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Tearing modes are a type of instability that occurs in fusion devices, and are one of the main
obstacles to having a long lasting, sustainable reaction. In this work, the problem of tearing mode
control by current injection is studied. The study is made through the numerical simulation of a
tearing mode in slab geometry. Several spatial profiles and amplitudes for the injected current are
tested. It is concluded that it is possible to control the instability by driving current either into the
X-point or into the O-point of the island. The current’s amplitude is determined by two different
approaches, one based on the theoretical knowledge of this instability, and another one based on
linear control theory. In both cases, the current’s amplitude depends only on variables that would
be available in a real fusion experiment. These quantities are determined using methods that
simulate real-life diagnostics. Both approaches produce good results and are shown to be worthy
of further investigations.
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I. INTRODUCTION

Tearing modes and neoclassical tearing modes
(NTMs) are one of the most important kinds of
instabilities that can occur in a magnetic confine-
ment fusion plasma [1]. These instabilities are re-
sponsible for confinement degradation and plasma
disruptions [2]. The control of tearing modes is a
topic of major importance, and the main focus of
this work.

Although classical tearing modes and neoclas-
sical tearing modes are similar, they have differ-
ent triggering mechanisms. They both manifest
themselves through the appearance of “magnetic is-
lands”, see Fig. 1. Classical tearing modes, or sim-
ply tearing modes [3, 4], arise from finite resistive
effects which are dominant at the so-called rational
surfaces, where the safety factor [1, Sec. 3.4] q is ra-
tional, that is, equal to m/n with m, n integer num-
bers. Here, m and n are the poloidal and toroidal
mode numbers, respectively. Around this surface,
ideal magnetohydrodynamics fails and a more com-
plete model, namely one which includes resistivity,
viscosity and other non-ideal effects, is required.
Neoclassical tearing modes [5, 6] result from a per-
turbation of the bootstrap current [1, Sec. 3.10].
If there is a local flattening of the pressure pro-
file due to the presence of a seed magnetic island,
the bootstrap current is locally reduced. The lack
of bootstrap current causes the magnetic island to
grow, which in turn flattens the pressure profile
even more. This mechanism makes the island grow
until a saturation width is reached. Unlike classi-
cal tearing modes, NTMs require the existence of a
seed island which must be large enough to perturb
the pressure profile [7].

Tearing modes are often associated with mag-
netic islands, periodic structures which are formed
after the breaking and reconnection of the magnetic

field lines. Inside these magnetic islands the pres-
sure and temperature profiles are flattened because
the island works as a short-circuit which allows par-
ticles and heat to flow radially across the island [8].
The consequences of these effects on plasma con-
finement, namely on the confinement time τE , were
studied in [8]. A degradation of up to 50% of the
confinement time when a m/n = 2/1 mode occurs
was predicted. Tearing modes can also lock to the
wall of the vessel, a process which slows the plasma
rotation until it eventually stops rotating, which
compromises the confinement [9].

Figure 1: Schematic representation of a magnetic island.
The dashed line is the separatrix of the island.

There are several approaches to NTM control.
These are divided among preventive strategies,
which are based on avoiding the triggering of tear-
ing modes, and active control strategies, which at-
tempt to suppress a tearing mode whose appear-
ance could not be avoided. Preventive measures
include sawtooth control [10, 11], profile control
[12] and plasma shaping. Active control can be
achieved via entering the frequently interrupted
regime (FIR) [13, 14] or injecting current using elec-
tron cyclotron ressonance heating (ECRH), current
drive (ECCD) [15, 16], or lower hybrid current drive
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(LHCD) [17].

There are many excellent reviews on the topic
of tearing mode and NTM control. Chapter 3 of
the Nuclear Fusion special issue, Progress in the
ITER Physics Basis, is a comprehensive, compila-
tion covering (in)stability, including sawteeth and
NTM physics and control strategies, and disrup-
tion [2]. La Haye [6] wrote a complete review on
NTM control, describing both the theory and the
control of these instabilities. The sections dedi-
cated to the International Thermonuclear Exper-
imental Reactor (ITER) in these documents are
slightly outdated, and a more recent review by
Maraschek [18] includes newer results and an anal-
ysis of their consequences for ITER. Electron Cy-
clotron Current Drive (ECCD) [19] has become the
method of choice for tearing mode stabilization due
to its localized deposition [20], and the control of
tearing modes by current injection is the main focus
of this work.

This work focuses on studying the control of tear-
ing modes by current drive. The study is performed
by means of numerical experiments. Several pro-
files for the driven current, namely Gaussian pro-
files centered around the X- and O-points of the
island, are compared. The influence of the ampli-
tude of the injected current on the evolution of the
island is also studied. Two distinct approaches are
followed in order to determine what the amplitude
of the driven current should be. One of them relies
on analytical estimates based on the theory of non-
linear tearing mode evolution, and the other one
is based on optimal linear control theory. In both
cases, the amplitude of the current depends only
on quantities that are measureable in a real-life ex-
periment. These quantities are determined using
methods that simulate real-life diagnostics.

The remainder of this document is organized as
follows: Section II briefly describes the model which
was adopted to perform the numerical experiments.
The natural evolution of the system, i.e., when no
control is attempted, is described in Section III.
The two approaches used for controlling the island,
together with the mains results that were obtained,
are explained in Sections IV and V. The main con-
clusions drawn from this study are mentioned in
Section VI.

II. MODEL DESCRIPTION

The simulations are of a resistive, non-turbulent
plasma whose initial configuration is tearing mode
unstable i.e., has the tearing stability parameter
∆′ > 0 [21]. The plasma is perturbed in such a way
that a tearing mode grows at a known location. The
numerical experiments presented in this section are
performed with Viriato [22], a pseudospectral code
that solves the non-ideal reduced magnetohydrody-

namic (RMHD) equations [23],

∂tψ −B · ∇φ = η∇2
⊥ψ − Sext(x, y, t) , (1)

ρ(∂tω + v · ∇ω) = B · ∇j|| + ν∇2
⊥ω , (2)

ω = ∇2
⊥φ , (3)

j|| = ∇2
⊥ψ , (4)

with the addition of a term, Sext, which will be
explained next. In the above equations, ψ is the
magnetic flux function, B = êz × ∇ψ + Bz êz is
the magnetic field, φ is the electrostatic potential,
Sext is the term that represents the influence of
the control current that is injected, ω is the vor-
ticity, v = êz × ∇φ is the fluid velocity, and j|| is
the current density in the direction parallel to the
strong magnetic field. Two additional relations are
required in order to fully determine these variables:
(∇ · B) = 0 and (∇ · v) = 0. We assume that
both the resistivity η and viscosity ν are constant.
All the other variables depend on space (x and y)
and time (t). This configuration can be thought
of as simulating the poloidal plane of a tokamak,
with Bz representing the toroidal magnetic field.
The in-plane directions x and y are normalized to
a macroscopic length scale a, and time is normal-
ized to the Alfvén time τA = a/vA where vA is
the Alfvén velocity, defined in the simulations as
vA = Bz.

The value chosen for the resistivity is η = 0.01.
This value is much larger than the values typi-
cally found in tokamak experiments. This value
was chosen to allow the simulations to run in rea-
sonable time using a moderate spatial resolution,
while keeping the essential behaviour of this insta-
bility. Smaller values of η would require a higher
resolution, which would extend the time taken to
run a full simulation. The viscosity is ν = 0.01.

These equations are a limit case of the magneto-
hydrodynamic (MHD) model which corresponds to
a plasma that is imersed in a very strong magnetic
field in the z direction. A very clear explanation of
the MHD and RMHD models can be found in [24,
Sections 2.1 and 2.3].

The simulations are run in a 2D slab geometry
with dimensions Lx×Ly = 2π×2.34π and with pe-
riodic boundary conditions in both directions. The
strong magnetic field is in the direction perpendic-
ular to the simulation plane, z. The spatial resolu-
tion is Nx×Ny = 384×384. The island’s X-point is
initially located at the center of the box, whose co-
ordinates are (x, y) = (0, 0). The initial configura-
tion is an unstable equilibrium which is perturbed.
This equilibrium is given by

ψ0 =
Ψ0

cosh2(x)
, (5)

B0
y = ∇⊥ψ0 , (6)

j0|| = ∇2
⊥ψ

0 , (7)

ω0 = 0 . (8)

The rational surface is located at x = 0. The value
of Ψ0 is chosen such that the peak value of B0

y is
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equal to unity. In addition to this equilibrium we
introduce a small perturbation,

ψ1 = Ψ1 cos(k y) e−x
2

, (9)

where Ψ1 = Ψ0 × 10−5 and k = Lx/Ly. It can
be shown that the classical stability parameter [3,
21] is positive for this configuration, ∆′ > 0. This
perturbation will therefore grow into a magnetic
island configuration.

III. NATURAL EVOLUTION OF THE
SYSTEM

It is useful to understand how the system evolves
when no action is taken upon it, that is, when we
are not trying to control the island. This simu-
lation, where the instability grows freely until it
reaches saturation, will serve as a reference for all
the other numerical experiments. The system is
allowed to evolve from the perturbed equilibrium,
described by the above equations, through equa-
tions (1), (2), (3), and (4). Since we are not using
the controller, Sext = 0 for all x, y and t.

A quantity that is interesting to analyze is the
growth rate of the island. This is usually defined
as the growth rate of the logarithm of the perturbed
magnetic flux, or of its symmetric Ã||, evaluated at
the X-point [see Fig. 4(a)],

γ(t) =
∂

∂t
ln
[
ÃX|| (t)

]
. (10)

The time evolution of the growth rate is shown in
Fig. 2. It is possible to identify the following main
stages: initial transient (t . 20), linear growth
(20 . t . 40), nonlinear regime (40 . t . 100),
and saturation (t & 100) [25].

Figure 2: Time evolution of the island’s growth rate when
the system evolves freely (Sext = 0).

Though the plot from Fig. 2 is useful to gain
some understanding of the evolution of the island,
an alternative way to visualize the behaviour of the
instability is to observe the time evolution of the
level curves of the total magnetic flux or, similarly,
those of A||.

In Fig. 3 we can observe these level curves (which
also represent the magnetic field line topology) after
saturation has been reached (t ≈ 127). Notice that,
although the island is saturating, its width does not
yet exceed the width of the box.

Figure 3: Level curves of the perturbed magnetic flux Ã||
in a simulation where no action is taken upon the island

(Sext = 0), at the time instant t = 127.

In Fig. 4 one can observe the time evolution of
the island’s width Wreal. The apparently strange
behaviour of the island’s width at t ≈ 140 is due to
the island reaching the size of the simulation box.
The method for determining Wreal makes use of
the fact that the island separatrix is a surface (or,
in the case of this 2D simulation, a level curve) of
constant flux.

Figure 4: Time evolution of the island’s width when the
system evolves freely (Sext = 0).

Consider the level curves of the magnetic flux for
a certain value of t. In the simulation we evaluate
the symmetric of the magnetic flux at the island’s
X-point, which is located at the center of the sim-
ulation box. We shall call this value AX|| . We then

follow the level curve corresponding to this value
of A|| until we reach the region where the width is
largest, the O-point. In our case, it would be either
the top or the bottom of the box. Suppose that we
choose to use the bottom of the box (y = −Ly/2).
We search for a value of x, which we will call xW ,
such that A||(xW ,−Ly/2) = AX|| . We then deter-

mine the width of the island as being Wreal = 2xW .
In Fig. 3, the separatrix of the island does not ex-

tend outside the box perimeter, and so the island’s



4

width can be correctly determined. However, when
the separatrix goes outside the box’s boundaries,
there is no xW such that A||(xW ,−Ly/2) = AX|| .

The value of Wreal is set to zero when this happens.
In conclusion, Wreal can be determined as long as
the width of the island does not exceed that of the
box. In Fig. 4, the moment in which the width sud-
denly drops to zero is the moment at which Wreal

became larger than Lx. At this point, the simula-
tion is no longer valid because the lateral boundary
conditions begin to influence the system.

IV. USING AN ESTIMATE OF THE
PERTURBED CURRENT

The most typical way to actively control the is-
land’s width is through the injection of current.
From a purely dimensional point of view, it is ex-
pected that the controller’s term in eq. (1) is of
the form Sext(x, y, t) = ηjext(x, y, t), where η is the
plasma resistivity and jext is the current that is
driven into the plasma.

In a real experiment, the driven current will have
a narrow and localized profile. A way to represent
this narrow profile is to use a Gaussian. The fol-
lowing profile was considered:

Sext = s(t) exp

[
−
(
x− x0
δx

)2

−
(
y − y0
δy

)2
]
.

(11)
This profile is that of a Gaussian centered around
(x0, y0) and with a width of δx and δy in the hor-
izontal and vertical directions. This Gaussian will
can be centered around the island’s X-point or at
the island’s O-point.

For these experiments, we have chosen x0 = 0
and y0 = yX or y0 = yO, where yX and yO are
the vertical positions of the X-point and O-point,
respectively. The values of yX and yO are esti-
mated by analysing the plasma’s perturbed density
(which has a 1:1 correlation with the vorticity, ω)
and the perturbed magnetic field. The quantities
can be determined using reflectometry and pickup
coils, respectively [1, Section 10]. The value which
must be used for δx is not straightforward to deter-
mine. The value which was chosen for the experi-
ments presented in this work is δx = Lx/

√
10. In

spite of being an arbitrary value, it corresponds to
a deposition width that is much smaller than the
macroscopic length, just like the typical deposition
profiles of ECCD [18, 19].

We now turn our attention to what the amplitude
of the control term should be. Having an ampli-
tude related to the perturbed parallel current is an
intuitively sound choice. However, the perturbed
current may not be known in real time, i.e., while
doing an experiment.

We wish to develop an actuator that relies, as
much as possible, on measurable quantities. With
this in mind, one should try to use an estimate

of the perturbed current at the X-point, based on
quantities that are measurable in real experiments.

Recall that j̃|| = −∇2Ã||. One can estimate

that ∇ ∼ δ−1, where δ is the half thickness of the
region around the rational surface where the dissi-
pation effects are dominant, which means that

Ã|| ∼ j̃||δ2 . (12)

This result, combined with the relation for the the-
oretical island width [24, Section 4.7],

Wtheo = 4

√
−Ã||
jx0

. (13)

allows one to conclude that

j̃|| ∼
jX0
16

(
W

δ

)2

. (14)

The value of δ can be estimated through the
Sweet-Parker model for reconnection processes [26,
27], which states that δ ∼ S−1/2L. In our case,
L ∼ a [25]. The Lundquist number S is the ratio
between the diffusion time τR = µ0a

2/η and the
Alfvén time τA, and a is the equilibrium length. In
short, using the convention that µ0 = 1, one finds
that

δ ∼
√
aη

vA
, (15)

and the replacement of this result into (14) gives
our final estimate for the amplitude of the actuator
term,

ηj̃|| ∼
jX0
16

W 2

τA
. (16)

Both jX0 and τA are imposed by the equilibrium
conditions and hence known. The real width of the
island is determined using variables that are avail-
able in the simulation but not in a real experiment,
namely the reconnection flux Ã||. The topology of
the field lines can be estimated from the peripheral
magnetic measurements. However, the magnetic
diagnostics might not be entirely reliable on larger
devices. It is important to have alternative ways
to estimate the island’s width. For this study, the
island’s width was estimated by analysing the den-
sity profiles of the plasma at a fixed value of y.

Also, notice that the variable that we actually
control in an experiment is the injected current,
that is, Sext/η. Since the control term’s maximum
amplitude, given by the above expression, does not
depend on the resistivity, the current that we ac-
tually drive into the plasma requires that we know
the value of η. Fortunately, the resistivity of the
plasma can be estimated from the plasma’s tem-
perature Te and density [28],

η =
πe2m1/2

(4πε0)2(kBTe)3/2
ln Λ . (17)
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In the above equation, ε0 is the vacuum permittiv-
ity, m and e are the electron’s mass and charge,
respectively, kB is the Boltzman constant, and Λ
is a term that represents the (weak) dependence of
the resistivity on the plasma density. For fusion
plasmas, ln Λ ≈ 16.

A. Driving Current into the X-point

Tests have been performed using an injected cur-
rent with the profile mentioned in eq. (11), and with

s(t) =

{
0 if W (t) < Wmin

−α j
X
0

16
W (t)2

τA
if W (t) > Wmin

. (18)

where α is a numerical factor, W (t) is the estimated
width, and Wmin is a threshold value. This on/off
criterion based on the island’s estimated width was
included because we wish to see the way the is-
land reacts when it is large enough to be detected,
and the value chosen for Wmin allows us to con-
trol when we begin to act. Typically, a magnetic
island cannot be detected before reaching the non-
linear growth stage which means, in our case, before
t ≈ 40 (see Fig. 2). Choosing Wmin = 1 means that
the controller is turned on around t = 67, when
Wreal ≈ 2.5 and growth rate is just starting to de-
crease. The first test was done with α = 1, and
jx0 = 2.6.

The width of the island was estimated at
y = −1.76. A comparison between the esti-
mated width W and the real width Wreal is shown
in Fig. 5. It is expected that the estimated width
depends on the chosen value of y. In a real fusion
device, most diagnostics are positioned at fixed lo-
cations, since there is usually a lot of competition
for space between various equipment. In these nu-
merical experiments, since the initial position of the
island is known, the value of y that is used was cho-
sen so that both the O- and X-points are avoided.
This choice is not entirely unrealistic since it is vir-
tually impossible that, in a real experiment, the
density diagnostic is aimed exactly at the X- or O-
points of the island.

The controller is turned on in very frequent
pulses (see Fig. 6). A steady situation in which
the controller is turned off and the island’s width
stays approximately constant is never reached: the
island keeps growing back to a point when the
on/off threshold is crossed (see Fig. 7). The abrupt
changes of the slope of the plot of Wreal in this
experiment suggest that a weaker control current
might be more effective in controlling the island.

A reduction of the amount of the injected cur-
rent was attempted. The results of some of these
experiments are shown in Figs. 8 and 9. When
using α = 0.1 (green lines), the variation of the
island’s width is much smoother than in the previ-
ous case. As we reduce the value of α, the island’s
width tends to stabilize at larger and larger values,

Figure 5: Comparison between the estimated width W
and the real island’s width Wreal in an experiment where

the system evolves freely (Sext = 0).

Figure 6: Time evolution of the controller’s maximum
amplitude, s(t), normalized to α when driving a current

into the island’s X-point.

Figure 7: Time evolution of the island’s width when
driving a current into the island’s X-point.

though none of them as large as in the uncontrolled
case. The controller was not turned off after initi-
ating operation in any of these experiments. For
even smaller values of α, such as 1 × 10−3, the is-
land is not successfully controlled (not shown in the
figure).

Injecting a current into the island’s O-point is a
control technique whose popularity has increased
in the literature [18]. Next, the island’s behaviour
when current is injected into the O-point is anal-
ysed.
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Figure 8: Time evolution of the island’s width when
driving a current into the island’s X-point, using various

values for α.

Figure 9: Time evolution of the controller’s maximum
amplitude, s(t), normalized to α when driving a current

into the island’s X-point, using various values for α.

B. Driving Current into the O-point

The current that is being injected is spatially
Gaussian, recall eq. (11), and its peak value s(t)
is defined as

s(t) =

{
0 if W (t) < Wmin

+α
jX0
16

W (t)2

τA
if W (t) > Wmin

. (19)

Note that s(t) now has a plus sign. It was verified
that using a minus sign for the driven current would
speed up the island’s growth. For these experi-
ments, the following values were used: jX0 = 2.6,

x0 = 0, δx = δy = Lx/
√

10, y0 = yO, where yO is
the estimated vertical position of the O-point, and
Wlim = 1. Four different values of α were tested.

As can be seen in Figs. 10 and 11, using a plus
sign, that is, injecting current with the same di-
rection as the perturbed current in the X-point
into the O-point, allows one to control the island’s
width. Using a very small factor, α = 1 × 10−3

(pink lines), the system’s evolution is barely differ-
ent from the uncontrolled one (blue lines). If we
increase the amplitude’s numerical factor by one
(orange lines) or two (green lines) orders of magni-
tude, the controlling effect of the injected current
becomes evident.

With these values of α, the controller is never
turned of after being initially turned on, as hap-

Figure 10: Time evolution of the island’s width when
driving a current into the island’s O-point, using various

values for α.

Figure 11: Time evolution of the controller’s maximum
amplitude, s(t), normalized to α when driving a current

into the island’s O-point, using various values for α.

pened when current was injected in the X-point.
For larger values of α the island suffers a signifi-
cant vertical shift. For these experiments the plot
of Wreal, which assumes that the X- and O-points
remain fixed, is not reliable and thus not shown
here.

V. USING OPTIMAL LINEAR CONTROL
THEORY

The equations that describe the evolution of the
system, equations (1), (2), (3), and (4), are com-
plex, due to a variety of reasons. First of all, the
equations are nonlinear. Additionally, the variables
involved in these equations are scalar fields which
evolve in time, i.e., they are quantities which de-
pend on two spatial directions, x and y. Also,
notice that the temporal evolution of the variable
which we actually want to control, the island’s
width, is not explicitly represented in these equa-
tions.

Instead of tackling directly such a complex set
of equations, it would be preferable to describe the
system by a simpler model. An example of such a
model would be the following:

∂tW (t) = G(t)W (t) + c(t) . (20)
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In the above equation, G is the growth rate of the
width, which is expected to evolve in time. The
controller’s input is represented by c(t). In the fol-
lowing paragraphs, we will present the reasoning
that led to choosing this model. The steps are not
completely formal, but they provide a reasonable
explanation as to why the model in equation (20)
is an acceptable choice for decribing the system.

Consider the equation which describes the time
evolution of the magnetic flux, eq. (1):

∂tψ −B · ∇φ = η∇2
⊥ψ − Sext(x, y, t) . (21)

It is necessary to evaluate the above equation at the
X-point of the island. The second term on the left-
hand side of equation (21) is zero at the X-point.
Also, if the driven current is a Gaussian centered
on the X-point, with maximum amplitude s(t), the
second term on the right hand side is equal to−s(t).
Equation (21) can therefore be rewritten as

∂tψ
X = η∇2

⊥ψ
X − s(t) , (22)

where ψX represents the magnetic flux at the X-
point. The flux will be a sum of an equilibrium
part with a pertubation, the latter assumed to be
of the form Ψ1 cos(k y), with Ψ1 being the ampli-
tude of the perturbation. The perturbation has this
exact form during the linear regime. When evalu-
ated at the X-point, this perturbation is equal to
−Ψ1. We assume that, since the island is grow-
ing, this value can vary in time. The equilibrium
component, however, is constant in time, so that
equation (22) is equivalent to

∂tΨ1 = −η∇2
⊥Ψ1 + s(t) , (23)

where the equilibrium term on the right-hand side,
∇2
⊥ψ0, is neglected as it is much smaller than
∇2
⊥Ψ1.
We wish to explicitely write the growth rate of

the perturbation in the absence of the control term,
which can be defined as γ0(t) ≡ −η∇2

⊥Ψ1/Ψ1.
This growth rate is equivalent to the instantaneous
growth rate that was defined in eq. (10) in Sec-
tion III. Equation (23) can then be rewritten as

∂tΨ1 = γ0(t)Ψ1 + s(t) , (24)

The final step is to use the theoretical relation
between the pertubation amplitude and the island
width, which states that

Ψ1 = −j
X
0

16
W 2 . (25)

By replacing the above relation in equation (24),
one finds that

∂tW =
γ0(t)

2
W − 8

jX0 W
s(t) , (26)

which is equivalent to eq. (20) if G(t) = γ0(t)/2 and

s(t) = −j
X
0 W

8
c(t) . (27)

Some remarks must be made regarding the rea-
soning that was just described. It is assumed
that the magnetic flux perturbation is of the form
Ψ1 cos(k y) which might not be entirely true when
current is being driven into the system. It is also
not true during the nonlinear regime of the tearing
mode. The relation in eq. (25) is an approxima-
tion that is valid as long as the island’s width is
small compared to the equilibrium length scale and
to the saturation width. Another important thing
to point out is that this model describes the time
evolution of a scalar.

We will determine a control law for this model
using optimal linear control theory. The most ba-
sic linear control techniques allow the stabilization
of the so called linear, time invariant systems. The
convergence of the variable that needs to be con-
trolled to the desired value can be made arbitrarly
fast. What these methods overlook, however, is
that a faster convergence requires more effort from
the controller. For pratical applications, as is the
case, the input amplitude must be bounded.

This suggests that one should formulate the con-
trol problem as an optimization problem that in-
cludes both the convergence of the controlled vari-
able and the amplitude of the input. Consider the
quantity J , defined as

J =

∫ ∞
0

[r1W
2(t) + r2 c

2(t)] dt , (28)

which is composed of two parts. The first term
in the integral represents the integrated squared
width, and the second term in the integral repre-
sents the integrated square input. These terms are
weighted through the positive constants r1 and r2,
respectively. We wish to find a control law c(t) that
minimizes J .

A problem of this form is called a linear optimal
regulator problem [29]. It can be shown that the
input c(t) which minimizes eq. (28) for the system
described by eq. (20) is a linear control law of the
form

c(t) = −F (t)W (t) , (29)

F (t) = r−12 P (t) , (30)

where P (t) is the solution of the Riccati equation,

γ(t)P (t)− r−12 P 2(t) + r1 = 0 . (31)

By solving equation (31) and combining the so-
lution with eq. (30), one finds that

F (t) =
γ

2
+

√
γ2

4
+
r1
r2
. (32)

The solution with the minus sign was neglected be-
cause it makes F (t) < 0, which would result in a
control law that further destabilizes the system.

There are two limit cases: “cheap” control (r1 �
r2) and “expensive control” (r1 � r2). In the for-
mer case, one prioritizes the quality of the control
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over the amount of power that is required to achieve
it. In the latter case, the optimization is done in
order to minimize the input’s amplitude. Efforts
have been made in order to understand the mini-
mum power requirements for tearing mode control
using ECCD [30, 31], and it is desirable to use as
little power as possible in order to stabilize these
modes. This corresponds to the expensive control
case. The solution for this limiting case is approxi-
mately given by F (t) = γ(t). The control is, there-
fore

c(t) = −γ(t)W (t) (33)

which corresponds to

s(t) = −j
X
0

8
γ(t)W 2(t) . (34)

According to eq. (34), the injected current will
depend on the island’s width, on the equilibrium
current, on the growth rate of the island, and on
the resistivity, the latter because jeccd = s/η. We
have stated how one can obtain all these quantities
previously in this document, with the exception of
the growth rate. A way to estimate the growth rate
of the island without measuring the magnetic flux
is to use measurements of the perturbed magnetic
field. The magnetic field components can be mea-
sured in the periphery of the plasma using pick-up
coils. Some numerical experiments, not presented
here due to space limitations, evidence that Bx, the
horizontal component of the magnetic field, grows
with a rate which is similar to that of ψ.

The opposite limit case is also interesting to anal-
yse. If r1 >> r2, then F (t) ≈

√
r1/r2. By choosing

apropriate values for r1 and r2 such that F (t) = 0.5,
one obtains

s(t) = −j
X
0

16
W 2(t) , (35)

which, with the difference of a factor of τ−1A that ap-
pears for dimensional reasons, is the same solution
as eq. (16). The solution given by equation (34) is
also related to eq. (16) by a factor of 2γ(t)τ−1A . It is
interesting to observe that, using two very distinct
approaches, one obtains similar control laws.

The amplitude of the control current is now fully
determined, and one can proceed with the exper-
iments. The current was driven into the island’s
X-point. The controller is turned on after the es-
timated width exceeds a specified threshold value
for the first time. As threshold value of Wlim = 1,
which correspond to turning the controller on at
the time instant t ≈ 67, was chosen. Several ampli-
tudes for the driven current’s maximum amplitude
were also tested.

Notice that this on/off criterion is different from
the one described in the previous section. Before,
the controller was turned on only when the island’s
estimated width exceeded a certain threshold, and
would be turned off whenever the width was below

that threshold value. Now, the controller is turned
on when the threshold value is met and is never
turned off afterwards. The main reason for this
change in the criterion is the fact that the control
current’s amplitude now depends on the island’s
growth rate (and vice-versa) and thus, a switchoff
criterion becomes superfluous.

If the present criterion were used in the previ-
ous experiments, the controller would only turn
off when the estimated island’s width became zero.
The width that is estimated by analysing the den-
sity profile is never zero (recall Fig. 5), which im-
plies that the controller would never be turned off.
In the control law used in this chapter, however,
there is another condition for which the controller
turns off, and that is γ(t) = 0. If this condition is
met, the controller turns off on its own, without the
need of additional logic. As we shall see next, the
controller will never be completely turned off, but
the driven current will reach a very small amplitude
after some time.

Another important consequence of the depen-
dence of s(t) on γ(t) is that the island cannot be
suppressed. If the island’s width started decreas-
ing, γ(t) would become negative. This would cause
the driven current to change sign and, therefore, to
become destabilizing.

The control term, Sext is a Gaussian centered
around the X-point, see eq. (11). The deposited
current is centered on the island, both horizontally
(x0 = 0) and vertically (y0 = yX). The deposition

width is given by δx = δy = Lx/
√

10. When the
controller is turned on, its maximum amplitude is

s(t) = −αj
X
0

8
γB(t)W 2(t) (36)

where α is a numerical factor, γB is the growth rate
estimated from the magnetic field measurements,
and W is the island’s estimated width.

The results for these experiments are shown in
Figs. 12 and 13. The island’s width is controlled
for α = 0.1 and α = 0.5. For smaller values of α,
the control was not strong enough and the island
managed to grow to its full size and, for larger val-
ues of α, the injected current was so strong that
numerical problems appeared shortly after the con-
troller was turned on, causing overflows.

These results show that we have successfully
managed to take a highly complex system, de-
scribed by a complicated set of equations, and suc-
cessfully stabilize it by applying basic linear control
techniques to a simple equation that approximately
models the dynamics of the system. The control
was successful despite the fact that most quanti-
ties involved in the control process are only rough
estimates of the actual variables.

One observes that the driven current has a
smooth profile over time after being turned on, see
Fig. 13. Additionally, the driven current’s ampli-
tude diminishes with time and tends to a very small
value once the island’s width stabilizes. This indi-
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Figure 12: Time evolution of the island’s width when
driving a current into the island’s X-point, using various

values for α.

Figure 13: Time evolution of the controller’s maximum
amplitude, s(t), normalized to α when driving a current

into the island’s X-point, using various values for α.

cates that, if it were possible to have tearing modes
during a real fusion reaction provided that they do
not exceed a certain size, keeping the instabilities
under control requires very little power once their
growth has been halted.

Although the reasoning that was presented above
was based on the fact that the current is centered
around the X-point, experiments were also per-
formed for the case where the current is deposited
at the O-point of the island. The results are not
presented here for the reason that follows. In terms
of the width control, the results are as successful as
when current was driven into the X-point. How-
ever, unlike the previous experiments, the injected
current’s amplitude is anything but smooth: there
are very rapid oscillations of s(t) which diminish as
time passes. These oscillations are undesirable in
practice because they can degrade the devices that

are used to generate the current.
The oscillations appear because the estimated

growth rate oscillates. It was verified that the os-
cillations occur at pratically every timestep of the
simulation. It is possible that the driven current is
constantly changing between being stabilizing and
destabilizing. The exact reason why this happens
is unknown and will be further investigated in the
future.

The results presented in this section open a new
range of possibilities for tearing mode control. Us-
ing control formalism to deal with such a com-
plex instability appears to be a promising approach.
More studies on this matter should be performed in
order to explore all the possibilities it has to offer.

VI. CONCLUSIONS

The present work studied the problem of tearing
mode control by means of current drive. The study
covered two possible spatial profiles for the injected
current and variations of its maximum amplitude.
Two sets of numerical experiments were performed,
each using a different approach for obtaining the
control law which determines the control current’s
amplitude.

It was observed that, the island’s growth can be
halted if the driven current is within a certain range
of amplitudes. Within this range, a stronger cur-
rent causes the system’s variables to oscillate for the
duration of the experiment, while a weaker control
current allows the system’s variable to smoothly
transit into a steady state. It was observed that,
unlike what some previous studies suggest, inject-
ing a current into the X-point allows the island to
be controlled. Driving a current into the O-point
also proved to be a successful way to control the
instability. The two methods for determining the
amplitude of the current give similar control laws.
Both methods are successful in controlling the is-
land’s width.
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