
Integration of RC Vehicles in a Robotic Arena

Nuno G. P. Martins
nuno.martins@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2016

Abstract

This work is integrated in a group effort to produce an architecture capable of being used by students, for
a practical implementation of attitude and position control models, whether it be for a single or a multiple
agent environment. Integrated solutions that allow for the use of commercially available Radio Control
(RC) vehicles under a new concept of Robotic Arena, in GPS denied environments, were developed.
This architecture was designed with focus on replicability, versatility and reliability while aiming for a
low-cost solution. Two different approaches were taken, one based in an Arduino, and another based in
Raspberry Pi. These different approaches were developed to accomplish the same purposes, but with the
potential to provide alternative capabilities. Once the pre-requirements of the system were established,
additional hardware was integrated so as to respond to the needs and develop individual solutions. Some
of the capabilities that must be ensured are: the communication with the vehicle, the interaction with
the vehicle’s actuators and recalling information about the vehicle’s attitude using suitable sensors. In
the end, all these individual components were integrated in a command system, creating two different
approaches to handle with the vehicle and include them in the global system. A Simulink model capable
of integrating the control blocks, to be produced by the students, was created to allow for interaction with
the vehicle and its systems. This work results in two fully usable independent architectures, ready to be
replicated and used by students in practical Control Classes.
Keywords: Integrated Architecture, Robotic Arena, GPS-denied Environments, Remote Communication,
RC Vehicles.

1. Introduction

Nowadays with the scientific progress in the most
different fields like control, artificial intelligence and
robotics, the importance of multi-agent environments
becomes a reality that’s increasingly compelling.
These environments have proved to be very versa-
tile. Applications are varied with cooperation be-
tween agents being used to perform tasks that can-
not be performed by a single agent or to speed up
execution time and improve performance. Indepen-
dently of the agent’s goal, an important part of its
organization within a populated environment is the
self-awareness of their location and the awareness of
the other agents’ locations. To accomplish this in
GPS denied environments, a variety of sophisticated
systems are available on the market but require sig-
nificant investments. These solutions are generally
associated to the use of Robotic Arenas and advanced
optical motion capture systems, which are already in
use in state-of-art robotics research centres. An al-
ternative approach to produce a new generation of
Robotic Arenas is required, to extend the utility not
only to the researchers, but to the students as well.

2. Overall Vision

The purpose of this work is to develop an architec-
ture that allows for the integration of commercially
available RF vehicles in a Robotic Arena. The over-
all concept of this architecture is based on the idea
of using a computer running a Simulink environment
to remotely control and command one, or multiple
ground vehicles. This computer must receive as in-
put the position of the vehicle provided by a local-
ization system (the proprietary localization system
ADIS is in development to be used for this purpose).
The computer must be able to wirelessly transmit
the actuation commands to the vehicle’s actuators
and receive the information provided by the set of
suitable sensors to be installed on-board the vehicle.
This concept asks for the installation of some kind of
hardware in the vehicle, in order to promote the inter-
action with the vehicle’s actuators, to handle with the
on-board installed sensors and to perform the com-
munications itself. The developed architecture will
be referred to as Command System.

Besides all the features already mentioned, the
Command System was designed based on some more
pre-requirements:

1



Actuators

Position

Information

User

Interface

Sensors

Hardware

Figure 1: Overall Concept of the developed Architecture.

1. The vehicles must be integrated in the archi-
tecture without having their original structure
changed;

2. The architecture should be modular and easily
replicable;

3. The architecture should allow flexibility in a
number of vehicles to be commanded;

4. Working frequency above 30Hz. This corre-
sponds to the working frequency of ADIS. The
command system should not degrade the overall
system’s performance;

5. Keep costs reasonably low throughout the whole
platform.

3. The RC Model
The model chosen to integrate the architected system
was the LaTrax SST, built by Traxxas. It is a 1/18
scale model of a 4WD SST race truck [1]. The SST
has an electrical motor powered rechargeable battery.
The electrical motor integrates a brake system that is
a very useful feature. Capable of reaching a top speed
of 12 meters per second and to perform aggressive ac-
celerations, this car is a very good model to accom-
plish some of the more complex move sequence, like
drifts, spins and j-turns. The high-quality construc-
tion materials, and the robustness of the structure
makes this model very resistant to potential impacts
and crashes. The modularity of the LaTrax SST en-
sures the possibility of replacing any damaged part,
without a loss of the whole vehicle. Despite all these
features, the cost is very reasonable when compared
with similar models. For all of this, the LaTrax SST
is a great model to use in a laboratory and to perform
the required mission.

3.1. Vehicle Setup

To be possible to remotely control the car, it is neces-
sary to know how its actuators work. The first thing
that is important to understand is how the original
setup is conceived. For this, a list of the original vehi-
cle’s components is presented, and a schematic helps
to understand the vehicle’s setup (see figure 2).

List of components:

• Brushless throttle motor;

• Brushless motor’s Electronic Speed
Controller (ESC);

• Servo direction motor;

• 6 cell 2/3A NiMH battery;

• RF receiver.

Throttle
Brushless Motor

RF 
Receiver

 
NiMH 

Battery

6-cell 
2/3A

Servo 
Direction 
Motor

ESC

Figure 2: Original vehicle setup.

The connections with the RF receiver are ensured by
cables with three wires. These three wires have a
colour code that help to understand their function.

• The black wire is ground.

• The red wire is the voltage (ESC: 5V output;
Servo: 5V input).

• The white (dashed black in figure 2) wire is the
control signal.

Once the RF receiver’s outputs are directly connected
to the actuator’s white wires, if these output signals
are known, it is possible to emulate them to actuate
the motors.

3.2. Vehicle Actuation

According to the manufacturer, the control pin’s out-
put from RF receivers provide a Pulse-Width Modu-
lated (PWM) signal, which contains the information
transmitted from the transceiver by Radio Frequency.
Each channel outputs a PWM wave to actuate one
different motor. An oscilloscope allows the visual-
ization of the output signal of one of the receiver’s

2



Figure 3: Original PWM signal on the RF receiver’s output, no actuation required

Table 1: PWM signals’ parameters.

Minimum value Mean value Meanvalue

Actuation Required 100% reverse 0% 100%

High Pulse Width 93 µs 1487 µs 1979 µs

Duty Cycle 10% 15% 20%

Period 9840 µs

Frequency 101.6Hz

channels, when there is no actuation required on ra-
dio transceiver (figure 3).
The vertical dashed bars on figure 3 mark the lim-
its of a maximum and minimum High Pulse Width,
when 100% actuation is required and 100% reverse
actuation is required in these specific channels. Us-
ing the oscilloscope tools, it is possible to characterize
the output PWM wave. The PicoScope software al-
lows for the determination of important parameters
that help in this characterization. These parameters
were determined for each one of the three mentioned
states and registered in table 1.
After studying the output of the two receiver chan-
nels, it is clear that the PWM signal presents the
same behaviour in both. The actuation of the ve-
hicle can be done by generating two different PWM
signals, one for each actuator. Once the receiver’s
outputs are totally known, it is possible to emulate
them. To guarantee that no interference that causes
an undesired behaviour of the vehicle happens, this
emulation of signals must be ensured by a specific
hardware that produces hardware PWM signals.

3.3. Communication with the Vehicle

As an RC car, the LaTrax SST scale model is
equipped with a RF system that guarantees the com-
munication between the user and the vehicle. Despite
this being a very reliable technology, it is not usable
in this architecture, because their functionalities are
out of the scope of this work. Therefore, an alter-
native is needed to establish a new communication’s
system. Since the ADIS infrastructure is being de-
signed to use a Wi-Fi network to broadcast the infor-
mation about the vehicle position, it seems a logical
move to use and potentiate this available resource. To
perform vehicle control through a wireless communi-

cation, it should be guaranteed that the frequency of
communication is good enough. The communication
itself represents the bottleneck of the system’s work
frequency. Therefore, it is extremely important to
choose the proper protocol for the transport layer of
the IP network. It must be assured that the commu-
nication’s frequency is above the pre-required value
of 30Hz.
Since the communication speed is the most valued
feature, the implemented communication protocol
will be the User Datagram Protocol (UDP), instead
of the typically used Transmission Control Protocol
(TCP). TCP’s protocol reliability is higher due to its
ability to prevent the loss of transmission data and
ensuring the correct order of packet reception, but
it is also quite slower than the UDP protocol. How-
ever, it is important to understand that the speed
performance of UDP is achieved at the expense of
not having the same reliability as TCP.

3.4. Vehicle Instrumentation

An important part of the developed architecture is
the instrumentation of the vehicle. The ADIS system
will provide information about the spatial location
of the vehicles, but this information is not enough
to know about its spatial orientation. An Inertial
Measurement Unit (IMU) is the proper instrument to
collect information about the vehicle’s attitude. The
IMU used was the 10 degree of freedom (DOF) GY-
80 model, which integrates the set of sensors shown
in table 2. Note that an additional IMU DOF is
provided by the BMP080 sensor pressure not used in
this work.
The data of all these sensors can be combined to pro-
vide a more reliable information about the vehicle’s
attitude. The GY-80 supports Inter-integrated cir-

3



Table 2: GY-80 IMU’s sensors. LsB means Less Significant Bit.

Sensor Model DOF
Digital Output

Resolution
Physical Quantity Units Used Range Scale Factor

Accelerometer ADXL345 [2] 3 11 bits Specific Force g-force [g] ±4g 3.9 mg/Lsb
Gyroscope L3G4200D [3] 3 16 bits Angular Rate degree per second [dps] ±2000 dps 70 dps/Lsb

Magnetometer HMC5883L [4] 3 12 bits Earth’s Magnetic Field Gauss [G] ±1.3G 0.92 mG/Lsb

cuit (I2C), a multi-master serial bus, to configure all
the sensors and collect their raw data measurements.
To choose the appropriate range for each sensor, a
simple test was designed: a preliminary test must be
performed using the measurements ranges defined by
default. The car must be driven manually using a RF
controller, pushing the actuators to their limits, and
forcing the car to perform the most aggressive ma-
noeuvres. In this way, it is possible to guarantee that
the sensors will be submitted to the worst possible
scenario. The collected sensor data can be plotted
over time, to see if the sensors’ measurements satu-
rate and if so, the sensors ranges must be adjusted.
Then, the tests must be repeated, until a satisfac-
tory result is found. As result, it is possible to get
the ideal measurement range to use for each sensor.
These values are shown in table 2.

4. Architecture Development
To approach the problem of the development of an in-
tegrated architecture that accomplishes all the estab-
lished pre-requirements, appropriate hardware must
be used. The hardware’s features must include hard-
ware PWM generation and two different communi-
cation protocols: UDP to communicate with a re-
mote PC and (I2C) to communicate with the IMU.
It was decided to produce two different implementa-
tions, based on two different approaches. Each one of
the approaches, based in different types of hardware,
was designed to accomplish the same objectives, but
both present different prospects of future develop-
ment. The differences between the two approaches
will be discussed in the upcoming sections.

4.1. Solution based on Arduino UNO

To generate the hardware PWM waves in Arduino,
one of the timers of the Arduino’s microcontroller
must be allocated to this functionality. For this, the
open source TimerOne library provides a collection
of routines that allow for a simple configuration of
Timer1, and offers a way to generate these kind of
signals. However, this library is not provided by the
Arduino IDE, it is available in [5] and must be man-
ually installed. This library is limited as it is only
capable of generating the desired signals in pins 9
and 10. Nevertheless, this is enough for the scope
of this work. The Arduino Uno board does not sup-
port Wi-Fi communication. As so, a Wi-Fi shield is
required. The shield used was the TinySine WIFI
shield [6]. This equipment provides a way to com-
municate to a local network by IP address, but the

communication between the shield and the Arduino
must be guaranteed through Software Serial commu-
nication. For this purpose, the Arduino IDE provides
the SoftwareSerial library. The maximum baud rate
supported by the library is 115200 bps, according to
the official documentation [7]. This shield must be
manually configured. As a result of this work, a user
manual that explains this has been written. The Ar-
duino IDE wire library allows for the access of all of
the IMU sensors. By writing in specific sensors’ regis-
ters, it is possible to choose the measurement ranges
and other configurations. By reading other registers,
it is possible to collect information about the sensors’
measurements. The value of each DOF, of each sensor
is outputted by two registers, one referent to the Less
Significant Bit and another to the Highest Significant
Bit. This last value must be 8 bits shifted left, and the
result must suffer a logical disjunction with the LsB
value. The resultant binary value must be converted
into an integer, and multiplied by a scale factor to
give a value with physical meaning. The solution is
integrated, and boxed in a 3D printed case, to confer
durability to the implementation, and presented to
the users as a single component that is easily plugged
into the vehicle. The final architecture provided from
this approach is represented in figure 4.

WiFi Bee

Arduino

GY-80
IMU

GY-80
IMU

System’s
Battery

5

1 2 3

4

6

7

Figure 4: Arduino Based Solution final setup

Figure 4 illustrates the following steps:

1. A computer, running a Simulink solution, must
be integrated in the same IP network as the Wi-
Fi shield.

4



2. The computer is able to send UDP command
to a target IP. The Dynamic Host Configuration
Protocol (DHCP) of the Wi-Fi shield must be
deactivated, and their IP must be set.

3. The UDP command message contains informa-
tion about the PWM actuation signals. This
message is received by the Wi-Fi Shield and
passed to the Arduino trough Software Serial
Communication.

4. In the Arduino loop, this message will be re-
ceived and if it is correct, the PWM commands’
information will be given as input to the actua-
tors, through the wire connections.

5. After the actuation, the Arduino sends I2C com-
mands to each IMU sensor asking for measure-
ments, and listens to the sensors’ measurements
from the I2C port.

6. The sensors’ data is converted into a decimal
base, and rearranged as a string. This string
is passed to the Wi-Fi shield using the Software-
Serial port.

7. The shield sends the sensors’ raw measurements
to a target IP. The target of this information
must correctly be defined by the user in the
shield’s configuration.

8. The sequence of actions will be repeated in the
loop as the vehicle is shut down.

4.2. Solution based on Raspberry Pi

The Raspberry Pi is a small sized computer and, as
such, it runs a full-blown operational system. There-
fore, as opposed to what happens in the Arduino, it is
possible to choose what programming language to use
to implement the individual solutions. For the pur-
poses of this work, the Python language was used,
due to its extensive libraries and tool boxes. The
pigpio library provides a way to generate hardware
PWM waves. This is an open source library writ-
ten in C that relies on a Python module that allows
for the control of the General Purpose Input Out-
puts (GPIO) pins of the Raspberry. This resource
and its respective documentation are available in [8].
The Raspberry Pi3 hardware already has Wi-Fi tech-
nology incorporated, so no supplementary hardware
pieces are needed to implement UDP communication.
To be able to implement this protocol, the socket li-
brary must be used. This is a regular Python library,
installed by default. To send and receive messages,
two different sockets must be created, and the re-
ception socket must be attached to the Raspberry
Pi’s IP and the local receiving port. To deal with
the GY-80 IMU implementation, there is an open
source library available [9]. This library can retrieve
the IMU’s measurements, convert them into physical
units and process them to get additional information.
For this work’s purposes, some modifications to the

original library are needed. As there is a need to
keep the system universal to potentiate the most di-
versified uses, it was defined that the output of the
instrumentation subsystem must be the sensors’ raw
data. It will allow the user to process data in the most
convenient way to attend to their own purposes. As
in the Arduino solution, the solution is integrated,
and boxed in a 3D printed case, to confer durabil-
ity to the implementation, and is presented to users
as a single component that is easily plugged into the
vehicle. The final architecture obtained through this
approach is represented in figure 5.

GY-80
IMU

GY-80
IMIMIM

System’s
Battery

5

1

2

3

4

66

Ras
pb

er
ry

 P
i

66 Pi

Figure 5: Raspberry Pi Based Solution final setup

Figure 5 illustrates the following steps:

1. A computer running a Simulink solution must be
connected to the same IP network as the Rasp-
berry Pi.

2. The computer is able to send UDP command to
a target IP. The user must guarantee that the
Raspberry Pi’s IP is defined to be static.

3. The UDP command message contains informa-
tion about the PWM actuation signals. The
messages are received in the input socket, from
where they must be read. These command val-
ues must be scaled after being received.

4. The Raspberry Pi actuates each one of the com-
mands just by redefining the duty cycle for each
one of the pigpio classes.

5. An I2C interface is used to communicate with
each one of the IMU’s sensors and collect their
measurements. This functionality is imple-
mented by the IMU setup library.

6. The sensors’ data is converted into a decimal
base, and rearranged as a string. This string
is written in the output socket, to be communi-
cated to a target IP.

5



4.3. Simulink and User Interaction

The requirements of the system predict the use of a
Simulink environment to provide to the user a possi-
bility to interact with the system. As so, a Simulink
model was designed, to facilitate the system’s usabil-
ity. The Simulink implementation will be divided in
3 main blocks: The user interface, the setup block
and the communications block 6. The user interface
allows for an easy use of the whole system. It out-
puts the commands in a +/-1 range, where 0 in no
actuation required, 1 is maximum actuation required
and -1 is full reverse actuation required. This inter-
action can be done just by inputting the values with
a keyboard, by using a joystick or by using an in-
teractive dash board panel. It is in this block that
the users can integrate their own controller block, as
long as they always respect the output scale. The
setup block is the one responsible for converting the
-1 to 1 range from the user’s interface to a range ca-
pable of being communicated to the communication
block. The setup block also provides a graphical way
for the user to choose the desired solution (Arduino
or Raspberry), and how to interact with the system
(giving all the available options in the user interface).
Based on the user’s choices, the setup block decides
what scale change to apply to the user interface’s out-
put, and defines the correct IP target, transmitting
it to the communication block. As for the communi-
cation, the UDP send block is provided by Simulink
and is available within the DSP system toolbox. This
block is easy to configure and use. The UDP block is
only capable of sending unsigned 8 bit integers. This
represents a limitation in the commands allowed for
communication, and requires a scale change process
in the setup block. Figure 6 illustrates this process.

User Interface

Setup Block UDP Block

Remote IP

Remote Port

Controller
Block

ADIS System
Position

IMU Raw Data

Figure 6: Insertion of the Controller in the Loop, using the
Simulink environment.

5. Results of the Implementation

5.1. Results of the individual solutions

To validate the quality of the hardware PWM sig-
nal generated in each solution, an oscilloscope was

used to visualize and determine the parameters of
the output signals. The procedure is the same as
in section 3.2. The results can be seen in table 3.
The first consideration about the results is that in
both solutions the original wave presents a slightly
different behaviour. Both implementations were de-
signed to produce a 10000 µs period wave. The re-
sults are very similar to the intended ones, and in
the both cases the adopted solution provides a fully
usable method to actuate the motors.
To validate the UDP communication systems, a sim-
ilar test was performed for both solutions. This test
consists in communicating a sizeable message, always
in the same format, but numbered by order of com-
munication, from the integrated solution to a remote
PC. In the PC, the messages were received during a
certain period and saved in MATLAB. Once the test
was finished, the messages received were processed
to determine the communication frequency and the
percentage of lost messages. The results are summa-
rized in table 4. In the raspberry Pi test, a delay
was inserted on the script to limit the maximum al-
lowed frequency to 50 Hz. This decision was taken
because, without this imposed limitation, the high
communication frequency increases the percentage of
lost messages. In the tests that were performed with
this limitation fixed at 100Hz, the percentage of lost
messages is close to 5%. The Arduino maximum al-
lowed frequency occurs for the 115220 bps baud rate
of the Soft Serial communication (results in table 4).
As such, the 50Hz limit value was chosen to get simi-
lar results in both solutions and to allow for the com-
parison of both architectures. Analysing the results
in the table 4 it is possible to see that the worst-
case scenario occurs when the Raspberry Pi reaches
a percentage of lost messages above 2.5%. However,
this is within the requirements which means that this
system is operational to be used.
To validate the IMU measurements, two different
tests were performed with the IMU on-board the ve-
hicle. In test 1, the car was at rest during 60 sec-
onds. In test 2, the car was commanded to perform
circular movements, always in the same direction, at
a constant speed and with a constant radius, over
20 seconds. During this time, the system was used
to collect data from the IMU and send it to the re-
mote PC, where the data was processed and plotted
over time. In test 1, it is expected that the action
of gravity on the car can be easily identified in the
accelerometer’s measurements. Since the vehicle was
stopped, gravity is the only force that affects the sen-
sors and must be sensed in the z-axis, with a value
close to 1g. See figure 7. The expected values for the
gyroscope must be near 0 dps in all three axes as the
vehicle as no angular rate (see figure 8). Finally, the
magnetometer’s readings must be constant in time,
since the relative position of the car to Earth’s mag-
netic field does not change (figure 9).

6



Table 3: Results of hardware PWM waves generation

Original PWM Arduino PWM Raspberry Pi PWM
Frequency 101.6 Hz 99.96 Hz 101 Hz
Cycle Time 9846 µs 10000 µs 9900 µs
Duty Cycle 15.21% 15.16% 15.76%
High Pulse Width 1505 µs 1526 µs 1563 µs

Table 4: UDP communication results

Raspberry Pi Arduino (115200 Baud rate)

Frequency Percentage Lost Messages Frequency Percentage Lost Messages

10 seconds 48.8 Hz 1.02% 52.9 Hz 0.38 %
1 minute 48.9 Hz 0.99% 52.8 Hz 0.5 %
5 minute 48.7 Hz 1.49% 52.5 Hz 0.65 %

10 minute 48.2 Hz 2.61% 52.5 Hz 0.94 %

0 10 20 30 40 50 60
Data sampling time [seconds]

-1.5

-1

-0.5

0

0.5

Sp
ec

if
ic

 F
or

ce
 [

g]

XX axis YY axis ZZ axis

Figure 7: Test 1: Accelerometer

0 10 20 30 40 50 60
data sampling time [seconds]

-20

-10

0

10

20

An
gu
la
r 
Ra
te
 [
dp
s]

XX axis YY axis ZZ axis

Figure 8: Test 1: Gyroscope

0 10 20 30 40 50 60
data sampling time [seconds]

-0.5

0

0.5

Ma
gn
et
ic
 F
lu
x 
De
ns
it
y[
G]

XX axis YY axis ZZ axis

Figure 9: Test 1: Magnetometer

The results of test 2 are displayed in figure 10 and 11,
for the gyroscope and magnetometer, respectively.
In the magnetometer’s readings, the x and y mea-
surements present a sinusoidal behaviour. Because
the vehicle performs circular moves, the sensor’s po-

0 2 4 6 8 10 12 14 16 18
data sampling time [seconds]

-100

0

100

200

An
gu

la
r 

Ra
te

 [
dp

s]

XX axis YY axis ZZ axis

Figure 10: Test 2: Gyroscope

0 2 4 6 8 10 12 14 16 18
data sampling time [seconds]

-0.5

0

0.5

Ma
gn

et
ic

 F
lu

x 
De

ns
it

y[
G]

XX axis YY axis ZZ axis

Figure 11: Test 2: Magnetometer

sition relatively to the Earth’s magnetic field is peri-
odically repeated and, as such, the measured values
will be periodically repeated too (one period corre-
sponds to one complete lap).
As for the gyroscope, because the vehicle has always
the same orientation in the z plane (assuming no
ground inclination), it is expected that z measure-
ments should be constant. This is verified as the
measurements in the z-axis vary a lot less than the
other axes’ measurements. The gyroscope’s measure-
ments also allow for the identification of the circular
movement, but there is no way to guarantee with a
complete degree of confidence that the IMU is per-
fectly horizontal when placed in the vehicle. As the
vehicle performed circular movements on a constant
z plane (the ground), it is expected that the angular

7



Table 5: Comparison of the work frequencies of both solutions.

Arduino
Operation’s Frequency

Raspberry Pi
Operation’s Frequency

10 seconds 32.20 Hz 33.40 Hz
30 seconds 32.56 Hz 33.70 Hz
1 minute 32.95 Hz 33.18 Hz

10 minutes 32.33 Hz 33.38 Hz

rate measured in the z-axis would be larger than that
of the remaining axes, and it is. The mean value of
the z-axis angular rate was determined as 129.4510
dps, from the data presented in figure 10. Another
method to perform a rough calculation of the mean
angular rate about the z axis is to determine the
number of completed laps by observation of figure 11.
Each lap is equal to modifying the angular position by
360 degrees, and it is possible to see that the angular
position varied a total 7 × 360 degrees in 20 seconds
(the vehicle performed 7 laps). So, a good estimate

for the angular rate is (7×360)
20 = 126 dps, which is

very close to the mean value of the gyroscope mea-
surements. In this way it is possible to validate the
use of all the three sensors in the system. However, it
is possible to identify some noise mainly in the graph-
ics related to the test 2, where the motor is working.
Despite this, the data from these sensors are perfectly
usable, but requires filtering. The system’s users will
need to deal with that, according to their intentions.

5.2. Results of the Overall Architecture

With both architectures fully developed, it is impor-
tant to compare them and analyse their performance.
Several tests allow for the determination of the sys-
tem’s work frequency. This is presented in tabl 5.
The frequency values in table 5 already include the
IMU raw data processing in the remote PC.
The first comment is about the work frequency. It
is possible to see that the requirements are accom-
plished as the work frequency is always above the 32
Hz in all the performed tests (30 Hz was the pre-
required value). The results from the Raspberry Pi
based solution are marginally better than the Ar-
duino Based solution. Detailed tests reveal that
the processes that receive the UDP commands are
the most delayed processes in the Arduino architec-
ture (limited by the Software Serial communication),
while in the Raspberry architecture, the most delayed
process is the access to the IMU sensors. These pro-
cesses have margin for improvements, although there
is no benefit in improving the work frequency, be-
cause at high frequencies the UDP communication
losses increase considerably.
With respect to hardware capabilities, some consid-
erations must be performed. Due to the fact that
the Raspberry Pi already supports WiFi features,
no additional modules are required like in the Ar-

duino approach. It makes the setup of the Raspberry
approach easier, and the solution itself lighter and
smaller.
The processing capabilities of the Raspberry Pi are
better, however, to accomplish the purpose of this
work, the Arduino microcontroller performance is
considered to be enough. This specific difference be-
tween the two approaches is directly related to the
option of developing the two alternative solutions.
A bigger processing capability allows for a different
implementation possibility. By integrating the con-
troller in the Raspberry Pi’s internal script, instead
of a Simulink running on a remote PC, it is possible
make the vehicle independent of the remote PC. It
represents an increase of the system’s autonomy.
The number of channels where hardware PWM can
be generated is significant larger in Raspberry Pi,
where all the 13 GPIO pins provide this feature,
against the 2 digital pins (9 and 10) on the Arduino
solution. With 2 different waves it is possible actu-
ate 2 different motors, and it is enough for the vehi-
cle used, but can represent a limitation, if there are
prospects to use the system to integrate more com-
plex vehicles.
The Raspberry Pi, being a computer, requires the use
of computer peripherals, specifically a screen must
be used for initial configuration and OS installation.
It is possible to use a remote desktop software to
remotely get access to the Raspberry’s OS, through
another computer or a smartphone. The Raspberry
also requires more input current, which means less
autonomy if equal batteries are used in the two solu-
tions.
The costs of developing each solution are very close
and can not be considered to be a tiebreaking factor.

6. Conclusions
As a result of this work, there are two independent
architectures that allow for an integration of com-
mercially available RF vehicles in a new concept of
Robotic Arena. Despite the fact that each archi-
tecture was aimed at the same purposes and was
developed to accomplish the same pre-requirements,
both present different growth prospects. An Arduino
based approach aims for a more user friendly solu-
tion but a Raspberry Pi based approach allows the
user to remove the remote PC from the equation and
provides the vehicle with greater autonomy.
During the development stages of this work, a pre-

8



liminary version of the architecture developed was
used by a pair of students during practical Optimal
Control classes, to design a position controller that
commands the vehicle to perform a pre-established
route. It was an integral part of their final assess-
ment and was the ultimate proof of concept and a
validation of the systems’ utility.

References
[1] Traxxas Way. LaTrax SST Owner’s Manual, MODEL

76044-1. Traxxas Way, McKinney, Texas 75070, 2015.

[2] Analog Devices. Digital accelerometer adxl345, 2015. orig-
inal document from Analog Devices.

[3] STMicroelectronics. L3g4200d mems motion sensor: ultra-
stable three-axis digital output gyroscope, 2010. original
Preliminary document from STMicroelectronics.

[4] Honeywell. 3-axis digital compass ic hmc5883l, 2013. orig-
inal document from Honeywell.

[5] Arduino official website. https://www.arduino.cc/. Re-
trieved on February 2016.

[6] Tinysine Electronics. TinySine WIFI Shield User Manual,
version 1.0. Tinysine Electronics, 2013.

[7] SoftwareSerial library’s official documentation. https:

//www.arduino.cc/en/Reference/SoftwareSerial. Re-
trieved on March 2016.

[8] pigpio library. http://abyz.co.uk/rpi/pigpi. Retrieved
on june 2016.

[9] Open source python library to IMU-GY80. https://

github.com/peterjc/longsight/blob/master/gy80.pyo.
Retrieved on june 2016.

9


