ ΣIprjk

)
,

(48)

where a
(.)
ik

:= I p̂
(.)
ik
− 1

NWk

NT∑
j=1

I p̂
(.)
jk

and it was assumed that

the body-fixed landmarks are independent from the inertial
landmarks, as the latter were calculated in a different time
instant.

This finishes the derivations of the uncertainty related with
the computation of the rotation between frames. The work
proceeds by determining the uncertainty of the inertial map
and trajectory estimations, starting by completing the charac-
terization of the transformation between the sensor-based and
inertial frames, that is, the uncertainty of the translation vector,
I p̂k.

2) Translation uncertainty: The translation between frames
is, as explained before, given by the position of the vehicle
in a given instant. Therefore, to determine its uncertainty
it is necessary to recall the vehicle position estimate error
model presented in (37c) as well as its definition in (33). The
expansion of the latter using the former yields

Ipk =
1

NWk

N∑
i=1

σ−2
ik

[(
I p̂

(i)
0k

+ εI p̂
(1)
ik

)
− R̂

(0)
k (I3 + εS [ωk])

1

NWk

N∑
i=1

σ−2
ik

(
p̂

(i)
0k

+ εp̂
(1)
ik

)]
,

from which, once more neglecting higher order
terms, it is possible to see that I p̂

(1)
k =

1
NWk

NT∑
i=1

σ−2
i

(
I p̂

(1)
ik
− S [Ωk] R̂

(0)
k p̂

(0)
ik
− R̂

(0)
k p̂

(1)
ik

)
.

It is straightforward to confirm that I p̂(1)
k has zero mean,

and, after some computation, that the covariance matrix of the
position estimate ΣIpk is approximately given by

ΣIpk ≈
1

N2
Wk

NT∑
i,j=1

σ−2
ik
σ−2
jk

(
ΣIpijk

+ R̂
(0)
k Σpijk

R̂
(0)
k

T

+ S
[
R̂

(0)
k p̂

(0)
ik

]
ΣΩk

ST
[
R̂

(0)
k p̂

(0)
jk

])
, (49)

where all the cross terms between inertial and sensor-based
landmarks were omitted, as they are zero, and the cross
covariance terms between the rotation error and the landmarks
(both inertial and sensor-based) were neglected.

3) Inertial map uncertainty: The final step in the process
of studying the uncertainty description of the algorithm is
computing ΣIpijk+1

, for all i, j ∈ IIk+1
. Recall that the

inertial map estimate is calculated with the update equation
in (36). Using (37d), it is possible to determine the uncer-
tain part of the error model, given by I p̂

(1)
ik+1

= I p̂
(1)
k +

S [Ωk] R̂
(0)
k p̂

(0)
ik

+R̂
(0)
k p̂

(1)
ik

. Again, I p̂(1)
ik+1

is easily confirmed
to have zero mean, and an approximation to the covariance
matrix of the position estimate is obtained by neglecting the
cross-covariance terms between the vehicle position, rotation
and the landmarks:

ΣIpijk+1
≈ ΣIpk + R̂

(0)
k Σpijk

R̂
(0)
k

T

+ S
[
R̂

(0)
k p̂

(0)
ik

]
ΣΩk

ST
[
R̂

(0)
k p̂

(0)
jk

]
+ ST

[
R̂

(0)
k p̂

(0)
ik

]
ΣT

IpkΩk
+ ΣIpkΩk

S
[
R̂

(0)
k p̂

(0)
jk

]
, (50)

where once more all the cross terms between inertial and
sensor-based landmarks were omitted. ΣIpkΩk

:= 〈I p̂(1)
k ΩT

k 〉
is the cross covariance between the translation and rotation
estimates, whose columns are given by linear combinations of
〈I p̂(1)

k clm〉, l,m ∈ {1, 2, 3}. This covariance is approximately
given by

〈I p̂(1)
k clm〉 ≈

1

NWk

NM∑
i,j=1

σ−2
ik
σ−2
jk

[
ΣIpijk

(:,m)R̂
(0)
k (l, :)p̂

(0)
jk

− 1

NWk

NM∑
r=1

σ−2
r ΣIpirk

(:,m)R̂
(0)
k (l, :)p̂

(0)
jk

− R̂
(0)
k Σpijk

(R̂
(0)
k (l, :))Ta

(0)
jk

(m)
]
,

(51)
where all the usual assumptions were taken into account and
where A(l, :) represents the l-th row of the matrix A and
a(m) the m-th component of a.

D. Final Remarks
It is important to notice that in this procedure, an inertial

landmark is only updated if the associated uncertainty de-
creases in that iteration. Thus, in each iteration, the candidate
inertial landmarks covariance matrix is computed, and then
the trace of each ΣIpik+1

is compared to its previous value,
tr(ΣIpik

). If the uncertainty is raised, then the old covariance
is kept and ΣIpijk+1

= 0 for all j 6= i.
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The initial estimate is also a relevant point. The usual
approach in any localization algorithm is to assume that the
vehicle is deterministically at the origin and aligned with
the inertial frame. Hence, when the algorithm is started, the
position and attitude of the vehicle are fully known, thus
allowing the computation of the inertial estimate at k = 0 with
I p̂i0 = R0p̂i0 +Ip0. The only non-deterministic quantity here
is the sensor-based landmark estimate, and, thus the uncertain
part of I p̂i0 is simply I p̂

(1)
i0

= R0p̂
(1)
i0

. The initial covariance
matrix that describes the uncertainty associated with the initial
estimate is then given by

ΣIpij0
= 〈I p̂(1)

i0
I p̂

(1)
j0

T
〉 = R0Σpij0

RT
0 , (52)

thus ending the theoretical description of the algorithm.

VI. THE COMPLETE ALGORITHM

The complete algorithm proposed involves two different
main algorithms that complement each other: the Sensor-
based SLAM Filter on one side, and the Inertial Map and
Trajectory Estimation on the other. This was done to separate
the inertial estimates from the filtering process, thus allowing
to filter in the sensors space, avoiding the representation of
the inertial pose in the filter state, and still providing inertial
estimates through the second algorithm. The diagram of Fig.
1 represents the flow of information in the algorithm used in
the experimental setup.

Figure 1. The full algorithm used in the experiments.

1) Tunable parameters: The SLAM filter, as any Kalman
filter, has tunable parameters, namely the model disturbance
noise covariance, the measurement noise covariance and the
filter initial conditions. Furthermore, the algorithm here pro-
posed divides the estimated map in subsets of landmarks
depending on the last time they were observed, raising the need
for time thresholds. The loop closure and state maintenance
procedures also have tuning knobs - the first time they occur
and the number of landmarks needed to trigger an action. The
set of parameters is chosen according to physical aspects, but,
nevertheless, was adapted to each situation – with synthesized
or real data (shown in parenthesis when different).

The output noise covariance is Θk = σ2
θI3, σθ = 0.032

m (0.022 m), the state disturbance covariance is given by
Ξk = Ts diag

(
σ2
vI3, σ

2
bω

I3, σ
2
p1I3, . . . , σ

2
pN I3

)
, with σv =

0.05 m/s, σbω = 10−5 rad/s and σpi = 10−4 m (0.1 m). The
initial state covariance was set to Σ0 = diag

(
σ2
v0I3, σ

2
bω0

I3

)
,

with σv0 = 0.011 m/s (0.039 m/s) and σbω0
= 0.022 rad/s.

Note that at k = 0 there are no landmarks in the state, but any
new landmark is initialized with Σpi0

= σ2
pi0

I3, σpi0 = 0.017
m (0.039 m). Finally, the initial estimates of velocity and
angular bias were set to zero in the simulation and to the
average of a preliminary acquisition when using real data. As
to the SLAM-specific parameters, the recent landmark set is
composed by landmarks seen in the last 15 s (0.5 s), and the
old by landmarks not seen in more than 100 s (15 s). The
first loop closure is tried at 100 s and it is triggered if at least

6 landmarks are associated. Finally, any landmark not visible
for more than 200 s is discarded.

VII. SIMULATION RESULTS

The simulated environment consists of 70 landmarks spread
throughout a 16m×16m×3m map, including a closed 2m wide
corridor in outer borders of the map. The trajectory is simply
a loop through the corridors at half-height, with the vehicle
starting on the floor.

The simulation starts with the vehicle stopped for 50 sec-
onds, which then takes off and circles through the map for
around 230 seconds at an average speed of 0.45 m/s. The
zero-mean noise added to the angular velocity measurements
is normal-distributed with a standard deviation of σωm

=
5× 10−4 rad/s at each coordinate and the noise included in
the landmark observations is also zero-mean Gaussian white
noise with a standard deviation of σy = 10−3 m.

Firstly, the Kalman filter performance can be evaluated
through Fig. 2 and Fig. 3. The former depicts the evolution
of 5 landmarks, with Fig. 2(b) showing the standard deviation
of each sensor-based landmark growing to around 1m, when
a loop closure is triggered at t = 190 s and the uncertainty
diminishes considerably. In Fig. 2(a) the estimation error is
shown.
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Figure 2. Estimation error and standard deviation of the first 5 landmarks.
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Figure 3. Error and standard-deviation of the vehicle related estimates.
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Figure 4. Error and standard-deviation of the position and rotation matrix
estimates.

The esTIMATE algorithm can be assessed through Fig.
4, where the estimation error (Fig. 4(a)) and the standard
deviation (Fig. 4(b)) of the position and attitude of the vehicle
is shown.

The statistics regarding the number of landmarks can be
found in Fig. 5. In blue, the number of landmarks in the state of
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Figure 5. Evolution of the number of landmarks used in the Kalman filter (in
blue), the number of landmarks used in the esTIMATE algorithm (in green),
and the number of visible landmarks (in red). Loop closure trials, threshold
and events also present.
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Figure 6. Evolution of the standard deviations of the vehicle variables, the
position, and the rotation in the first 20 seconds of simulation.

the Kalman filter, in green the number of landmarks used in the
inertial estimation, and in red the number of visible landmarks.
The stems represent loop closure trials and events, and the
dashed line the minimum number of landmark associations
necessary for loop closing.

The convergence of the standard deviation of the state
variables and of the pose of the vehicle when the observability
conditions are satisfied is presented in Fig. 6. In these first
20 seconds of simulation, the vehicle is immobilized on the
ground, and 5 different landmarks are visible.

Finally, the estimated map at t = 191 s, 1 s after a loop
closing event, rotated and translated using the true quantities
along the true trajectory is shown in Fig. 7. The coloured
ellipsoids represent the 95% uncertainty (2σ) of each landmark
and the red star denotes the position of the vehicle at the time.
Note that the older landmarks have greater uncertainty, and
that the landmarks closer to the position of the vehicle (the
ones more affected by the loop closure) have low uncertainty.

This simulation was designed to allow the practical vali-
dation of the consistency of the algorithm, by exposing the
vehicle to previously visited terrain after exploring new areas,
in order to trigger a loop closing. The results show that the
sensor-based map is consistent, allowing the loop to be closed
repeatedly (see Fig. 5). Moreover, the simulation results here
presented demonstrate that the uncertainty is coherent with

Figure 7. Sensor-based map at t = 191 s, 1 second after a loop closure.

the estimation errors, as shown in Fig. 2, and verify the
convergence when the observability conditions are satisfied.

VIII. PRELIMINARY EXPERIMENTAL RESULTS

The simulation results were consolidated by a preliminary
experiment at the Sensor-Based Cooperative Robotics Re-
search Laboratory - SCORE Lab of the Faculty of Science
and Technology of the University of Macau. The experi-

Figure 8. The AscTec®Pelican equipped with a Microsoft Kinect™, a
Microstrain 3DM-GX3-25and the VICON®markers.

mental setup consists of an AscTec®Pelican quadrotor (see
Fig. 8), which is equipped with an Intel Atom processor
board, and into which was added a Microstrain 3DM-GX3-
25 inertial measurement unit working at 200Hz and a Mi-
crosoft Kinect™ camera, at 30Hz. The experiment consisted
in moving the quadrotor inside a 6m×6m room (usable area
of 16m2). The room was equipped with a VICON® motion
capture system, which provides accurate estimates of the
position, attitude, linear and angular velocities of any vehicle
placed inside the working area with the correct markers.

In the first 15 seconds the vehicle was stopped and in
the remaining time it was moved in a small lap around the
room. Figure 9 shows the comparison of the estimation of the
inertial trajectory (in red) with the ground truth provided by
the VICON, in blue. It can be seen that the estimated trajectory
follows very closely the true trajectory of the vehicle, never
being more than 20 centimeters off, except after the first 30
seconds, where less observations were available as will be seen
in Fig. 12.
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Figure 9. Time evolution of the real and estimated trajectory

Figure 10 compares the ground truth with the estimation of
the inertial linear velocity of the vehicle. The latter is obtained
by rotating the sensor-based estimate with the estimated rota-
tion. Again, the estimation follows within reasonable accuracy
the ground truth, and, once more, it worsens after the 30
seconds, for the reasons explained. Note that the VICON
estimates of the velocity are obtained by differentiation of
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Figure 10. Time evolution of the real and estimated inertial velocity
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Figure 11. Time evolution of the angular measurement bias estimation.
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Figure 12. Evolution of the number of landmarks used in the Kalman filter
(in blue) and the visible (in green).

the position, thus being somewhat noisy. This allows the
evaluation of both the estimation of the sensor-based velocity
and of the rotation matrix. The remaining product of the
Kalman filter, the angular bias estimation, is then shown in
Fig. 11.

Finally, the evolution of the number of landmarks involved
in the algorithm are shown. In blue, the number of landmarks
in the SLAM filter state is presented, in green is shown
the number of landmarks used by the esTIMATE algorithm
to compute the optimal transformation, and the number of
visible landmarks in each observation instant is shown in red.
Note that, after the first 30 seconds, the refresh rate of the
observations is reduced drastically, due to technical issues with
the equipment, while the number of landmarks observed is
also small. This explains the degradation in the estimation
that occurs around that time.

IX. CONCLUSIONS AND FUTURE WORK

This paper presented a novel algorithm for Simultaneous
Localization and Mapping, reporting the design, analysis,
implementation, and validation of this algorithm. The work
proposed has various contributions, including a novel sensor-
based filter and an uncertainty-wise fully characterized opti-
mization orthogonal Procrustes problem. The filtering frame-
work was designed in the sensors space, thus avoiding the
attitude representation in the filter state. This enabled the
establishment of observability results that lead to uniformly
globally asymptotically stable error dynamics. Furthermore,

the orthogonal Procrustes problem was addressed, defining an
optimization problem coupled with a full statistical descrip-
tion.

The first part of the work focused on the observability
analysis, which provided theoretical results in observability
and, subsequently, on the convergence of the error dynamics of
the proposed nonlinear system. Furthermore, the performance
and consistency of the algorithm were validated in simulation
showing the convergence of the uncertainty in every variable
except the non-visible landmarks, as well as the production
of a consistent map which allows the closure of a loop
with nearly 50 meters. Preliminary experimental results, with
ground truth data, showed also the good performance of the
SLAM algorithm as a whole.

Future work will address the inclusion of landmark di-
rections, both in the observability analysis and landmark
detection. Also in the observability analysis, the necessary con-
ditions are yet to be found. Furthermore, there is information
provided by the SURF algorithm, namely the feature descriptor
[11], that may help improve the association process if availed.
Finally, further experimental validation is recommended for
scientific dissemination.
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