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Abstract— This thesis presents a new sensor fusion tech-
nique for tracking of underwater targets, with application
to marine animal study, from multiple Ultra Short Baseline
(USBL) receiver arrays. The proposed strategy is based on a
marked target and relies on acoustic signal Direction of Arrival
(DoA) information provided by the arrays and array relative
positioning information. Two methods of obtaining the target
position are devised based on the available spatial information.
Least Squares (LS) and Kalman estimation techniques are
applied in filtering approaches designed according to Recursive
Least Squares (RLS), Kalman, and Extended Kalman Filter
(EKF) methods, which yield increase position estimate accuracy
and add velocity and acceleration estimation. The performance
of the obtained solutions is evaluated and compared using
simulation.

I. INTRODUCTION

A. Motivation

The importance of water in the existence of life has been
one of the main driving forces of evolutionary processes,
and its predominance across the Earth’s surface has shaped
human progress since the beginning of history. Some of the
most important human settlements have been located in the
vicinity of large bodies of water, be it rivers, lakes or oceans.
Beyond the essential function of sustaining life, these bodies
of water have found themselves deeply rooted in mankind’s
growth, progress, survival and culture for their great potential
as sources of food and mineral wealth, their functions as
ways of communication and transportation, their importance
in energy generation and even for their leisure value.

Most recently, some of the gravest concerns regarding this
seemingly immense environment are the depletion of marine
food reserves due to overfishing and the effect of human
activities in coastal waters in the health of marine flora and
fauna. In order to study and understand the precise mecha-
nisms that are at work in such situations, multidisciplinary
teams of researchers involving marine biologists, scientists
and engineers have been constituted into groups around the
world. Additionally, this sort of study adds undeniable value
in scientific knowledge from which expected and unexpected
advances may arise as a result of observing the effects of
pollution, fishing, transportation, oil drilling and many other
activities on the health, behavior and migratory patterns of
various marine species of interest.
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Although a long running field of study, the tools used
in this area of research have not developed much in recent
years due to a number of issues including development
and upgrade costs, backward compatibility considerations,
maintenance concerns and others. The present work aims to
explore advanced tracking techniques to be used in low cost
tools with the intent of helping researchers by obtaining more
accurate movement data on targeted individuals of marine
animal populations.

B. State of the Art

Most current marine animal tracking systems in use
worldwide work with electronic tags which can be broadly
categorized as archival tags, transmission tags, or acoustic
tags.

Archival tags work by collecting data such as time, water
pressure, animal and water temperatures, and even satellite
position. These are attached internally or externally to an
animal and must be recovered in order to access the col-
lected information. This may be accomplished through the
recapture of the tagged animal or by pop-up mechanisms,
which consists of the tag detaching itself from the tracked
individual and floating to the surface.

Transmission tags gather similar information to archival
tags. These, however, do not require recovery of the im-
planted hardware to recover the information gathered. By
limiting the hardware to externally implanted tags, the data
gathered can be remotely downloaded by researchers when
the animals surface via satellite up-link or, if the tracked
individual regularly visit coastal waters, via mobile commu-
nication networks.

The first two categories of tags incur in high deployment
costs, the former due to the cost of having two missions, one
for deployment and one for recovery, and the latter due to
the higher complexity of the hardware and, especially in the
case of the satellite up-link tags, the cost of the download
bandwidth.

A less costly option are the acoustic category of tags.
These can also be implanted internal or externally and
transmit at semi-regular intervals acoustic pulses which may
contain encoded identification, temperature and pressure
data. The emitted pulses are then detected and decoded by a
receiver if in range. The majority of acoustic tracking mate-
rial is by, or compatible with, Canadian company VEMCO c©

receivers and transmitters.
Concerning the acoustic tags, these consist of pinger-

type implantable devices of varying size that upon activa-
tion emit omni-directional semi-periodic acoustic pulses in
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which can be encoded information including identification,
water pressure, and temperature data. Due to the level of
complexity and specialization of these emitters, since there is
already a wide market base using the systems, and that both
emitter detection and its associated identification information
decryption is available, these will be viewed as the standard
and the work will be developed considering their limitations.

As for the case of detectors, commercially available so-
lutions are restricted to fixed or mobile presence detectors
and manually operated directional detectors. The latter make
use of directional hydrophones for which cost increases with
precision.

A typical scenario of tracking animals with these sys-
tems requires implantation of the acoustic pinger in the
intended target and the deployment of presence detectors
in specified locations. These detectors use a single omni-
directional hydrophone and can only mark the presence of
the intended target in its effective range, logging it with
any information carried by the signals. Mostly deployed
in buoys, the information provided by such detectors is
limited and implies several deployments with overlapping
ranges in order to extract minimal and error prone trajectory
information. This information has the added drawback of not
being available in real-time, depending on data collection and
cross-referencing.

In order to gather real-time precision information on
animals directions relative to the receiver, directional hy-
drophones are used. However, due to the high costs, fragility,
and the need for mechanical scanning in order to track a
target, these are handled manually by researchers.

Parallelly, position tracking systems have been studied for
underwater applications and most used systems use arrays
of omni-directional hydrophones or transducers in order to
extract signal DoA from differences in Time of Arrival
(ToA) between pairs of hydrophones using their spacial
diversity. These arrays are usually divided into three major
categories: Long Baseline (LBL), Short Baseline (SBL)
and USBL. The LBL arrays are fixed arrays that entail
distances between transducers of hundreds of meters making
these very expensive with a very complex calibration process
and a high deployment time. The SBL arrays, are typically
hull mounted arrays with distances in the tens of meters
and that require constant monitoring of these distances due
to the natural deforming of the structures that house the
transducers. The USBL arrays are an evolution of the SBL
systems with distances in the order of tens of centimeters that
can be factory calibrated due to their smaller size and lesser
deformation susceptibility. Furthermore, the latter, due to
their reduced size, are flexible in mounting and deployment.

Although USBL systems are commercially available, this
work will be based on the assumption that an in-house
solution being developed in parallel, the MAST-AM tool,
will be used. This allows for full control over the reception
hardware and detection algorithms.

C. Notation

Throughout the paper, a bold symbol stands for a multi-
dimensional variable, the symbol 0 denotes a matrix of zeros
and I an identity matrix, both of appropriate dimensions.

II. PROBLEM STATEMENT

The object of this work consists in determining the posi-
tion of a moving target in an underwater environment through
the use of acoustic signals. The target is equipped with
an acoustic pinger type marker which produces a signal in
which an identification number may be encoded. In order
to determine the position of this target, two receivers are
available. A manned underwater tool used for aiding a diver
in the identification, tracking and observation of the target,
and a surface transponder, used for precise target positioning
and diver localization in an inertial frame. Both the tool
and the transponder are equipped with hydrophone arrays
in an inverted-USBL configuration, which are used to obtain
a Direction of Arrival (DoA) from a received signal. The
assumed mission scenario is depicted in figure 1.

Fig. 1: Graphical representation of the mission scenario [1]

Based on the work in [2], it is possible for a vehicle
equipped with as USBL array to obtain its relative position
to a similarly equipped transponder which is assumed as
stationary in the inertial frame. This is accomplished through
the transmission of an acoustic signal by the vehicle which
is detected by the USBL array present on the transponder.
This operation and its reverse, emission by the transponder
and reception by the vehicle array, allows each receptor
to determine the other’s direction in their respective body-
frames, resorting to the plane-wave approximations to the
received signal and from the differences in Time of Arrival
between pairs of elements in the hydrophone arrays, obtain
the DoA of said signal and relative direction of its source.

Furthermore, the distance between both objects can be
determined by the emission of an interrogating signal from
one and an adequate response from the other. By measuring
the time between the interrogation and the reception of the
response it is possible to obtain the round-trip time (trt),
assuming that the response involves a fixed and known delay
between the reception of the interrogations and the emission
of the response. With the already available DoA of the
response signal available, this measurement of time allows
for the full precise positioning of the transponder in the



vehicle’s body-frame, and vice versa, assuming a constant
known speed of sound in the medium.

At this point, the focus of this work is the third element,
the moving target. Since the target is tagged with a pinger
type marker, the range cannot be measured in the same way
as the vehicle-transponder range. Thus an indirect form of
range measurement must be developed. This will be the
subject of the following chapter.

A. Framework

B. System Dynamics

III. LOCALIZATION FILTER DESIGN

A. Geometric Solutions

In Fig. 2, the mission scenario is depicted with the
available positioning elements and measurements. In this
problem all quantities are indicated as represented in the
body-frame of the vehicle and as such, the vehicle’s position
is always the origin of the frame. From this we define the
target position vector pt and the transponder position vector
pb as the vectors that give the respective positions in the
frame of reference. Additionally, we define ptb as the vector
that, in the vehicle’s body-frame, represents the position of
the target relative to the position of the transponder. For these
vectors, their direction cosines are defined as dpt , dpb

, and
dptb

respectively for pt, pb, and ptb.
It is possible from the figure to identify a simple triangular

geometry for the problem. Firstly, this triangle is in a three
dimensional space and any three non collinear points form
a plane in such a frame. Thus, assuming the situation of
non collinearity of the three elements of the problem holds,
then their three positions in the body frame of the vehicle
can be used as the plane defining points. With this in mind,
we can observe that any measurements taken between any
two elements of the problem are from two points in a
same plane and thus these measurements are projected in
that plane. Therefore, the three dimensional problem in the
three dimensional space may be represented, without loss
of information, as a problem in a plane within the three
dimensional space and may be solved accordingly.

Based on the considerations above, the problem can be
viewed as solving a triangle of which some elements are
directly measurable by the vehicle, namely the direction
cosines dpt

, dpb
, and the vehicle-transponder distance ‖pb‖.

Additionally, the director cosine dptb
is directly measurable

by the transponder and may be made available to the vehicle.
At this point, there are enough elements to allow for the com-
plete and unambiguous determination of the target distance
and, consequently, its position in the vehicle’s body-frame.

According to the figure, let

cosα = dpt
· dpb

(1)

and
cosβ = dptb

· (−dpb
) , (2)

And, according to the internal angles of a triangle, let also

γ = π − α− β . (3)

Fig. 2: Graphical presentation of the problem situation

There are now enough available elements of the triangle ge-
ometry to allow the determination of its remaining elements
using the Law of Sines

‖pt‖
sinβ

=
‖pb‖
sin γ

, (4)

Which can be rearranged in order to isolate the target range
as

‖pt‖ =
sinβ

sin γ
‖pb‖ . (5)

The determination of the complete target position is com-
pleted by multiplying the computed target range, ‖pt‖, by
the measured target position direction cosine, dpt .

An alternative to the Law of Sines approach may be
devised, using relations between the distances ‖pt‖ and
‖ptb‖, based on the physical characteristics of the acoustic
signal used to track the target.

Due to the nature of the problem, the emitted signal
from the target is transmitted simultaneously to both the
transponder and the vehicle from the target. Thus, each
length traveled by the signal to each of the receivers can be
expressed as a product of the signal velocity, vs, by a time, τ ,
which it takes to reach that receiver. Assuming a known and
constant vs throughout the length of travel and due to the fact
that the signal is emitted at the same point in time for both
pt and ptb paths, their difference in length can be expressed
through a difference of travel time, ∆τ . This reinterpretation
of the problem, presented in Fig. 3, has the reference travel
time τ coupled to the ‖ptb‖ interval, as before, the pb vector
is available though direct measurements and τ0 is the travel
time between the vehicle and the transponder. At this point,
the problem distances can be rewritten accordingly.

Fig. 3: Graphical reinterpretation of the problem

Let the target range be given as

‖pt‖ = vs τ , (6)

the transponder range as

‖pb‖ = vs τ0 , (7)



and the distance between the transponder and the target as

‖ptb‖ = vs (τ −∆τ) , (8)

in which τ is the travel time from the target to the vehicle,
τ0 is the travel time between the vehicle and the transponder
and ∆τ is the difference in signal travel time between the
emitter-vehicle and the emitter-transponder paths.

By applying the distributive property to (8) and substitut-
ing (6) into it gives, after rearranging,

∆τ =
‖pt‖ − ‖ptb‖

vs
. (9)

Using this redefinition of the problem variables it is
possible to use a Law of Cosines approach to relate the new
quantities. Applying the Law of Cosines to the triangle in
Fig. 3 gives

‖ptb‖2 = ‖pt‖2 + ‖pb‖2 − 2‖pt‖‖pb‖ cosα (10)

and replacing (6), (7), and (8) in (10) finds

[vs (τ −∆τ)]2 = (vs τ)2 +(vs τ0)2−2(vs τ)(vs τ0) cosα .
(11)

Both sides of equation (11) can be divided by v2
s resulting

in
(τ −∆τ)2 = τ2 + τ2

0 − 2 τ τ0 cosα , (12)

which rewritten for τ gives

τ =
τ2
0 −∆τ2

2(τ0 cosα−∆τ)
. (13)

By transmission of a target detected signal from the
transponder to the vehicle, the time difference ∆τ can be
directly obtained if a constant and known delay is added
by the transponder, by subtracting from the time difference
between the reception of the target signal and the transponder
target detection signal, the transponder-vehicle travel time
and the known transponder delay. With this information, the
target distance signal travel time, τ , can be computed.

With this determination of τ , inserting it in (6), gives the
calculated target range. In order to determine a position from
this value it is a matter of multiplying this scalar value with
the direction cosine dpt

, already available through direct
measurement.

After devising the methods of finding the target position,
it is of interest to study in which situations these methods
degrade their computations and become unusable. Firstly let
us remember the Law of Sines approach (5)

‖pt‖ =
sinβ

sin γ
‖pb‖ .

This equation can not be applied when the denominator
approaches zero, resulting in

sin γ = 0⇔ γ = kπ, k ∈ Z (14)

which, for the considered situation geometrical constraints,
may take only two physically acceptable values

γ = 0 ∨ γ = π (15)

Translating these values into the problem geometry, it
means that the proposed method breaks down precisely as it
approaches the limits of the assumption validity, namely the
non-collinearity hypothesis. Additionally, there is one further
situation in which the method fails, which is for a triangle
in which the ‖pt‖ dimension is much larger than ‖pb‖ and
forces γ to approach zero.

Let us now observe the expression for the delay obtained
with (13) of the Law of Cosines approach

τ =
τ2
0 −∆τ2

2(∆τ + τ0 cosα)
.

This solution is invalid if at any time the denominator of
the equation becomes zero

2(τ0 cosα−∆τ) = 0

τ0 cosα = ∆τ .
(16)

Multiplying both sides of (16) by vs and substituting (7) and
(9) results in

‖pb‖ cosα = ‖pt‖ − ‖ptb‖ . (17)

By rearranging (10) into

cosα =
‖ptb‖2 − ‖pt‖2 − ‖pb‖2

−2‖pt‖‖pb‖
(18)

and substituting into (17) gives

‖pb‖
‖ptb‖2 − ‖pt‖2 − ‖pb‖2

−2‖pt‖‖pb‖
= ‖pt‖ − ‖ptb‖

‖pb‖2 = ‖pt‖2 − 2‖pt‖‖ptb‖+ ‖ptb‖2

‖pb‖ = ‖pt‖ − ‖ptb‖ .
(19)

The final result of (19) represents, for a triangle, the same
situation as for the Law of Sines of point colinearity that
violates the modelled assumptions.

B. Least Squares Estimator

pt(t) = pt0 + vt0t+
1

2
at0t

2 (20)

and
vt(t) = vt0 + at0t , (21)

where pt(t) and vt(t) are the target position, and velocity at
time t, respectively, and pt0 , vt0 and at0 are constants repre-
senting the initial target position, velocity and acceleration,
respectively.

With the chosen model, the position of the target at
any time, is obtainable with knowledge of the three initial
conditions of the motion (pt0 , vt0 and at0 ) and the present
time by means of (20). Since it has been established that
it is possible to obtain measurements of the target position
in some instants of known t, this problem may be solved
through the fitting of (20) to the data points measured in
order to determine the problem constants.

For a least squares solution to be possible, any kth element
of a measurement vector y, yk, must be a linear combination
of the elements of a constant parameter vector x to be



estimated with the addition of some measurement noise v .
It may be expressed in vector form as

y = Hx + vk . (22)

By minimizing a cost function

J = εT ε = (y −Hx̂)
T

(y −Hx̂)

= yTy − x̂THTy − yTHx̂ + x̂THTHx̂ ,
(23)

in which
ε = y −Hx̂ (24)

is called the measurement residual and is defined as the
difference between the measurements yand the model’s
prediction for such measurements, the best estimate of x
can be shown to be given by

x̂ = (HTH)−1HTy . (25)

However, using this approach requires that a record be
maintained of every measurement taken in the y vector as
well as requiring an ever expanding H matrix. This is com-
putationally expensive and due to the unpredictable number
of measurements is inadvisable. In order to circumvent this
issue a recursive estimation method is of interest and thus
the RLS method is used. This approach provides the least
squares estimate recursively with each new available mea-
surement based on the previous estimate and an estimation-
error covariance estimate. A different cost function is also
chosen to be minimized. This new function, defined in (27)
as the sum of the estimate-error variances at each time step,
leads to the addition of a dependence on the variance of the
noisy measurements though a measurement-error covariance
matrix to be later defined.

Taking (22), a linear recursive estimator can be written in
the form

x̂k = x̂k−1 + Kk(yk −Hkx̂k−1) , (26)

where x̂k−1 is the estimate after measurement yk−1 and x̂k

is the estimate after measurement yk. The Kk matrix is the
estimator gain, and is obtained by minimizing the new cost
function

Jk =

n∑
i

E [θikθik] (27)

in which θnk is the estimation error for the nth parameter at
the kth step

θnk = xnk − x̂nk, (28)

By defining an estimation-error covariance matrix Pk as
an n× n diagonal matrix with

Pk = E
(
θkθ

T
k

)
(29)

solving for the gain matrix finds

Kk = Pk−1H
T
k (HkPk−1H

T
k + Rk)−1 (30)

where Rk is the measurement-error covariance matrix

Rk = E
[
(yk − ŷk) (yk − ŷk)

T
]

(31)

and the estimation-error covariance matrix for the present
step is found to be defined recursively as

Pk = (I−KkHk)Pk−1(I−KkHk)T +KkRkK
T
k . (32)

A first approach to the problem of defining a measurement
model is to use the results from the algebraic solution as
measurements, which are the measured positions of the target
and are directly related to the problem constants by (20).
With this observation model, there is a further degree of
freedom in the choice of assumed value of the constant
acceleration, a0, which can be assumed to be zero, for a
constant velocity motion approximation, or any value as the
most general case. Both cases will be evaluated and thus
for the time of the kth measurement, at time tk, the zero
acceleration case transforms (20) into

pt(tk) = pt0 + vt0tk , (33)

and the problem reduces to the determination of only two
constants. Making the measurement

yk = p̃(tk) =
[
p̃x(tk) p̃y(tk) p̃z(tk)

]T
(34)

and the parameter vector

x =
[
pt0 vt0

]T
=
[
pt0x pt0y pt0z vt0x vt0y vt0z

]T
,

(35)

the matrix Hk that satisfies (22) is

Hk =
[
I3 tkI3

]
. (36)

This solution will be referred to as the Constant Velocity
Recursive Least Squares (RLS-V).

For the constant, non-zero acceleration case (20) maintains
it’s form and the measurements remain given by (34). As for
the parameter vector, it is given by

x =
[
pt0 vt0 at0

]T
(37)

and the matrix Hk to satisfy (22) now becomes

Hk =
[
I3 tkI3

1
2 t

2
kI3

]
. (38)

This solution will be referred to as the Constant Acceler-
ation Recursive Least Squares (RLS-A).

C. Kalman Filter

Following the success in the design and simulation of
the RLS algorithm, it is desirable to produce an alternative
solution that better copes with the situations in which the
previous models have difficulties, namely the situation of
variable acceleration, and thus a Kalman filter based ap-
proach was developed.

Given a problem presented in the state-space form, a
Kalman filter allows the estimation of the system states based
on direct or indirect measurements of such states, fitted to
some assumed model for the system dynamics.

Let (39) represent any generic dynamic system in contin-
uous time

ẋ(t) = A(t)x(t) + B(t)u(t) + w(t) (39)



where x(t) is the system state, u(t) is the system input and
w(t) is a continuous-time white noise process. Assuming it
is possible to direct or indirectly observe the system state,
these observations are related to the state by (40)

y(t) = C(t)x(t) + v(t) , (40)

where y(t) is the observation vector, v(t) is a continuous-
time noise process and C(t) is the matrix that obtains the
observations from the states.

In the present problem, tracking a moving target involves
the estimation of its position and velocity. Additionally, the
estimation of its acceleration may be advantageous to reduce
errors in the velocity estimate. Firstly, only the position and
velocity of the target are estimated, this gives the problem
state

x(t)K−V =
[
pt(t)

T vt(t)
T
]T

. (41)

Let
ṗt(t) = vt(t) (42)

and
v̇t(t) = at(t) . (43)

Then,
ẋ(t)K−V =

[
ṗt(t)

T v̇t(t)
T
]T

=
[
vt(t)

T at(t)
T
]T

,
(44)

and the matrix that satisfies (39) is

A(t)K−V =

[
03×3 I3

03×3 03×3

]
. (45)

Since, by definition of the problem the input in the
dynamic equation of the target is unknown, it is assumed
non-existent, B(t)u(t) disappears and the dynamic equation
is fully defined. The row of zeros in the A(t) matrix appears
because at(t) is not a part of the states considered above and
thus the dynamic equation evaluates v̇t(t) as zero which
corresponds to the modeled assumption of an unvarying
velocity. This solution will be referred to as the Velocity
Estimating Kalman Filter (Kalman-V).

However, the unvarying velocity assumption may not
be a good enough approximation to the measured reality.
Thus, in order to remove this modeled constraint from the
dynamic equation, the addition of the target acceleration in
the problem states is considered, resulting in

x(t)K−A =
[
pt(t)

T vt(t)
T at(t)

T
]T

. (46)

Take once again (42) and (43), and now let

ẋ(t)K−A =
[
ṗt(t)

T v̇t(t)
T ȧt(t)

T
]T

=
[
vt(t)

T at(t)
T ȧt(t)

T
]T

,
(47)

the matrix that satisfies (39) is now

A(t)K−A =

 03×3 I3 03×3

03×3 03×3 I3

03×3 03×3 03×3

 . (48)

There is still a row of zeros in the A(t) matrix, now
representing a lack of model for the variation of acceler-
ation based on the estimated states. This solution evaluates
ȧt(t) as zero which is somewhat analogous to modeling an
unvarying acceleration and will be henceforth referred to as
the Accelleration Estimating Kalman Filter (Kalman-A).

Finally, for the considered conditions the measurements
available must be related to the problem states in order to
complete the Ct(t) matrix of (40). However, prior to the
investigation of these solutions, some alterations to the way
the state-space system is treated will be considered.

Any linear discrete-time system may be represented as

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1 (49a)
yk = Hkxk + vk (49b)

where, Fk−1 is the state transition matrix for the previous
state, Hk is the observation model matrix, yk is the mea-
surement vector, uk−1 is the input in the previous moment,
Gk−1 is the matrix that describes the effect of the previous
moment inputs on the state, and wk−1 and vk are AWGN
processes with covariance matrices defined respectively as
Qk and Rk. The same reasoning applies to the Gk−1 matrix
and uk−1 vector as for the continuous time B(t) and u(t)
elements, respectively, and accordingly will be assumed zero
and omitted.

In order to present the current system in discrete-time
form, the A and C matrices of the continuous model must
be discretized into the Fk−1 and Hk matrices respectively.
Resorting to the Step Invariant method, for the A matrix this
is done through the matrix exponential, shown in (50), where
∆t is the time difference between steps k−1 and k. Applying
(50) to (45) and (48), results in (51) and (52), which are
the discrete-time state transition matrices for the Kalman-V
and Kalman-A approaches respectively. In the case of the C
matrix, no discretization is required since the measurement
model does not represent a dynamic relation but rather a
relation between the state and the measurements, and thus
is the same in discrete or continuous-time, simply changing
denomination to Hk.

Fk−1 = eA∆t (50)

FK−V
k−1 =

[
I3 ∆tI3

03×3 I3

]
(51)

FK−A
k−1 =

 I3 ∆tI3
1
2∆t2I3

03×3 I3 ∆tI3

03×3 03×3 I3

 (52)

Taking the discrete-time Kalman filter [3] equtions as
derived and described in [4], the algorithm is the application
of (53) to (57)

x̂−k = Fk−1x̂
+
k−1 , (53)

P−k = Fk−1P
+
k−1F

T
k−1 + Qk−1 , (54)

Kk = P−k H
T
k (HkP

−
k H

T
k + Rk)−1 , (55)

x̂+
k = x̂−k + Kk(yk −Hkx̂

−
k ) , (56)



P+
k = (I−KkHk)P−k (I−KkHk)T + KkRkK

T
k . (57)

The only remaining step required is to define the measure-
ment model matrix Hk, the initial state estimate x̂+

0 , initial
estimation-error covariance matrix P0, and the measurement
noise covariance R and model noise covariance Q matrices.
During the simulation phase, the initial estimates and noise
matrices were given initial plausible values which were
refined through repeated simulation runs.

As previously accomplished in the RLS estimator, a
loosely coupled solution will be developed using the position
results from the algebraic solution. Accordingly, the mea-
surements for this approach will be the position results of
the algebraic solution, tildept(t). Defining the measurement

y(t) = pmt(t) (58)

with
pmt(t) = pt(t) + v , (59)

then for the Kalman-V case results in the measurement model
matrix

CK−V =
[
I3 03×3

]
(60)

or, for the Kalman-A case

CK−A =
[
I3 03×3 03×3

]
. (61)

With the measurement model completely defined in
continuous-time, in discrete-time the matrix changes de-
nomination but maintains its contents. These discrete-time
measurement models are then

HK−V
k =

[
I3 03×3

]
(62)

for the Kalman-V method, and for the Kalman-A

HK−A
k =

[
I3 03×3 03×3

]
. (63)

The Kalman Filter algorithm has now all of its elements
available to implement in simulation.

After the development of the loosely coupled solution, it
is desirable to pursue a filter that would extract as much
information from the measurements as possible while at the
same time removing the need for external computations. For
these reasons, a tightly coupled Kalman filter was designed
in order to extract the state information directly from the
sensor measurements.

Firstly, the system states must be chosen and the system
model described. For the following designs, the model as-
sumptions remain the same as those in the previous Kalman
filters namely the creation of two distinct filters, the velocity
estimating filter and the acceleration estimating filter. As a
starting point, the states and state propagation are assumed
the same as in the previous filters.

Following, the available sensor measurements will be
expressed as functions of the state variables. The available
measurements are the elements dpt

, dpb
, dptb

, and ‖pb‖
from Figure 2. Still from the figure, remembering that dpt

is the direction cosine of the target position, pt, it can be
expressed as

dpt
=

pt

‖pt‖
. (64)

Analogously, for the transponder position, pb, and the target
position in relation to the transponder, ptb, their direction
cosines, dpb

and dptb
, can be expressed as

dpb
=

pb

‖pb‖
(65)

and

dptb
=

ptb

‖ptb‖
. (66)

Finally, the direction cosine dptb
may be expressed as a

function of of pt and pb. Attending to figure 2, and since
the pt, pb and ptb vectors form a closed path, ptb can be
expressed as the vector difference (67)

ptb = pt − pb . (67)

Expressing the ptb vector by the product between its length
and direction cosine in (67) obtains (68)

‖ptb‖dptb
= pt − pb . (68)

Using (67) and (68), dptb
can be given by

dptb
=

pt − pb

‖pt − pb‖
, (69)

With the four sensor measurements now expressed as func-
tion of the state, the measurement vector yk is built from
(64), (65) and (69) as

yk =
[
dpt dpb

dptb
‖pb‖

]T
=
[

pt

‖pt‖
T pb

‖pb‖
T pt−pb

‖pt−pb‖
T ‖pb‖

]T (70)

This measurement vector is only related to the target
position state with the necessity to have the calculation of
the transponder position. In order to circumvent this, and to
add a degree of precision to the estimates, the state shall
be augmented with the transponder’s position, velocity and
acceleration.

Furthermore, the measurement vector is time-varying and
not a linear combination of the states, thus the filter cannot
be a linear Kalman filter. A simple way of overcoming this
problem is to transform the filter into an extended Kalman
filter. The principle of the EKF is to linearize the non-
linear system around the a posteriori estimate at the previous
time step before applying the state-update step and around
the a priori estimate at the present time step before the
measurement-update step of the regular Kalman filter. Here
is presented the series of steps required to produce the filter.

Firstly, the system must be presented as the common
system and measurement equations as follows. For the
present case, the known inputs are considered non-existent
as previously justified and shall be omitted. Taking (49a)
and (49b), linearizing xk around the a posteriori estimate
xk−1 = x̂+

k−1 gives

xk = Fk−1xk−1 + Lk−1wk−1 , (71)



with

Fk−1 =
∂fk−1

∂x

∣∣∣
x̂+
k−1

(72a)

Lk−1 =
∂fk−1

∂w

∣∣∣
x̂+
k−1

, (72b)

and expanding yk around the a priori estimate xk = x̂−k
gives

yk = Hkxk + Mkvk , (73)

with

Hk =
∂hk
∂x

∣∣∣
x̂−
k

(74a)

Mk =
∂hk
∂v

∣∣∣
x̂−
k

. (74b)

It is assumed that both noise processes are additive in their
respective equations and thus the Lk−1 and Mk matrices are
appropriately sized identities. This means that the regular
linear Kalman filter equations may be applied as they were
presented. Since the state-space system is already linear, the
Fk−1 matrix remains as in (52) and the time update equations
(53) and (54) may be applied. To obtain the time-variant Hk

matrix from the non-linear measurement, the Jacobian

Hk =
dyk

dx
, (75)

is applied to (70).
With this result, the measurement-update equations (55),

(56) and (57) may be applied as previously described.

IV. SIMULATION RESULTS

A. Setup

In order to validate the developed solutions, numerical
simulations were carried out covering a range of model
behaviors assumed to be valid for the targets. In all situ-
ations, the measurements are assumed to be corrupted with
zero-mean Additive White Gaussian Noise (AWGN) with
standard deviations given in Table I.

Measurement AWGN Standard deviation
α angle 0,5 [deg]
β angle 0,5 [deg]
‖dpb‖ 1 [m]

∆τ 100 [µs]

TABLE I: Measurements standard deviation

For this purpose, a sinusoidal velocity situation, shown in
Fig. 4 is considered. This situation is modeled for a mission
time of 150 seconds with a time step of 1 second.

The transponder is fixed at pb =
[

15 10 2
]
m and

the target starts at pt =
[

30 0 −1
]
m. The velocity

starts as v3 = v1 and its v3y component varies with v3y =
cos 2πft ms−1 with a frequency f = 0.015 Hz. The speed
of sound (vs) in the medium is also assumed known and
constant, vs = 1560 ms−1.

30

40

50

60

70

80

90

−4

−2

0

2

4

−1.4

−1.2

−1

X-axis (m)

Nominal Trajectory

Y-axis (m)

Z
-a
xi
s
(m

)

Fig. 4: Sinusoidal velocity trajectory

B. Results

In order to evaluate and compare the simulation results,
an error was defined as the norm of the vector difference
between the different position estinmates of the various
solutions and the real position of the target.

Firstly, the algebraic solutions are compared in Fig. 5, then
the results for the RLS estimators are shown in Fig. 6. Figure
7 presents the results of the linear Kalman filters, and Fig.
8 reveals the estimates of the EKF methods.
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Fig. 5: Position estimate errors of the Geometric solutions
for the sinusoidal velocity trajectory

Table II compares the RMS errors of the various proposed
estimation methods.

Estimator Simulation RMS error
Law of Sines 7.8186 (m)

Law of Cosines 13.7981 (m)
RLS-V 3.1984 (m)
RLS-A 3.3307 (m)

Kalman-V 3.2238 (m)
Kalman-A 3.9639 (m)

EKF-V 1.0006 (m)
EKF-A 1.2815 (m)

TABLE II: Estimate RMS error comparisons

Finally, in order to have a visual representation of the
comparative levels of performance of the proposed methods,
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Fig. 6: Position estimate errors of the RLS estimators for the
sinusoidal velocity trajectory
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Fig. 7: Position estimate errors of the Kalman filters for the
sinusoidal velocity trajectory

Fig. 9 presents the target position errors of the four solutions
with the lowest RMS errors as a percentage of the true range
of the target.

V. CONCLUSIONS

This document proposes two novel methods of alge-
braically finding a moving target based on spacial infor-
mation obtained from two USBL receiver arrays. A Least
Squares estimation technique is derived and applied in a Re-
cursive Least Squares algorithm, and Kalman filtering meth-
ods are implemented in a linear, lossely-coupled, Kalman
filter and a non-linear, tightly-coupled, Extended Kalman
Filter. All developed estimation schemes are evaluated and
compared in numerical simulation.
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