
Fault Detection and Isolation for Dynamical Systems

Diogo Filipe G. P. C. Monteiro

diogo.c.monteiro@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2015

Abstract

Safety and reliability of a dynamical system is a concern that have always pursued designers in
both academia and industry. The relevance of monitoring the health status of a system is even more
relevant for safety critical applications, such as chemical and nuclear plants, medicine, transportation,
and security systems. The occurrence of abnormal events on these processes may lead to malfunctions
and disasters in ultimate fault conditions, as witnessed in the past. The paramount importance of
the topic and the increasing interest in multiple-model approaches under the scope of on-line fault
detection and isolation motivates this thesis. Initially, focus is given to classical multiple-model adaptive
estimation (MMAE) in which an in-depth study is undertaken for the design of a scheme capable
of determining the working regime of a system. This is done by identifying the region where the
fault parameters lie under the associated uncertainty domain. The design procedure is built on a
performance-based strategy, which ensures a well-de�ned level of state estimation performance despite
the fault location. Due to the high computational complexity of the classical MMAE approach, in what
follows we propose a novel bank design based on the combination of Kalman and robust H2 �lters. This
strategy leads to a substantial reduction on the number of estimators in the bank, while preserving the
desired state estimation performance. In both approaches a prominent study on convergence properties
is performed, so that robustness of the methods is guaranteed. Computational simulations based on a
generic helicopter model are also executed to prove the potential of the strategies developed and provide
a veri�cation basis for the theoretical results achieved.
Keywords: Multiple-model adaptive estimation; model-based fault diagnosis; robust H2 �lters; state
estimation in uncertain systems;

1. Motivation for Fault Diagnosis
Safety has always been a critical factor in any

technical application or process. Nowadays, more
than ever before, human beings rely on control sys-
tems in their every-day life, either by stepping into
an airplane or high-speed train, or in any other triv-
ial actions such as baking a cake in a modern oven.
Basically, automated systems are everywhere mean-
ing that their reliability, safety, and e�ciency play
an important role for both the designer and end-
user. This interest has brought about a consider-
able attention from the industry and academic re-
search for the topic of on-line supervision and fault
diagnosis.
The relevance of monitoring the health status

of a system is even more relevant for safety crit-
ical applications, such as chemical and nuclear
plants, medicine, transportation, and security sys-
tems. The occurrence of abnormal events on these
processes may lead to malfunctions and disasters in
ultimate fault conditions, as witnessed in the past.
Several accidents in our history, specially during
the 20th century, due to the technological revolu-

tion, were caused by unexpected failures in control
systems. Many claim that if proper diagnosis with
an early fault detection have been undertaken sev-
eral of this events could have been avoided by a
simple advisory warning or at an advanced level a
controller recon�guration. Both from an economic
perspective and even more importantly to avert the
loss of lives, the topic of fault diagnosis has become
a research priority across many �elds of study. To
strengthen the enunciated relevance of the subject,
two examples of passed incidents in the interest �eld
of this thesis are now provided:

• X-15 Flight 3-65: On November 15, 1967,
X-15-3 was destroyed in �ight due to a struc-
tural load exceedance precipitated by a loss of
control. The causes of the accidents were at-
tributed to an electrical anomaly associated to
a test motor which resulted in instrumentation
failures. The excessive demand for the pilot's
awareness to troubleshoot the obvious malfunc-
tion and the extreme conditions of a ballistic
�ight regime culminated in a hypersonic spin
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and dive into the ground. It was also reported
that the inability of the control system to deal
with such failure prevented the pilot to man-
ually recover the aircraft. The research pilot,
USAF Major Michael J. Adams, did not sur-
vive the event. [1]

• Copterline S-76 Flight 103: On August 10,
2005, a helicopter Sikorsky S-76 crashed into
the water of Tallin Bay, Estonia. The investi-
gation commission declared that the accident
occurred due to an uncommanded runaway of
the main rotor actuator. As a consequence,
the helicopter operated by Copterline entered
in a an uncontrolled regime of pitch and roll
manoeuvres. The 12 passengers and 2 pilot on
board did not survive. [2]

In both described cases, system faults are iden-
ti�ed as the primal cause of the accidents. In the
early days, classical approaches based on hardware
redundancy were the main tool to avoid catastro-
phes. This means that every mechanism, such as
sensors or actuators, were double or tripled and sub-
sequent voting schemes were applied to track the ex-
istence of faults. This strategy presents several lim-
itations, namely the increase in system complexity,
physical space and maintenance costs. The identi-
�ed issues motivated the search for a novel strat-
egy, which was �rstly introduced in the 1970s by
Beard [3], that suggested the replacement of hard-
ware redundancy by analytical redundancy. The
latter concept presupposes the use of the available
signals, controller inputs and sensor outputs, in
combination with a physical model of the system
that enables to assess the health status of the sys-
tem components. More than answering to the clear
drawbacks of hardware redundancy, it also enabled
the identi�cation of more types of failures and mal-
functions in dynamic processes.

2. Model-Based Fault Diagnosis Techniques

Analytical redundancy was introduced as an al-
ternative for consistency checking of the system
variables to achieve a fault diagnosis scheme. This
type of analysis assumes the availability of some
kind of mathematical relationships between those
variables. In other words, we may refer to those
relationships as a mathematical model which re-
�ects the theoretically expected system behaviour
under the physical laws applied. Therefore, ana-
lytical redundancy is also commonly referred as a
model-based approach to fault diagnosis.

The idea behind the availability of a mathemat-
ical model is that one may compare the measured
variables, with the aid of sensors, with the informa-
tion provided by the model. If the mathematical re-
lationships truly re�ect the system behaviour, then

a comparison can be achieved by the generation of
a residual r(t) in time which provides nothing else
than a di�erence between the measured variables
and the model variables.
In order to be applicable for fault detection, the

residual is expected to satisfy the following proper-
ties:

1. Zero mean valued under no fault condition, i.e.
E {r(t)} = 0

2. Deviate from zero when a fault has occurred,
i.e. E {r(t)} 6= 0

Obviously, these properties are ideal and the as-
sumption that a completely accurate system model
is available is also unrealistic in practice. Mod-
els are always subject to uncertainties, and sys-
tems are a�ected by unpredictable noise and distur-
bances with unknown or partially unknown proper-
ties. This reasoning claims for robust fault diag-
nostic systems, which should be ideally insensitive
to uncertainties, noise, and disturbances. Frank
[4] states that "other than with modelling for the
purpose of control, such discrepancies cause funda-
mental methodical di�culties in FDI applications.
They constitute a source of false alarms which can
corrupt the performance of the FDI system to such
an extent that it may even become totally useless.
The e�ect of modelling uncertainties is therefore the
most crucial point in the observer-based FDI con-
cept, and the solution of this problem is the key to
its practical applicability."
The focus will be given now to observer-based

methods which constitute part of the baseline of sci-
enti�c research on this topic. Note that this thesis
fall mainly on this type of approach. Other two rel-
evant methods are parity relations, which we refer
the reader to [5�7] for further details, and param-
eter estimation that is intensively studied in [8, 9].
Afterwards, a brief discussion on decision making
tools for fault detection is undertaken.

2.1. Observer-based methods
Observer-based design constitute the develop-

ment basis in FD research. The main idea behind
this approach is to apply an observer, based on an
available model of the system. The residual is then
obtained by computing the di�erence between the
observer outputs and measured signals. Several
authors explore this method in a deterministic
setting, through the so-called Luenberger Observer,
as described in [3, 10] or in a stochastic fashion
with the application of the Kalman �lter [11�13].
It is straightforward to understand that if only
one observer is put in practice, fault detection
can be achieved but the isolation part becomes
hard to solve. One possible alternative mentioned
in the reviewed literature for sensor faults is the
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dedicated observer scheme, which suggests the
development of a set of observers each of which
driven by a speci�c measured output. In this way,
if some sensor is faulty, the correspondent observer
will have its residual deviated from the nominal
behaviour. Usually, this causes the observer to
be highly a�ected by model uncertainties and
disturbances, being susceptible to false alarms.
A second alternative is the generalized observer
design, which also de�nes a set of observers but
all driven by every output available except one.
In this methodology the reasoning is opposed to
the former scheme, i.e. all residuals except one are
a�ected by a single fault. Although this method
has its advantages in terms of robustness, it �nds
some drawbacks if one intends to detect multiple
and independent faults. Moreover, the design
of such structured residuals for actuator fault
diagnosis is more challenging. For this case, alter-
natives like unknown input observers [14�16] and
eigenstructure assignment [17, 18] are applicable.
However, it is not always possible due to do so due
to the observability properties of the system [19].
The basic idea behind the referred strategies is that
by adapting the driven residual vector structure
and the observer gain, it is possible to design
an insensitive residual to some speci�c actuator
fault. Other strategies that try to achieve fault
isolation with only one observer were also a focus
of study, namely the fault detection �lter �rstly
introduced by Beard [3]. Such a �lter is built with
a gain design strategy which allows for the residual
to react di�erently on the presence of distinct
faults. Therefore, the residual properties along the
time provide the isolation basis of the method.
Multiple-model strategies may be interpreted as
an extension of the observer-based methods, in the
sense that all the information about the system
process and admissible fault characteristics is used
to build a set of �lters, each of which designed for a
particular fault scenario. A simple to describe this
methodology is a system, that besides its nominal
operation, can also operate at two other working
points by the incidence of two distinct faults. This
means that the uncertainty of this model, caused
by the considered admissible faults, is de�ned by a
discrete combination of three operating conditions.
With a multiple-model approach, the designer uses
three independent �lters each tuned for one of the
operating conditions. As a consequence, by the
analysis of the residual sequences, fault detection
and fault isolation may be achieved. Usually,
the uncertainty caused by possible faults de�ne
an in�nite set of operating points, rendering this
method more challenging but still very useful. In
fact, the multiple-model framework with appli-
cation to fault diagnosis is going to be the focus

on this thesis, thus extensively explored in the
following chapters. A considerable research has
been performed throughout the years upon this
method mainly due to its �exible structure that
allows intuitive modelling of faults [20] and higher
support in modern computers for larger processing
requirements. Note that one of the main drawbacks
of this approach is its computational complexity,
which increases in-line with the number of �lters
included in the bank. Some examples of successful
applications may be found in [20�24]. A more
recent variation of this method is the interacting
multiple-model (IMM) design that considers an
inter-dependent processing between the �lters,
what Ru and Li [23] suggest to lead to an enhanced
performance in terms of detection time and proper
identi�cation. IMM-based fault diagnosis has
attracted the interest of researchers in the last
decades [25�27].

2.2. Residual Evaluation: Decision Making

Having discussed residual generation, the follow-
ing step in the fault diagnosis process is devoted
to residual evaluation which will enable to assess
a fault occurrence. The most straightforward strat-
egy is to de�ne �xed residual thresholds which when
crossed indicate a fault presence. Still, due to the
inevitable system model uncertainties, disturbances
and noise, the generated residuals will never be
strictly null in a fault-free scenario. Similarly, with
a fault occurrence it is probable that the expected
characteristics of the residual signal are not met. As
a consequence, the de�nition of thresholds is a chal-
lenging task while playing an important role on de-
cision making [20]. Note that if small thresholds are
assigned, false alarms are likely to occur, whereas
large thresholds values may lead to missed detec-
tions, both of which deteriorate the fault diagnosis
scheme. To overcome this limitation, one widely
documented strategy is to use adaptive thresholds
[28, 29]. Adaptive threshold techniques provide a
methodology to compute threshold values in real-
time based on the control activity, noise, and char-
acteristics of the residual signal. This method en-
hances the decision making performance by decreas-
ing the ratio of false alarms and missed detections.

It is worthwhile to mention that fault diagnosis
schemes with multiple-model approaches are based
on hypothesis testing. Each model considered in
the bank of observers is assumed a hypothetical real
model. This topic is going to be further explored in
Section 5.

3. Research Proposal

In this thesis we focus on multiple-model estima-
tion techniques with application to residual-based
fault detection and isolation. More precisely, we in-
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tend to determine the working regime of the mon-
itored plant under the uncertainty imposed by an
unknown fault occurrence. Initially, the problem
will be tackled through a classical approach using
Kalman �lters. In what follows, the study of robust
H2 �lters designed for well-de�ned uncertainty do-
mains is undertaken. In both approaches, we will
discuss and explore the estimation stability prop-
erties and a provide a veri�cation of the developed
theory through several computational simulations,
using a generic Helicopter dynamical model. We
also intend to consider a mostly generic fault model,
in opposition to what is found in great part of the
dedicated literature where only speci�c faults are
contemplated.
The decision of developing a research on multiple-

model strategies lies mostly on the identi�ed cur-
rent trend studies on fault diagnosis. Additionally,
and despite being focused on other applications, the
work developed by other students and researchers at
the Institute for System and Robotics on multiple-
model adaptive estimation and control techniques
[30�37] motivate us for the proposed approach.

4. Fault Model
Consider an LTI system of the form

ẋ(t) = Ax(t) +Bu(t) (1a)

y(t) = Cx(t) +Du(t) (1b)

where x is the state, u the input, and y the out-
put vectors of the system. Matrices A, B, C, and
D correspond, respectively, to the state matrix, in-
put matrix, output matrix and feedthrough matrix.
Usually faults are modelled with a variation of the
system parameters which directly a�ect the system
matrices. Still, this multiplicative modelling fash-
ion is more suitable for component faults, becoming
restrictive if one intends to consider sensor or actu-
ator faults. That is the case for an o�set fault that
imposes a bias in the state dynamics.

Figure 1: Types of actuator faults occurring after
tF . Source: [24, pg. 6]

In this thesis, the focus will be the study on actu-
ator faults, which will require us to �nd an appro-
priate additive fault model. Despite this particular-
ization, it is aimed that the developed research can

also be applied to other types of faults by consider-
ing a dedicated fault model. In what follows, let us
�rst reason that an actuator fault can be seen as a
modi�cation of the system input vector u. Through
the reviewed literature, but mainly based on [24],
four major types of actuator faults can be identi-
�ed. All of which are illustrated in Fig. 1. Except
for fault type (a), the other three types of fault may
be modelled by the combination of two scalar fault
parameters: (i) an e�ectiveness parameter λ ∈ [0, 1]
and (ii) an o�set parameter u0 ∈ [umin, umax] such
that the system input may be given by

u(t) = Λuc(t) + u0 (2)

with

Λ = diag ([λ1, λ2, . . . , λm]) ; u0 = [u01, u02, . . . , u0m]
T

(3)
where m is the number of system actuators and uc

the control input vector. The global actuator fault
system model is then given by

ẋ(t) = Ax(t) +B (Λuc(t) + u0) (4a)

y(t) = Cx(t) +Du(t) (4b)

A fault domain representation is shown in Fig. 2
where each fault type region is indicated. Note that
in nominal/fault-free condition the following fault
parameters matrices hold

Λ = diag
(
1m

T
)

; u0 = 0m (5)

u0

λ

umin

umax

1
0

Locked-in-place

Hard-over

Hard-over

Loss of E�ectiveness

Nominal/Fault-free

Figure 2: Types of actuator faults illustrated in
fault parameters domain.

5. Multiple-Model Adaptive Estimation
(MMAE)
The Multiple-Model Adaptive Estimation

(MMAE) technique is a model-based estimation
approach specially suitable for systems subject
to parameter uncertainty. If some information is
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known about the uncertain parameter, such as its
domain of uncertainty, then a multiple-estimator
bank structure, composed by Kalman �lters (KFs),
may be designed covering an adequate range of
possible models. A speci�c probability analysis
tool may then be applied to analyse the local
state-estimation and associated innovations, for a
stochastic setting, generated by each estimator in
order to obtain the optimal combined estimation.
The architecture of the described technique is
shown in Fig. 3.

Plant

KF1

.

.

.

KFN

Posterior
Probability
Evaluator

.

.

.

x̂1(k|k)

ν1(k|k)

x̂N (k|k)

νN (k|k)

u z

x̂(k|k)

P (k)

S
1

S
N

· · ·

MMAE

Figure 3: Multiple-model Adpative Estimation
(MMAE) Architecture.

Note that we may interpret system faults as
uncertainties in our model description, thus the
MMAE turns out to be an interesting tool under
the scope of our study in fault detection and isola-
tion. Accordingly, consider an LTI MIMO system
subject to actuator uncertainties in agreement to
the actuator fault model described in Section 4

x(k+1) = Ax(k) +B
(
Λκu(k) + uκ0

)
+Gw(k)

(6a)

z(k) = Cx(k) + v(k) (6b)

where x(k) ∈ Rn denotes the system state, u(k) ∈
Rm its control input, z(k) ∈ Rq the measured
output, w(k) ∈ Rn the process noise input, and
v(k) ∈ Rq the measurement noise. The noise vec-
tors, which are white noise Gaussian sequences,
obey the following relations

E {w(k)} = 0 E
{
w(k)w(t)

T
}

= Qδkt

E {v(k)} = 0 E
{
v(k)v(t)

T
}

= Rδkt
(7)

A, B, and C are the state, input and output ma-
trix of appropriate dimensions, respectively. Matrix
Λκ and vector u0(k) are unknown and determine
the uncertain parameters of system 6 that belong
or are "close" to a �nite discrete parameter set,
κ := {κ1, κ2, . . . , κn} indexed by i ∈ {1, 2, . . . , N}.
The MMAE approach suggests that the global esti-
mate is given by

x̂(k|k) =

N∑
i=1

Pi(k)x̂i(k|k) (8)

where Pi(k) stands for the conditional posterior
probability of κ = κi, i.e. that estimator i model
matches the real system.

5.1. Posterior Probability Evaluator (PPE)

The central element of the MMAE is the pre-
viously referred Posterior Probability Evaluator
(PPE) which is responsible for computing the pos-
terior conditional probability of each model, at ev-
ery instant, to match the real one. The recursive
relation to compute those probabilities is given by

Pi(k+1) =

(
ζi(k+1)e−

1
2ωi(k+1)∑N

j=1 ζj(k+1)e−
1
2ωj(k+1)Pj(k)

)
· Pi(k)

(9)

with ζi(k+1) ≡ 1

(2π)
m
2

√
detSi(k+1)

and ωi(k+1) ≡ νi(k+1)
TSi(k+1)

−1νi(k+1)

for a given initial prior Pi(0). A closer look at
Eq. (9) reveals that, from an implementation point
of view, one may not allow that any model κi has its
probability down to 0 as it will cause the posterior

to never recover, even if κi matches the real model.
For further details on the deduction of result (9)
consult the thesis document.

5.2. Convergence Properties

In the scope of the present thesis, it is specially
relevant to explore the convergence result for the
case that none of the models included in the bank
of �lters matches the real parameters. According
to a theorem in [38, p. 274], the Baram Proximity
Measure (BPM) given by

βji = ln (detSi) + Tr
(
Si
−1Γji

)
(10)

holds the information concerning which model is
converged under a certain fault scenario. In
Eq. (10) Γji stands for the steady-state innovation
mean-square matrix resultant from the estimation
provided by �ler i when the real model j holds,
whereas Si refers to the steady-state covariance ma-
trix when j = i. In practice the model holding the
lowest BPM will see its posterior probability tend
do 1.

5.3. Bank of Kalman Filters Design Strategy

The actuator fault model which we consider pro-
vide us with an in�nite uncertain parameters set.
From this set one shall pick N admissible values
which will be the tuning parameters of our N KFs.
In what follows, two main questions arise in this
design process

1. What should be the size of the representative
parameter set given by N which de�ne the
number of KFs in the bank?
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2. How can one establish the representative pa-
rameter set κ := {κ1, κ2, . . . , κN} ?

The design process considered has in its basis four
relevant premises:

1. (Equivalent KF dynamics) It can be shown
that the optimal estimation performance for
N → ∞ is invariant of the fault point con-
sidered.

2. (Independent Bank Design) The reason for this
strategy lies in the convenience of performing
the bank design in a R2 domain, rather than
a larger dimension domain. Therefore, each
actuator is considered separately.

3. (Concept of EIP) Equivalently Identi�ed
Plants (EIP) de�ne the regions in the uncer-
tain parameter domain that are characterized
by the model to which they will converge given
all the admissible real parameter and the rep-
resentative set κ. Those regions can be de�ned
with the help of BPM.

4. (Concept of IMAEP) In�nite Model Adaptive
Estimation Performance (IMAEP) is an index
that provides the best performance in terms of
Baram Proximity Measure considering an ideal
bank design with N →∞.

Having introduced the previous premises, the de-
sign procedure can now be focused. It mostly
inspired in [32], where the author suggests a
performance-based model set design strategy for
the MMAE. The performance criterion is de�ned
as a percentage of the IMAEP corresponding to the
worst admissible performance. The same approach
was embraced but with several adaptations due to
the bi-dimensional uncertainty domain considered.
The outcome of the design was bank with 15 �l-
ters (80% IMAEP) and a second one with 9 �lters
(50%IMAEP). The latter bank EIP map represen-
tation is illustrated in Fig. 4.

5.4. Experiments on Simulation Environment
Several simulation were performed in order to as-

sess: (i) the identi�ability of the models by ver-
ifying the probability signals convergence in dif-
ferent scenarios; (ii) compare with the theoretical
results found during the bank design; (iii) verify
that the performance criterion was met. The most
prominent conclusions of those experiments are now
highlighted. Firstly, the MMAE approach allows to
clearly identify di�erent models under distinct fault
occurrences. Nevertheless, some faults may not be
detected if their fault parameters fall in the nominal
EIP region. As a consequence, it must be assumed
that the designed architecture is not ideal for fault
detection and isolation, as it is susceptible to false

(a) 2D view

(b) 3D view

Figure 4: Bank of Kalman Filters design for a 50%
IMAEP minimum performance criterion.

alarms or missed detections. On the other hand, it
is a powerful system for state estimation under pa-
rameter uncertainty. Finally, the results provided
an indicative validation for the performance-based
design of the estimators' bank. This is, indeed,
a convincing argument for the application of the
MMAE method along with the developed design
strategy, since we are able ensure a well-de�ned a
performance criterion for the state estimation.

5.5. Improving results: second �ltering stage

Due to the oscillatory behaviour observed of the
probability signals, a second �ltering stage was de-
veloped based on an original algorithm that only
sets a certain model probability to 1 if it meets a de-
�ned criterion. The same logic is applied to change
the probability of some model back to 0. The out-
come of the presented strategy, which was tested
along the previous battery of simulations, is a well-
de�ned identi�cation of the models and smoother
probability transitions.
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6. Multiple-Model Adaptive Estimation
(MMAE) with H2 Robust Filters
In the last chapter we focused our study on fault

diagnosis in a multiple-model based approach which
considered a bank of Kalman Filters, each speci�-
cally tuned for a �xed combination of actuator fault
e�ectiveness and o�set parameters. The developed
strategy, which was built upon a well de�ned per-
formance criterion, resulted in large banks of esti-
mators capable of detecting and isolating faults ef-
fectively. To be more precise, the MMAE posterior
probability evaluator could clearly indicate the real
fault parameters region when under a fault occur-
rence or in a fault-free scenario.
One of the drawbacks identi�ed of the accom-

plished designed was the requirement for a large
number of Kalman Filters to achieve the perfor-
mance criterion de�ned. Recall that under the most
strict performance de�ned - 80% IMAEP - 15 �lters
needed to be included, whereas for the 50% IMAEP
case 9 �lters were required just for a single actuator
monitoring. The use of a large number of estima-
tors asks for substantial processing means which are
not always available and may well be limited in real
applications. This concern and the interesting stud-
ies about optimal linear �ltering under parameter
uncertainty reviewed on the literature ([39]) moti-
vated the application of H2 robust �lters under the
scope of actuator fault diagnosis.
The goal is set to reduce the number of �lters

required, while meeting a certain worst-case perfor-
mance. Note that the Kalman Filters designed in
the previous chapter can be interpreted asH2 �lters
in the sense that they also minimize the 2-norm of
the estimation error output, or in other words the
steady-state estimation error covariance. The main
di�erence between the two approaches is that with
theH2 synthesis the dynamical model of the system
does not have to be precisely known, allowing to
cope with parameter uncertainties. Consequently,
assuming that the estimation error depends on the
unknown parameters, the performance index to be
optimized is the upper bound of the mean-square es-
timation error, being valid for all admissible models
[40].

6.1. H2 Robust Filter Design with LMI Convex
Programming

The H2 robust �lter was deduced, mainly based
upon [39, 40]. The deduction consisted essentially
of two main steps: (i) determination of the opti-
mization problem that minimizes the upper bound
of the mean-square estimation error, being valid for
all admissible models and (ii) convert the previous
problem to a convex LMI semi-de�nite program-
ming, so that it can easily be solved with aid of
available computational tools.
Integrating the described design procedure with ac-

tuator fault model was a challenging task mainly
due to the inclusion of the o�set type of faults,
which can not be modelled by a simple modi�cation
of the system matrices. A solution to this problem
was found by accounting the o�set parameter fault
as a white signal perturbation, obtaining a virtual
augmented plant as depicted in Fig. 5.

Plant

Low-Pass

Filter

O�set White

Signalw(k) v(k)

u z

Augmented Plant

Figure 5: Augmented plant block diagram de�ning
the o�set as white perturbation.

6.2. Novel MMAE Bank Design
This section is focused on the MMAE �lters' bank

design with the inclusion of the H2 �lter. However,
before proceeding we would like to provide some
remarks concerning the PPE formulation when in-
cluding an H2 �lter in the MMAE bank. Some dis-
cussion may arise in how Si(k+1), which relates to
the recursive law (9), for the conditional posterior
probability evaluation. Note that having a certain
model κi matching the real plant loses signi�cance
for theH2 �lter when optimized for a certain region.
Still, it was discussed earlier that for any admissible
model the optimal state estimation for each always
yields the Kalman �lter and associated steady-state
residual covariance, given by S̃ ≡ CΣ̃CT +R, which
is constant over the whole uncertainty domain. As
a consequence, that value should also be applied
for any H2 �lter in bank independently of the op-
timization range. The supporting rationale for this
choice is that the recursive function implemented
in the PPE shall have a common optimal estima-
tion reference for all �lters in the bank, so that a
fair comparison between residuals is attained. Fur-
thermore, since the innovation ν has no meaning in
the H2 description developed, we suggest the use of
the residual r(k) = z(k) − Cx̂(k|k) for any Kalman
�lter present in the bank and r(k) = z(k) − Cx̂(k)

for the H2 �lter. Based on the developed results in
Section 5.1, similarly it can be shown that with the
use of r(k) the PPE recursive law becomes

Pi(k+1) =

(
βi(k+1)e−

1
2ωi(k+1)∑N

j=1 βj(k+1)e−
1
2ωj(k+1)Pj(k)

)
· Pi(k)

(11)
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with βi(k+1) ≡ 1

(2π)
m
2

√
det S̃i

and ωi(k+1) ≡ ri(k+1)
T S̃i
−1

ri(k+1)

Rule (11) allow us to design our bank freely,
which may only include Kalman �lters, H2 �lters
or a combination of both. Following the same rea-
soning, the BPM may also be rede�ned by

βij = ln(det S̃i) + Tr
(
S̃−1i Γ̃ij

)
(12)

with Γ̃ij ≡ E
{
r(k)r(k)T

}
as k →∞

In order to achieve a �nal bank design, let us �rst
assess the RMS of the estimation error performance
of the 50% IMAEP design and compare it to the
proposed H2 �lter as seen in Fig. 7. By analyzing
the referred graph an observation of paramount im-
portance must be emphasized, which is that a en-
hanced worst-case performance is achieved with a
single H2 �lter when compared to the 9 KFs coun-
terpart. Still, we highlight that this result is at-
tained at the cost of lower performance in the KFs
tuning points and their neighbourhoods. As we are
dealing with faults, assumed not to be likely to oc-
cur in regular system operation, it becomes relevant
to have an optimal state estimation performance at
the nominal condition. Therefore, in this thesis,
it is suggested the application of a combined �lter
structure for the MMAE bank with a Kalman �lter
tuned for the nominal parameters and an H2 �lter
optimized in the range λ ∈ [0.1, 1], as illustrated in
Fig. 6.

Plant

KF

H2

Posterior
Probability
Evaluator

x̂1(k|k)

r1(k|k)

x̂2(k|k)

r2(k|k)

u z

x̂(k|k)

P (k)

S̃

H2 MMAE

Figure 6: Novel MMAE block diagram.

6.3. Experiments on Simulation Environment
The same goals de�ned in Section 5.4, were set-

tled here for the evaluation of the novel MMAE
bank performance. From the obtained result, the
most prominent conclusions were: (i) The novel
MMAE bank, built upon the application of a nomi-
nal Kalman �lter in combination with aH2 �lter op-
timized in the e�ectiveness parameter uncertainty
domain, showed an equivalent performance in terms
of model identi�cation considering the EIP regions
obtained; (ii) The simulation results showed that

Figure 7: Performance comparison between H2 Fil-
ter and MMAE 50% IMAEP-based design.

the same level of worst-case state estimation perfor-
mance is achievable with just two �lters comparing
to the 9 required in Section 5.4.

7. Conclusions
This thesis comprehended the study of multiple-

model estimation methods applied to fault detec-
tion and isolation of linear dynamical systems. The
paramount importance of safety and reliability of
controlled systems, namely critical systems, and the
accumulated experience at the Institute for System
and Robotics (ISR) by other researchers on this
methodology motivated this thesis and speci�c ap-
proach. By developing a MMAE architecture, the
goal was set to identify the working regime of the
plant leading to the detection of faults and identi�-
cation of the operating region, which is determined
by where the fault parameters lie in a known uncer-
tainty domain. By developing the research based on
MMAE an inherent focus of study was the accom-
plishment of a high performance state estimation,
despite the uncertainty regime that stemmed from
the faults occurrence.
The problem at hand was divided in two stages.

Initially, a classic MMAE methodology based on
Kalman �lters was developed using a performance-
based design for the bank. This permitted an intu-
itive determination of the �lters' tuning point and,
thus, the size of the bank. Considering the devel-
oped general actuator fault model, the design pro-
cess was held in a bi-dimensional uncertainty do-
main, which accounted for an e�ectiveness and o�-
set fault parameters. The computational simula-
tions performed revealed that the developed system
could e�ectively track the change of the working
regime by convergence to a di�erent �lter, depend-
ing on the localization of the fault. However, if
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the fault was located in the nominal EIP region,
a probability transition was no longer observed, as
expected.

The performance-based design of the prequel
strategy required the use of 9 KFs just for the mon-
itoring of a single actuator, becoming computation-
ally complex for real applications. This fact mo-
tivated the second addressed technique, which in-
cluded a novel MMAE bank design in a combina-
tion of Kalman and robust H2 �lters. At this point
the goal was set to the reduction of �lters in the
bank, while preserving the state estimation perfor-
mance previously attained. The study of the latter
�lters was challenging due to the interest in coping
with a state estimation optimization in a polyhedral
bounded domain and, simultaneously, account for
the bias on the dynamics resultant from the o�set
fault parameter. With an equivalent performance,
the outcome of this research was a bank size reduc-
tion to just 2 �lters including a nominal Kalman �l-
ter and a robust H2 �lter, optimized over the whole
uncertainty domain de�ned by the faults' model.

Due to the high oscillatory behaviour of the con-
ditional probability signals in both approaches, an
independent �ltering stage was also developed. The
rationale behind the algorithm created was to at-
tribute cumulative scores to the models depending
on their probability at every instant. This way, the
probability 1 was directly given to the �rst ranked
�lter. The result was a well-de�ned identi�cation
of the models with smoother probability sequences,
turning the FDI scheme specially suitable for recon-
�guration methods alike MMAC.

To conclude, it should be highlighted that de-
spite the e�ective convergence to distinct models
in both approaches developed, the multiple-model
strategies alone may fall behind in what could be
expected from a FDI scheme in terms of detection
performance. Namely when the faults are located
inside the nominal EIP region. A key for this draw-
back could be to add several �lters in the neigh-
bourhoods of the nominal model, but that would
result in a very large bank that possibly could not
meet the intended estimation performance criterion.
Still, the attained results in terms of techniques for
multiple-mode banks performance-based design can
not be disregarded. Particularly, the state estima-
tion performance with the proposed MMAE bank
design, based on H2 �lters, is indicative of the po-
tentialities of this method to any application involv-
ing plant uncertainty constraints.

8. Future Work

After the last six months of research which re-
sulted in this thesis, several topics in the scope of
the study undertaken were left for future develop-
ments. Some of those are now highlighted.

Fault parameters identi�cation: In the pre-
vious section, the drawbacks on fault detection per-
formance from the MMAE system were empha-
sized. However, the possibility of guaranteeing a
high level of estimation performance under a signif-
icant plant uncertainty, and at a minimized compu-
tational cost, motivates the search for a fault pa-
rameter identi�cation scheme that could work in
parallel or integrated in the developed MMAE ar-
chitecture. This could be the key for an optimal
strategy combining both detection and state esti-
mation. In fact, preliminary studies on this topic
were performed during the thesis but with low the-
oretical support. Therefore, it is now addressed for
future development.

Real scenario experiments: After having
completed a rather consolidated veri�cation of the
methods developed in a simulated environment, the
natural step afterwards would be to execute trials
on a real scenario. That would allow the validation
of the method and strengthen the potentialities of
the strategies designed.

Extension to sensor and component faults
The thesis was focused on actuator fault detection
and isolation. Nevertheless, the architectures de-
signed are widely general and, thus, can easily be
extended to other types of faults, namely sensor
and component faults. Note that one of the most
claimed advantages of the MMAE is the ease of in-
clusion and modelling of both additive and multi-
plicative faults.

H∞ and H2/H∞ synthesis: With the research
undertaken it was proven that other types of �l-
ters, besides the classical ones, may be integrated
in a MMAE scheme. Promising results are found
in reviewed literature comprising the application of
H∞ estimators or in a combined synthesis H2/H∞.
Therefore, it would be deeply interesting to assess
the applicability of these �lters under the scope of
robust fault diagnosis.
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