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Abstract - Attitude control is developed for a group of three 
space vehicles (SV). The on-board attitude apparatus is 
presented. Each vehicle measures the Sun vector, the Earth 
vector, the attitude quaternion and its angular velocity. Control 
actuation is provided by reaction wheels or attitude thrusters. 
The Wahbas attitude determination algorithm is implemented. 
An Extended Kalman Filter is derived for attitude estimation 
and additionally for gyroscope drift estimation. A control 
strategy for stand-alone vehicle attitude reorientation is 
implemented using a modified LQR design to cope with large 
reorientation manoeuvres. One group strategy consists in a 
leader following approach where inertial attitude 
representation is available to the entire group. A relative 
attitude determination algorithm is used in a scenario where 
two vehicles do not possess the inertial attitude 
instrumentation. A third strategy forces the vehicles to target a 
common mid-attitude point. Results for estimation, single 
vehicle control and group control are presented and analysed. 

I. Introduction 

Although formation of vehicles in many areas has been on 
the spotlight for several years, formation flying of spacecraft is 
a relatively recent concept. A growing number of space 
applications have lately been identified that will utilize 
distributed systems of satellites. There is a great level of 
interest in both the scientific and defence communities to 
develop mature systems for autonomous rendezvous and 
formation flying. One of the main advantages of a multiple 
spacecraft approach is the reconfiguration capability, which is 
a synonym of multi-functionality and adaptability.  

Attitude consensus is required for interferometry and 
many other diverse applications. Group control such that 
relative attitude can be maintained with high precision while 
mitigating disturbance effects is often a requirement. 
Simultaneously reconfiguration of the group attitude for 
multiple operation scenarios must be addressed which 
inevitably leads to the issue of adequate and robust 
reorientation manoeuvring techniques. 

 
In this text 

In section II sensors and actuators main characteristics are 
given. In Section III the space environment is briefly described 
along with orbital dynamics of Earth satellites. Section IV is 
dedicated estimation algorithms employed for one vehicle 
standalone, namely the Wahbas’ problem solution, an 
Extended Kalman Filter (EKF) for angular velocity estimation, 
a Multiplicative Extended Kalman Filter for attitude and gyro 
drift bias estimation. Feedback control law based on LQR 
design for the standalone vehicle is discussed in Section V. A 
deterministic relative attitude method that uses line of sight 
measurements between three vehicles is presented in VI. 
Section VII is devoted to group attitude control. Scenarios 
where different attitude information is available are 
investigated. A group coordinator for monitoring and 
triggering operations in the group is also introduced. 
Simulation results are presented and analysed in Section VIII. 
Section IX summarizes the main conclusions and future work. 

II. Sensors and actuators 

The complete IMU package of the standalone SV includes one 
Sun sensor, one Horizon sensor or Earth sensor, one Star 

Tracker and one gyroscope. The actuator equipment entails a 
set of four reaction wheels and set of six attitude thrusters. 
The measurement of both the Sun sensor and Horizon sensor 
is the set of azimuth   and elevation   angles of the Sun or 
Earth line direction in the corresponding sensor frame 
coordinates. The relation between angles and the direction 
vector is given by: 
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is the true direction vector written in 

sensor coordinates. In order to reflect Sun sensor 
measurement inaccuracies Gaussian noise is added to the true 
angles. We define the angle set   [  ] . The Sun sensor 
measurement model is: 
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Star Trackers compare Star configurations with a star 

catalogue, providing a direct measure of attitude. The Star 
Tracker quaternion measurement is modelled by 
multiplicative quaternion error (  ) according to:  

             (2)  

For small errors the multiplicative quaternion error can be 
approximately related to the following expression 
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where   ,    and    are the three Euler angles, respectively 
yaw, pitch and roll. Normalizing           ‖ ‖ it becomes 
an error with the formal properties of a quaternion and can be 
inserted directly in (2).  

A rate-integrating gyroscope is used in rate mode to 
provide rate angular measurements. Its output is considered 
to be the true angular velocity of the spacecraft plus noise 
originated by electromechanical interference (  ) and float 
torque random walk (  ): 
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Both       and       are modeled as Gaussian noise with 
zero mean, more rigorously: 

      ,       
   and       ,       

   
For a time sample of     ,    the values considered are 

within the typical range: 
    ,              

    ,                    
Reaction wheels are driven by an electric motor applying 
torque. The opposite torque is reflected upon the SV body. A 
two-phase induction motor is assumed, electronically-driven 
by square pulses that vary the duty cycle within the interval [-
1, 1]. A linear relation between duty cycle and control voltage 
is typically desirable. However in reality this is not the case as 
the ele troni s fa e a ‘dead zone’ near the origin. A dead zone 
of      ,    is assumed. 

The net torque on the wheel is given by: 
                    (5)  



where     is the electromagnetic torque when the duty cycle 
is unity,           is the bearing friction torque dependent on 

the wheel speed,  . The electromagnetic torque model 
assumed follows the approximation given in [1].  

                    (6)  

where            for      ,            for      . 
     is the synch speed,   is the value of   for which     has 
the maximum magnitude   . The friction torque is simply 
modelled as the sum of Coulomb and viscous terms: 

             .         .   (7)  
Additionally the wheels can be modelled as perfect discs. Their 
characteristics are sum up in Table 1. 
  

Table 1 – Reaction wheels nominal parameters 
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Thrusters produce thrust by expelling propellant in the 

opposite direction. Torque is generated as the thrust is 
decentred and applied at a certain distance from the 
spacecraft centre of mass as given by: 

       (8)  

Two thruster modes will be considered: the continuous 
ideal thruster and the pulse thruster. In order to emulate the 
impulsive behaviour, the pulse thruster control input 
undergoes a coarse quantization for a  ,  s pulse period. Table 
2 lists the main characteristics of the thrusters for simulation. 

 
Table 2 – Thruster parameters 

            Period Quantization step 
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Usefulness of GPS signals for determining position of the 

satellite in ECI are proved in [7]. The measurement error is 
modelled as additive Gaussian noise: 

  ̂               (9)  

where         ,     
   with           

III. Vehicle dynamics 

Keplerian orbits 
 ewton’s laws are used to model the dynami s of 

translational motion of the satellite about the Earth: 
  ̈   

 

    (10) 

with      being the gravitational constant of the Earth,   
being the SV position relatively to the Earth centre in ECI 
coordinates, and   its norm. It is assumed that the satellite is a 
point mass several orders of magnitude inferior to the Earth 
mass, and that the Earth is a perfectly spherical object.  

The initial position ( ) and velocity ( ) are the only initial 
parameters necessary to establish the orbit.  

 
Viewing and lighting conditions 

Two particular viewing configurations can occur during 
orbit: transit and occultation. Transit is the optimal situation 
where the SV has direct line of sight to the Sun and sees the 
Earth disk totally illuminated. Occultation on the other hand 
constitutes the worst scenario with Sunlight blockage and a 
dim Earth disk. 

Considering the Sun as a point an approximate evaluation 
for the unfavourable occultation condition can be given. Let   

be a vector from the Sun to the SV,   be a vector from the Sun 
to the centre of the Earth, and    be the radius of the Earth. 
Additionally consider: 
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with    be the position of the Sun relatively to the Earth and   

the normal component of the SV position (   to the Earth line. 
Occultation occurs when    ‖ ‖ and    . In such case 
the Sun sensor does not provide data.  
 
Model of the Sun position  

Because the Earth orbit around the Sun has a relatively 
low eccentricity of    ,      , a circular orbit is sufficient 
to capture its essence. The orbit radius is considered equal to 
the mean distance from the Earth to the Sun:  

                       
Considering the inclination of the ecliptic      .  , the 
position of the Sun in ECI frame is given by  

  
     [

 os  
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where   
  

 
  with   the orbital period. 

 
Attitude kinematics and dynamics 

Let the quaternion  ̅  [   ]  represent the orientation 
of the rigid body with respect to a reference frame. The 
kinematics of the quaternion is governed by the following 
differential equation:  
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with      [
 [  ]  

    
]. 

The SV is assumed to be a rigid body in free space housing 
three or four reaction wheels allowed to rotate in a fixed axis 
with respect to the main body. Hence the total angular 
momentum of the entire satellite is given by: 

         (14) 
The time derivative of   relatively to an inertial referential 

equals the external applied torque which can be written in the 
body frame coordinates as: 
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The term (
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 is the derivative relatively to the body 

frame. The term     comprises the gyroscopic due to the SV 
angular rotation relatively to the inertial frame. Substitution of 
14 in 15 followed by rearrangement of terms renders: 
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 is solely due to the angular acceleration 

of the reaction wheels:  
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Term    [  
    

 ] where   
  is the     wheel 

angular velocity and           [     ] with    
being the     wheel mounting axis, which is constant relatively 

to the body, hence 
 

  
    . We define    as       ̇  

which means that   
  is the moment applied to     wheel 

accounting for electric motor torque and friction effects. This 
way    ̇       and (15) can be rewritten as:  

 
 ̇                          (18) 

 
which is a nonlinear differential equation in  . 



The external moment   accounts for the sum of control 
moment by the thrusters and disturbance moments. 

For simplicity we model the SV inertia as of an equivalent 
cylinder with radius     ,  m, height      m and mass 
       kg (with the z-axis coincident with the axis of 
symmetry): 
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IV. Estimation 

Deterministic observer 
The deterministic observer implements the solution to the 

Wahba’s problem originally poses the question of finding 
matrix   that best fits the two-pair vector observations: 
 

       
       

Determination of attitude can be achieved by the q-method 
solution of the Wahba’s using Sun and Earth vector 
measurements. According to [11] Wahba introduced a loss 
function such that its minimization renders the proper and 
orthonormal matrix   for any number of pair observations 
greater than two 
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where    is a vector measured in the SV body frame and    the 
corresponding vector in the ECI reference frame.      are non-
negative weights normally assigned as the inverse of the 
standard deviation of the corresponding sensor, i.e.        . 

The loss function in (19) can be rewritten as: 
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Making the quaternion attitude appear in term        , 
through       

  | |               [  ], and evolving 
it, renders: 
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where   is the symmetric traceless matrix: 

  [

           ∑        
 

∑          
 

 
     

] 

Hence minimization of      is equivalent to maximization 
of the modified function  

     ̅   ̅   ̅ (21) 
 

The extrema of    subject to the normalization constrain 
 ̅  ̅    is found by the method of Lagrange multipliers. 
Define the corresponding Lagrange auxiliary function. 

    ̅   ̅   ̅       ̅  ̅  (22) 
 
Differentiating (20) without constrain and equalling to 

zero, one obtains the eigenvector equation: 
   ̅    ̅ (23) 

 
The q-method finds the optimal quaternion estimate as the 
normalized eigenvector with the largest eigenvalue. 

  ̅         ̅    

as the substitution of   ̅ by      ̅    in     ̅  proves it. This 

however is unaware of the dual quaternion representation of 
attitude. Therefore it is most certain that discontinuities will 

occur via change of sign. Supervision is added to the q-method 
to prevent this by comparison with the previous estimate, i.e. 

   ‖ ̅      ̅      
‖   hreshold  do  ̅       ̅     

 
EKF for angular velocity estimation 

Discretization of (18) yields: 
 
                           

                   
(24) 

The propagation matrix    
  

   
 needs to be computed for 

the purpose of updating the covariance matrix: 

         (
 

  
         

 

  
       )  

 

  
   

The first term in brackets decomposes into two terms: 
 

  
       

 

  
       

 

  
    

                   
Where the cross products between vectors and matrices 

are generalized as: 
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Similarly the second term in brackets leads to 
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The last term of    is simply 
 

  
       , rendering the 

propagation matrix in the following compact form: 
                                           

The observation is simply given by gyro readings affected 
by Additive White Gaussian Noise (AWGN): 

         ,         ,   
Which is a linear observation model with sensitivity given by:   

          
The covariance of the observations assumed is:  

      {    , 
     , }    

      

 
MEKF for attitude and gyro drift estimation 

The MEKF for quaternion estimation and gyro drift 
estimation uses a variant of the EKF. 

For the gyro drift defined as             , the discrete 

model is assumed to be simply: 
           ,  (25) 
The MEKF represents the attitude as the quaternion 

product (see [8] or [9]): 
  ̅    ̅     ̅    (26) 

Where   ̅ is parameterized as in (3). The MEKF computes an 
estimate of the three-component vector  . We remove the 
redundancy of the attitude representation by choosing the 
reference quaternion  ̅    such that  ̂ is identically zero, 

meaning that   ̅    is the identity quaternion. 
Using the approximation          it can be proven that 

the dynamics of   yield:  
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We define an auxiliary state    [     ]  to comply with 
(26).  By definition   is seen as an error that parameterizes 
  ̅    rotation for each cycle. Therefore   is set to zero for the 
next filter iteration. 

Linearization of (27) followed by discretization yields the 
discrete propagation equation of  : 
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Putting together (25) and (28) in matrix form renders: 
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The covariance error of the state     | 
  is propagated 

according to the Kalman filter rule: 
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where    [
        
     

]  and       . 

The propagation of the quaternion is given by an 
approximate solution of (13) that assumes a constant   
during the sampling time interval   : 
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with    taken from gyro readings and shifted  , yielding: 
              |    (32) 

  
There are two observation models: one for the vector 

measurements and the other for the Star Tracker.  
Sun and Earth vector measurements provide body vector 

measurements that are related to the corresponding vector in 
the inertial frame by the attitude matrix: 

                  ̅       (33) 
After applying some algebra and the same approximations 

for   ̅    as previously yields: 
        ̂  [ ̂  ]  (34) 

with  ̂  being the measurement predicted by the propagated 
quaternion  ̅   ̅     ̅   | : 

 ̂     ̅       

The derivative of      ) with respect to    gives the 
measurement sensitivity matrix: 

   
   

      

    [[ ̂  ]     ] (35) 

The Star Tracker outputs a quaternion measurement, 
resulting in the simple observation model: 

        ̅   ̅        ̅     ̅       (36) 

Applying the same approximations for   ̅    the expected 
measurement as holds: 
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resulting in the following sensitivity matrix for the Star 
Tracker  

   
      

    [
 

 
   ̅        ] (38) 

where    ̅  [
       [  ] 

   ] 

The Kalman gain is given by: 
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The covariance state can be updated using: 
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The auxiliary state   is update is:  
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Recall that as   represents the attitude error its value 

before update is null, therefore.     | 
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The observation function and sensitivity matrix are given 
according to the type of observation: 
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Lastly the error     |    updates the predicted quaternion as:  
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Parameter Selection 
The covariance of the propagation step is assumed 

isentropic:    
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While    is made constant,   ,  is a function of the angular 

velocity of the SV:  
   

  ,    ‖  ‖     . (
  

 
)
 

     (43) 

Table 3 resumes the parameter selection in (43).  
 

Table 3 -  Three-component covariance parameters 
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A constant version of    is also established that equals   ,  

when     , resulting in      
      with   
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     . 
 

The covariance of the Sun and Earth vector measurements 
is computed via the following matrix transformation  

     
     

   
where    is the covariance of the computed vector,    the 
covariance of the angle measurements, and  
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For the Star Track measurement an identical covariance 
transformation is performed: 
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where     ,                       is the Star Tracker 
three-vector error covariance, and:  
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 A simplified value for the Star Tracker quaternion 
covariance is given by extending    to a 4-by-4 matrix version: 

     ,              

V. Control 

The control strategy follows a LQR-based approach for which 
a linear description of the system is required. Doing so for 
(13) yields: 
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Linearization of (18) renders: 
 ̇      ̇                            

   
                               

(45) 

Where      is the reference angular velocity distancing 

   from the true angular velocity. Additionally define trim 
components of the control inputs,       and          : 

                                  (46) 
The trimming inputs have the purpose of counteracting 

gyroscopic effects by forcing  ̇     , whilst    and     

are the deviation controls. The two components are computed 
separately. The thrusters trim control yields: 

                           (47) 

The reaction wheels trim controls yields: 
                                 (48) 

The deviation control component is intended to extinguish 
the deviations from the references. The dynamics of the 
deviation terms are given by: 

  ̇     (                       

           ) 
(49) 



Terms in    can be grouped by inverting the sign and 
order of the cross products            yielding: 

  ̇     (   ( [     ]  [      ]
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(50) 

The LQR is devoted to linear systems described by general 
linear differential equations of the form  ̇       . 

  ̇        (51) 
The goal of the LQR is to regulate   to zero. In addition 

recall that the linearization in the previous analysis provided a 
vector state which is the stack of the deviation vectors from 
the references.  
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Hence the LQR control component computes the needed 
actuation to null the deviations to the reference augmented 

vector       [
 ̅   

     
]. 

The cost function of the LQR is defined as the following 
integral over time: 
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Minimization of   leads to a feedback given by: 
            

where          with   resulting from the solution of the 
Riccati algebraic equation: 

                    
Grouping equations (44) and (50) the desired state space 
representation is obtained with: 
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       ,      with rea tion wheels
  

 
Manoeuvre Supervisor and the MLQR 

The function of the manoeuvre supervisor is to establish 
the reference values ( ̅   ,     ,        ) used in the 

linearization computed by the Modified LQR (MLQR). The 
supervisor collects the relevant data that influence the 
dynamics, namely  ̅   ,     ,         as well as the target 

attitude  ̅      , it monitors these values and compares them 

with the current reference. When the differences become 
larger than a given threshold it triggers a flag indicating the 
MLQR block that it must update its gains by linearizing around 
new points of reference. The algorithm of the supervisor is 
resumed below for the case of  ̅      .  
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              Update internal references 

The MLQR is responsible to update the gain whenever any 
of the reference variables  ̅   ,     ,  or         used in the 

linearization is updated by the supervisor. For control with 
thrusters it renders: 

           ,   (     ,           ) (54) 

In the same way, for control with reaction wheels:  

  
         (    ,  (     ,           )) (55) 

where     is defined as the pseudo inverse of   . 
 

The proposed MLQR and manoeuvre supervisor are tied in 
the loop rendering the modified control mechanism depicted 
in the block diagram of Figure 1. The supervisor informs the 
controller when it should update the LQR gains. The controller 
computes the actuators controls for incremental regulation 
control as well as the trimming components.  

 

 

Figure 1 - Block Diagram for control with supervised MLQR 

 
Adaptation for relative attitude tracking 

When only relative information is available, the control 
quest becomes the nulling of relative attitude. Hence the 
supervisor must be adapted to cope with inputs of the form 
 ̅   (the attitude of frame 2 relatively to frame 1) for instance, 
instead of the pair target and estimate quaternions. The 
simple setting of  ̅     ̅   in the previous algorithm renders 
the solution. In fact this is equivalent to shifting the target to 
 ̅       [    ]  , i.e. a null rotation, and regarding the 

estimate as   ̅     ̅  . No additional changes are needed. 
  
Wheel reset operation 

During a wheel reset operation information about the 
applied wheel torques is necessary for compensation by the 
thrusters trimming control component: 

           (          )       

Each wheel speed is reset to zero through the commanded 
torque computed in the following manner: 

         
Recalling that the dynamics of the wheel is a simple 

integrator:  ̇       , it renders the following equation for 
the commanded wheel: 

 ̇   
  

  
   

The above differential equation constitutes a first order linear 

system with pole at     
  

  
. The value of    defines the pole 

which is chosen to be at    
 

  
      .  

 



VI. Relative Attitude 

Relative Attitude Determination 
The technique presented here for relative attitude 

determination employs the use of Line of Sight (LOS) vectors 
obtained through projection of beacon beams in a Focal Plane 
Detector (FPD). Each SV possesses a source (beacon) and a 
FPD. The beacon targets the FPD of the other SV while 
simultaneously its own FPD is illuminated. The FPD translates 
the relative position between two SV in the frame of the 
vehicle where it is installed. 

A deterministic solution is available for a minimum of 
three vehicles. If a formation is constituted by four or more SV, 
then all combinations of three SV can be used to provide 
relative attitude determination. 

In Figure 2 the three SV group is illustrated along with the 
aforementioned LOS vectors. One of the SVs is considered the 
group chief whereas the other are called deputies. 
 

 
Figure 2 - Three vehicle configuration and respective LOS 

 
The notation here follows the following rule: a subscript 

will describe the vehicle for which the LOS is taken both from 
and to, while a superscript will denote in which reference 
frame the LOS is both represented and measured. For 
example,     

       
 . The frame work for relative attitude 

herein is not the quaternion as done in previous sections, but 

the attitude matrix with notation   
 

 instead, mapping 
coordinates expressed in the  -frame into coordinates in the 
 -frame.  
The beams between vehicles are assumed to be parallel, so 
that common vectors are given between SVs but in different 
coordinates. In order to accomplish this in practice a feedback 
mechanism must exist that monitors and corrects any 
misalignments.  The formulation presented next follows [15].   
 
The Sensor Model 

The direct measures for all LOS observations are the image 
space projections   ,   . Denoting the measurement image 
vector   [ ,  ] . The measurement model follows  

  ̃       (56) 
A typical noise model used to describe the uncertainty in 

the focal plane coordinate observations is given as 

       
  

 

          
[
              

              
] (57) 

Where   
  is the variance of the measurement errors 

associated with   and   and   is coefficient of an order of 
magnitude of 1. 

The focal plane observations must be converted to unit 
space LOS observations assuming a focal length of unity: 
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The unity measurement vector becomes 

  ̃       (59) 

where       ,   assuming that a normally distributed 
image-space vector renders an approximately Gaussian 
distribution over the unit space LOS vector. 

Although the LOS measurement is a unit vector, it must lie 
on a sphere, leading to a rank deficient matrix in   . 

The formulation presented here follows a first-order 
Taylor series approximation about the focal-plane axes. The 

partial derivative operator   
  

  
 is used to linearly expand 

the focal-plane covariance in (57), yielding: 
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√       
    (60) 

Applying this operator to the uncertainty in the image 
space LOS vector gives the WFOV covariance model: 

 
             (61) 

 
Determination algorithm 

The LOS equations for each vehicle pair are given by 
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The LOS vectors considered in Eqs. (62)-(64) are the true 
LOS vectors. These are substituted by their corresponding 
measured LOS vectors in real operation.  

Performing the inner product between both members of  
(62) and (63) yields:  

      
  

     
       

   
   

       
   (65) 

Equations (63) and (64) represent a direction and an arc-

length respectively. The algorithm to determine    
   is given in 

[18] and it is briefly reviewed here.  
In more general terms, the direction cosine matrix (DCM) 

  satisfies the following relations:  
        (66) 
         (67) 

with the arc-length   and all vectors in Eqs. (66) and (67) 
being given. All vectors have unit length. The solution is given 
by 

      ̂ ,      (68) 
where    is any DCM satisfying        , and    ̂ ,    is 
matrix representing rotation about the    axis through an 
angle            which must be also determined. By 
 uler’s formula a rotation    ,    is given by: 

   ̂ ,     os            os      

 sin   [  ] 
(69) 

The strategy is such that first we find a candidate matrix 
   which satisfies        and then determine the values of 
  for which Eq. (67) is also satisfied. Let us look for    of the 
form 

        ,     (70) 
For the special case      , the choice of    is arbitrary 

provided we choose     . Likewise, for the case that 
       choose    to be any direction perpendicular to    
and     . In all other cases one might choose 
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When       , i.e.    and    are linearly 
independent, a unique solution exists for    

    ar tan  |     |,    .        (72) 
Yielding matrix    the following formula: 

          [        ]  
 

    .   

[        ]  (73) 

Now to compute   define 
           (74) 

     
  

Chief 

Deputy 1 

Deputy 2 

      
   

     
   



Then   must obey the following equation equivalent to Eq. 
(67) 

       ,            (75) 

 ubstituting  uler’s formula and rearranging terms leads 
to 

             .      .          (76) 
with  

  |    ||     |  (77) 

         (        ,  . (          )) (78) 

For a solution in  , Eq. (76) poses the following necessary 
condition  

 |  .      .       |
 |    ||     |   

(79) 

If this condition holds, then  
 

    ar  os [
  .       .       

|    ||     | 
]    (80) 

Because the        function is two valued over the 
interval [ ,   [ we choose the solution which better fits the 
given LOS data. This means we shall choose   such:  

   arg min
 

 |       |    (81) 

If one set of vectors cannot satisfy inequality (79) then 
another set from the formation must be used, which will 
naturally determine a different relative attitude. For the sake 
of abbreviation the algorithm just presented is named First 
Attitude Matrix Determination (FAMD). 

When the first attitude matrix is determined the second 
matrix can be determined using the well-known TRIAD 
algorithm (see [18] for complete derivation):    

      
    (82) 
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‖          ‖
] (83) 

   [  
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‖          ‖
] (84) 

For instance knowledge of    
  , renders   

   selecting 

        
 ,         

 ,         
   and       

   
     

   

     
  .  

Failure in finding the first attitude matrix would imply 
failure of the whole strategy. In order to circumvent this, logic 
is introduced to allow various attempts of determining the 
attitude matrix firstly computed in the FAMD.  

VII. Group 

Adequate group control is achieved by assigning the 
appropriate attitude target for each individual vehicle.  
If two SV do not possess the full IMU package, communication 
of one absolute estimate between SVs allows an estimate of 
the other SV absolute attitude; for instance for SV2 and SV3 we 
get:  

 ̅   ̅    ̅  
 ̅   ̅    ̅  

where  ̅  is computed by SV1 using the full sensor package 
and  ̅  ,  ̅   are given by the LOS relative attitude algorithm. 
This information can be used directly in two ways: 
1) the deputies track the chief while it manoeuvres to an 
assigned target.  
2) the chief reorients to the target while the deputies remain 
stationary. As soon as the chief SV stabilizes around the target, 
the deputies are allowed to align their attitude with the chief.  

A Group Coordinator (GC) is implemented to address the 
aforementioned behaviours and additional to monitor and to 
take decisions including: 
1. establishing the different attitude targets for each SV 
2. receiving information from the local SV supervisor and 
providing feedback 

3. commanding generalized operations such as nulling of 
reaction wheels speed or forcing change of the estimation 
algorithm. 

The GC allows another type of group manoeuvre that does 
not necessarily drive the constellation to a specified target. In 
this manoeuvre each SV tracks a varying target attitude, from 
now on called the converse attitude. For instance for SV1 its 
converse attitude is the attitude point between the attitudes of 
SV2 and SV3, i.e. 

 ̅    
    ̅ ,  ̅   

where   performs the following operations:  
 ̅    ̅   ̅ 

    
       

               

                  

 ̅      
 [      (

   

 
)    (

   

 
)]  

 ̅    
  ̅      

  ̅   

 
Hence the SVs approach each other towards a common 

point that can be seen conceptually as the centre of attitude of 
the initial group configuration. 

When the attitude differences between the SVs become 
smaller than a certain threshold angle, an average common 
attitude is imposed to the group according to: 

   
 ̅   ̅   ̅ 

 
 

which is normalized to  ̅     ‖  ‖. The threshold is set to 
   of angular separation between any combinations of two 
vehicles. 

VIII. Results 

The parameters for simulation are given here.  
Table 3 summarizes the sensor accuracies set for the 

simulation. 
Table 3 -  Sensor RMS noise 

     ,      
     ,   
   ,   ,   

   ,   ,     

    ,              
    ,                    

 
In this section position values are given in  , velocity 

values given in    , angles in degree and angular velocities in 
    unless explicitly expressed otherwise. 

 
Deterministic Attitude Observer 

The estimation results using the deterministic observer 
can be seen in Figure 3. The initial conditions are: true 
quaternion set to  ̅  [ ,     ,      ,     ,    ] , 
SV at rest      , initial orbital condition in ECI coordinates 
with       [         ]  and   [      ]. 
Furthermore we assume date is the 21st of March which 
simplifies the initial Sun position in ECI frame,          
[   ] . This last assumption will remain for the following 
simulations. The corresponding estimation RMS error is 
      ,     .  
 

 
Figure 3 - Deterministic Observer error 



 
Kalman Filter for angular velocity 

The EKF for angular velocity is tested with the following 
filter parameters: 

              
       

      with     ,              

 
The initial conditions set for the simulation are       
[  ,      ,      ,    ]       implying (‖     ‖  
     ), a relatively high angular velocity for reorientation 
manoeuvres. A comparison between the filter estimate and the 
gyroscope error is depicted in Figure 4. 

 
Figure 4 - Comparison between EKF and gyroscope error 

 
MEKF for Attitude Estimation 

 
The MEKF with constant parameters is tuned with the 

following values:  
     

       ,             
     

                

      ,       
        ,       

 
The results of a MEKF exclusively for attitude estimation are 
presented in Figure 5. The observations are the Sun and Earth 
vector measurements.  
 

 
Figure 5 – Estimation with MEKF for attitude exclusively: a) 

convergence b) steady-state  

 
The simulation conditions are: 

  ̅     [ ,     ,      ,     ,    ] , the initial 
estimate is   ̅     [    ] . The angular velocity is 
   , corresponding to an initial angular error of 
    

        .  . 
As observed error reaches the  ,   line in less than 5 s. The 
steady-state RMS error is       ,     . If a better initial 
guess with     

      .   is chosen along with lower initial 
covariance   

      , the RMS error decreases to 
      ,      which constitutes an accuracy   ,   times 
better than the one with the deterministic observer. 

The MEKF estimation results using Star Tracker data are 
depicted in Figure 6. The corresponding RMS error is 
      ,       ,           . This means a gain in 
accuracy of approximately    times relatively to Star Tracker 
observations.      

 

 
Figure 6 – Estimation with Star Tracker data 

 
The advantages of the variable three vector covariance   ,  

are evidenced when high angular velocities are impressed to 
the SV. For instance an initial ‖     ‖        results in a 
biased estimation with a RMS error of        .     , 
whereas using   ,  produces       ,     .  
 
Drift estimation with the MEKF   

We now analyse the drift estimation results of the MEKF 
with constant parameters. The results of attitude estimation 
resemble the ones just presented with the major difference 
being a longer convergence time especially when ad hoc initial 
attitude guesses are chosen.  

In order to test the drift estimation a constant drift of 
           . [     ]       is introduced in the gyro 
sensor readings. The initial angular velocity is set to    . 
The initial attitude guess is once more at  ,   from the true 
attitude. The drift estimate results are presented in Figure 7.  

 
Figure 7 – Illustration of drift estimation: a) Gyroscope readings, 

b) Drift estimate 

A second simulation with the exact same settings but with  
  [  ,      ,      ,    ] , ‖ ‖       ,  is run. 
The results are depicted in Figure8.  

 
Figure 8 – Drift estimation for nonzero angular velocity 

 
In this situation we observe a longer convergence time, 

and a small oscillatory behaviour which are due to the 
extraneous dynamical effect of the rotation of the SV imposed 
on the filter. 
We now compare the difference between the MEKF attitude 
estimate with and without drift for    . Figure 9 shows 
clearly that the error penalty for not estimating the drift is 
significant.  

 
Figure 9 – Comparison of attitude estimate between the MEKF 

with and with no drift estimate 



Single SV Control 
In this section the results of attitude control of the single 

SV system are presented, including steady state operation 
(equivalent to pointing operation mode), small and large 
reorientation manoeuvres. Because the MLQR constitutes an 
augmented version of the simple LQR only results with the 
MLQR controller will be presented here. In fact for a small 
manoeuvre         the MLQR performs just like the simple 
LQR.  

The wheels speed    and wheels acceleration  ̇  are 
directly read from free-error sensors.. The Estimator used is 
the fixed parameter MEKF for attitude estimation only –  
equivalent to say that the drift has been estimated beforehand. 
All simulation settings are accordingly as those in the previous 
chapter.  

A small    angle manoeuvre is first presented with initial 
attitude  ̅     [  ,      ,      ,     ,    ]  
and null angular          . Figure 10 shows the error 
evolution during transition to the target. The thrusters 
perform a faster manoeuvre than the wheels. This behaviour 
was set up by the tuning of the weighting matrices which gave 
lesser importance to minimization of thrusters controls.  

 

 
Figure 10 – Small manoeuvre comparison between wheels and 

thrusters 

 
A large      manoeuvre is tested in the same initial 

conditions as before. The results are depicted in Figure 11.  
 

 
Figure 11 - Large manoeuvre 

 
In most realistic applications the SV might be deployed in 

orbit with a nonzero angular velocity. Such situation is tested 
with: 
      [  ,    ,     ,    ]        ‖     ‖  5 /s, 
 ̅     [  ,     ,      ,     ,    ]  and an angle 
displacement of    ,   for a target quaternion  ̅       

[  ,      ,     ,     ,    ] . The results are 
shown Figure 12. 
 

 
Figure 12 - Control under nonzero initial angular velocity 

 
An evident difference is the manoeuvre time. With wheels 

actuation the SV wobbles considerable due to the increase in 
wheels speed that generate gyroscopic momentums.  

Figure 13 depicts a period of control under non-ideal 
actuators following a 10  manoeuvre.   

   

 
Figure 13 - Control with non-ideal thrusters 

The impulsive response of the thrusters is evident whereas 
reaction wheels render a more controlled mechanism.  

In steady-state the pointing RMS errors are as according to 
Table 4.  

 
  Table 4 - Pointing RMS errors with non-ideal thrusters 

 
Reaction 
Wheels 

Thrusters 

Sun and Earth vectors  ,       ,      
Star Tracker quaternion  ,       ,      

 
In Figure 14 the result of a fast wheel resetting operation 

is presented. The initial wheels set speed corresponds to the 
highest internal angular momentum 
   [            ]  rpm.  The control mechanism is 
able to drive the attitude closer to the target while the wheels 
speed is damped at a high rate.   

 

 
Figure 14 – Reaction wheels resetting manoeuvre 

 
Relative Attitude  

Figure 15 demonstrates the feasibility of the relative 
attitude determination technique using FPD observations for 
the following formation attitude set: 

   
 ̅  [ ,     ,      ,     ,    ]  
 ̅  [ ,     ,      ,     ,    ]  
 ̅  [  ,     ,     ,     ,    ]  

 

 
Figure 15 –Relative Attitude Determination error 

 

The RMS errors are      ,     ,      ,     , 
     ,      for this simulation. 

 
 

 



Group Control 
Figure 16 shows the results for a simulation where each SV 

manoeuvres independently to the target  ̅       

[ ,     ,      ,      ,    ] .  
The differences between  ̅  and  ̅   are a consequence of 

the initial group attitude set and the target attitude, as each SV 
chooses the shortest path to the target not taking into account 
the other SVs trajectories. 

 
Figure 16 – Independently manoeuvred group 

 
The leader following strategy is shown in Figure 17. Only 

relative attitude information is feedback into the deputy 
vehicles SV2 and SV3. The error bumps occur because SV1 
establishes a time-varying target for the deputies as it 
manoeuvres to the final target directly.   

 
Figure 17 – Leader following strategy 

 
The strategy employing the group coordinator proves to 

be the fastest manner to reach group alignment as observed in 
Figure 18. The initial angular separation is large but the group. 

 
Figure 18 – Group control with converse attitude 

 

IX. Conclusion and Future Work 

The tests conducted on the estimation algorithms revealed 
rapid convergence behaviour and considerable better 
accuracy compared to the accuracy provided by the 
deterministic method that solely depends on sensors accuracy. 

The MLQR strategy developed is able to drive the SV to the 
desired attitude although its designed is laborious as its 
reference setting is logic-based which imposes exhaustive 
testing to cover all possible transitions. Future work on the 
controller should address low frequency disturbance rejection 
with an augmented state system. Additional features may 
include moving target tracking and angular velocity tracking.  

Further work using the developed group control strategy 
would add features to the coordinator for optimal manoeuvre 

planning dependent on the initial group configuration, and for 
varying attitude tracking. 

Despite driving the group to the desired attitude, the group 
control strategy here developed is based on independent 
attitude tracking from each SV. A cooperative approach would 
instead describe the formation through a relative attitude 
model as a set of differential equations on the vehicles states 
  ̅ ,   ,  ̅ ,   ,  ̅ ,     combinations. This manner the amount 
of control required for each SV would become correlated with 
the formation attitude state or a subset of it.  

Another interesting feature to explore given a fully 
equipped group of vehicles is the fact that relative attitude 
information provides redundant inertial attitude estimates 
which may be used to mitigate sensor misalignment errors. 

 
  

[1] Wertz, James R. Spacecraft Attitude Determination and Control, 

Dordrecht, Kluwer Academic Publishers, 1978 

[2] Yonatan Winetraub, San Bitan & Uval dd & Anna B. Heller. Attitude 

Determination – Advanced Sun Sensors for Pico-satellites, Handasaim 

School, Tel-Aviv University, Israel  

[3] Rycroft, Michael J.  Stengel, Robert F. Spacecraft Dynamics and Control, 

Cambridge University Press 1997   

[4] William E. Wiesel, Spaceflight Dynamics, Irwin McGraw-Hill, 2nd Edition 

[5] Malcolm D. Shuster, Deterministic Three-Axis Attitude Determination, 

The Journal of the Astronautical Sciences, Vol. 52, No. 3, July-September 

2004, pp. 405-419 

[6] Maria Isabel Ribeiro, Kalman and Extended Kalman Filters: Concept, 

Derivation and Properties, Institute for Systems and Robotics, Instituto 

Superior Técnico, February 2004 

[7] Balbach, Oliver & Eissfeller, Bernd & Gunter W. Hein. Tracking GPS above 

GPS Satellite Altitude: First Results of the GPS experiment on the HEO 

Mission Equator-S 

[8] F. Landis, Markley, Multiplicative vs. Additive Filtering for Spacecraft 

Attitude Determination,  A A’s Goddard  pa e Flight Center 

[9] F. Landis, Markley, Attitude Estimation or Quaternion Estimation?, 

 A A’s Goddard  pa e Flight Center 

[10] Richard M. Murray, Zexiang Li, S. Shankar Sastry, A Mathematical 

Introduction to Robotic Manupulation, chapter 2. CRC Press, 1994 

[11] Grace Wahba, A Least Squares Estimate of Satellite Attitude. SIAM 

Review, Vol. 8, No. 3, (Jul., 1966), 384-286 

[12] F. Landis Mar ley, “Fast Quaternion Attitude Estimation from Two Vector 

 easurements” Guidance, Navigation and Control Systems Engineering 

Bran h,  ode    .  A A’s Goddard  pa e Flight Center, Greenbelt, 

MD20771  

[13] J.  iranda Lemos, “Introdução ao Controlo Óptimo”, Class notes. IST 2012  

[14] H  BAi,  urat Ar a , John Wen,” Cooperative Control Design: A 

Systematic, Passivity-Based Approach”.  pringer 

[15] Michael S. Andrle, Baro Hyun, John L. Crassidis, Richard Linares, 

“Deterministic Relative Attitude Determination of Formation Flying 

Spacecraft”. University of Buffalo,  tate University of  ew Yor , Amherst, 

NY, 14260-4400 

[16] Rand W. Beard, Jonathan Lawton, Fred Hadaegh, “A Coordinated 

Architecture for Spacecraft Formation Control”. I     ransa tions on 

Control systems Technology, Vol. 9, No. 6, 2001 

[17] Robert  trengel, “ pa e raft  ensors and A tuators”,  pa e  ystem 

Design, MAE 342, Princeton University 

[18]  al olm D.  huster, “Deterministi   hree-Axis Attitude Determination”, 

The Journal of the Astronautical Sciences, Vol. 52, pp. 405–419 

 
 

 
 


