
Mobile Manipulator Control

António Nunes Henriques
antoniohenriques0000@gmail.com

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

June 2017

Abstract

The present thesis describes the progresses towards the development of a mobile 3D printer’s
prototype, whose goal is to be able to print with unlimited area. The printer is composed of a robotic
arm, mounted on top of the platform of a differential drive robot. Posteriorly, the head of the 3D
printer will be installed on the tip of the arm. As in any other 3D printing, after the creation of
a virtual model of the desired part in CAD software a unique trajectory will be generated for that
specific object, taking the printer’s specifications into consideration. If followed with enough accuracy
and precision by the system’s end-effector, it will allow the head of the printer to deposit the numerous
layers of material as pretended, leading to the creation of the desired item. The main focus of this
dissertation is the tracking of this trajectory. It is intended that this process develops with extreme
precision, so as to ensure the created objects are as close to their virtual models as possible. Several
studies conducted in diverse areas such as Robotics, Control and Computer Vision will be presented,
and whose goal when put together is to make the robot move in the desired way. In the end, the results
of the developed algorithm’s implementation will be presented.
Keywords: 3D printing, Control, Mobile Manipulator, Computer Vision, Nonholonomic Systems

1. Introduction

Considered by many to be one of the backbones
of a 4th Industrial Revolution ([9], [12] to quote
a few), 3D printing is a rapidly growing technol-
ogy that is becoming more commonplace by the
day. Despite its recent emergence around the world,
there are still considerable limitations associated
with this technology. Arguably one of the most sig-
nificant ones is that the printing area of a regular
3D printer is somewhat limited, which restricts the
size of the components to be built. For the time
being, there are already solutions to deal with this
problem, but they mostly involve building massive
3D printers, capable of conceiving components of
substantial size. Obviously this is an expensive so-
lution and one with completely prohibitive prices
to the majority of people. When it comes to hav-
ing an affordable and accessible way to build a 3D
printer with unlimited printing area, there are still
no feasible solutions available.

1.1. State of the Art

In the beginning of this section, the results of an
extensive research aiming to find existing solutions
to the small-scale mobile 3D printer are presented.
In a later stage, a brief description of the structure
of the studied robot is presented.

As expected, it was challenging to find existing
work on this particular field of study. However,
a very similar robot to the studied one was de-
veloped by industrial engineers working at NEXT
(Núcleo de Experimentacão Tridimensional) and
LIFE (Laboratório de Interfaces F́ısicas Experi-
mentais), both academic laboratories belonging to
PUC-Rio (Pontif́ıcia Universidade Católica do Rio
de Janeiro). Although it was not possible to find
very specific details regarding their project, one
major difference stands out when comparing both
robots: theirs uses omni-directional wheels, while
the robot considered in this thesis is composed of a
robotic arm mounted on top of a differential-drive
platform. Information and videos regarding this
project can be found in [7] and [5].

The mobile manipulator can be divided into two
different parts: the mobile platform and the robotic
arm.

1.1.1. Mobile Manipulator

The platform (also know as Rasteirinho) is a
differential-drive robot. This means that it is com-
posed of two wheels, whose wheel axis is the same.
Due to the way that they are attached to the plat-
form, it is not possible for the wheels to turn. Con-
sequently, if both wheels have the same velocity in
the same direction a purely linear movement will

1

occur. In contrast, considering the case where both
wheels have the same velocity but in opposite di-
rections, a purely rotational movement will occur.
Naturally, if the wheels have different velocities a
combination of linear and rotational movements will
take place. Each of the wheels is connected to a
EMG30 motor and both the motors are controlled
by a MD-25 board.

1.1.2. Robotic Arm

The robotic arm is composed of a revolute joint,
followed by two prismatic ones. A system similar to
the worm and wheel was set up in the mobile plat-
form, but with a plastic gear and a threaded rod
with equivalent pitch instead of the custom made
metallic set. A EMG30 motor was again chosen to
be the actuator of this joint, and was attached to
the rod. This whole arrangement forms the revolute
joint of the system. Both of the ensuing prismatic
joints are assembled using the same system: a spin-
dle with one EMG30 motor at one end and a bear-
ing at the other. Similarly to the mobile platform,
all the motors actuating these joints are controlled
by MD-25 boards. In this case, one board controls
the revolute joint and the other controls the pris-
matic ones.

Figure 1: Robotic Arm

1.1.3. Experimental Setup

All the computational work necessary to ensure
that the end-effector follows the desired trajectory
(computation of the trajectory, control, among oth-
ers) will be executed in a computer. The computer
will communicate via USB with an Arduino board,
fixed to the platform of the Rasteirinho. The role of
this board is simply to make a connection between
all of the MD-25 boards attached to the motors
and the computer. The board receives the inputs
to provide to the motors and then reads the sensors’
values (encoders) that will be sent to the computer

to generate new inputs for the motors. In a later
stage of the project, the encoders corresponding to
the platform’s wheels will not be used. Two cam-
eras will be installed in the mobile platform, and
will communicate via USB directly with the com-
puter to provide the platform’s position feedback
signals. The whole system will be powered by a
transformer, that provides current directly to one
of the MD-25 boards. In turn, this board is con-
nected to a breadboard that will provide power to
all the other boards (including the Arduino).

Figure 2: Final Assembly

2. Background

2.1. Denavit-Hartenberg parameters

The first item to consider is the definition of the
robot’s operational (ζ) and generalized coordinates
(q):

xq
yq
θq
rotq
zq
rq

= q

x
y
z
e1
e2
e3

= ζ (1)

x, y and z characterize the end-effector’s position,
whereas xq and yq represent the position of the cen-
tral point of the wheel axis of the mobile platform
and zq represents the position of the robot’s vertical
joint. The last three parameters of the operational
coordinates are defined as a ZY X set of Euler an-
gles, θq is the angle made by the platform regarding
the initial reference frame and rotq and rq are the
coordinates associated with the robot’s revolute and
horizontal prismatic joints, respectively.

An initial fixed reference frame will be consid-
ered, with its Z axis pointing upwards. Its X axis
is perpendicular to the wheel axis, pointing in the
driving direction of the robot. The Y axis is parallel
to the ground plane, but parallel to the wheel axis
(perpendicular to the X axis). It is important to

2

note that these axis are fixed, even if the platform’s
position changes.
The parameters will be chosen so as to meet the
following requirement: The frame corresponding to
the beginning of the manipulator (located at its
base) will have its Y axis parallel to the axis that
passes through the wheel centres, parallel to the
axis of the horizontal prismatic joint in its initial
position (as represented in figure 3). This will allow
us to posteriorly define the parameters of the ma-
nipulator with greater ease. It is important to point
out that number of lines in the estimated Denavit-
Hartenberg parameters is superior to the number
of links. Had the conventional Denavit-Hartenberg
approach been taken, this would not happen. How-
ever, and taking into account the fact that we are
dealing with a mobile manipulator, the choice of in-
cluding the additional links was made so as to facil-
itate the definition of the platform’s final reference
frame.

dbase

1
2

Z8

Y
8

X
8

Z
0

X
0

Y
0

0

Figure 3: Base of the Manipulator Location

As mentioned, the manipulator consists of one
revolute joint and two prismatic ones. Adopting the
convention defined in [10], two cubes will be used
to represent the prismatic joints and a cylinder will
be used to represent the revolute one. A diagram
of the robotic arm is presented:

rotq

rq

zq

rotq

Figure 4: Diagram of the Robotic Arm

The obtained parameters are the following:

Table 1: Denavit-Hartenberg parameters - Mobile
Manipulator

Link di θi ai αi

1 0 0 0 −π2
2 yq −π2 0 −π2
3 xq −π2 0 −π2
4 0 −π2 0 0

5 hplat 0 0 0

6 0 θq − α 0 π
2

7 dbase 0 0 −π2
8 0 −π + α 0 0

9 0 rotq 0 0

10 zq 0 0 −π2
11 rq 0 0 −π2
12 ee 0 0 0

Where hplat is the height of the mobile platform
and α, dbase define the angle and distance between
the centre of the wheels’ axis and the base of the
manipulator, respectively.

2.2. Direct Kinematics

The Direct Kinematics process consists in the com-
putation of the robot’s end-effector operational co-
ordinates (ζ) from its matching generalized coordi-
nates (q). The direct kinematics of the robot can
be obtained through the multiplication of the sev-
eral transformation matrices corresponding to each
of the lines forming the Denavit-Hartenberg param-
eters table, as expressed by the following equation:

T 0
n(q) = A0

1(q1)A1
2(q2)...An−1n (qn) (2)

Each of this matrices (Ai−1i (qi)) can be defined as:
cos(θi) −sin(θi) ∗ cos(αi) sin(θi) ∗ sin(αi) ai ∗ cos(θi)
sin(θi) cos(θi) ∗ cos(αi) −cos(θi) ∗ sin(αi) ai ∗ sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

 (3)

Alternatively, the direct kinematic equations can
also be determined through an analysis of the
robot’s configuration. Using this method, the fol-
lowing equations are obtained:

ζ1 = xq + dbase ∗ cos(−α− π

2
+ θq) + rq ∗ cos(−

π

2
+ θq + rotq)

ζ2 = yq + dbase ∗ sin(−α− π

2
+ θq) + rq ∗ sin(−π

2
+ θq + rotq)

ζ3 = zq + hplat+ ee

ζ4 = −π + θq + rotq

ζ5 = 0

ζ6 = π

(4)

3

In order to validate the above shown equations, sev-
eral sets of operational coordinates were computed
using different sets of joint coordinates. As ex-
pected, the obtained results were exactly the same
despite the used method, thus confirming the valid-
ity of the model.

2.3. Non-holonomic constraint and Jacobian

Differentiating the equations obtained in 4, the Ja-
cobian of the system can be calculated:

Jij =
δfi
δqj

(5)

However, analysing the mobile platform’s config-
uration we can verify that there is a restriction that
keeps it from moving in the direction of the axis that
passes through both wheel centres (in the Y axis
direction). It is named the ”rolling without slip-
ping condition”. It is a non-holonomic constraint
and as such doesn’t imply loss of accessibility in the
Rasteirinho’s configuration space. This restriction
can be represented by the following equation:

ẋq ∗ sin(θq)− ẏq ∗ cos(θq) = 0 (6)

Having this limitation in mind, it becomes im-
portant to define the platform’s velocity in terms
of linear and angular velocity (η), instead of ẋq, ẏq
and θ̇q. Based on [1], the following relationship is
established:

q̇ = S(q) ∗ η (7)

It can also be expressed by:
ẋq
ẏq
θ̇q
˙rotq
żq
ṙq

 =

cos(θq) 0 0 0 0
sin(θq) 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ∗

v̇q
θ̇q
˙rotq
żq
ṙq

 (8)

From this point on, η velocities will be named quasi-
velocities of the system.

The newly defined S(q) matrix will establish a
functional relationship between the generalized co-
ordinates velocities and the quasi-velocities. As
such, it is also possible to define a Jacobian matrix
that relates the quasi-velocities with the operational
coordinates velocities:

Jqv(q) = J(q) ∗ S(q) (9)

Which allows us to obtain:

ζ̇ = Jqv(q) ∗ η (10)

2.4. Inverse Kinematics

In the first place, the inverse of the Jacobian Matrix
needs to be defined. Being a non square matrix, a
direct inversion is not possible. Alternatively, we
can define its Right Pseudoinverse. This solution
locally minimizes the norm of the joint velocities.
However, in the neighbourhood of singularities, the
solutions obtained by multiplying this matrix by
the operational velocities might not be viable (too
high). To work around this problem, we add an
additional term to the equation. By doing so, the
Damped Least Squares Inverse is defined [10]:

J−1 = JT (JJT + k2 ∗ I)−1 (11)

This method allows a smoother evolution of the
obtained velocities, especially in the neighbourhood
of singularities. However, it also increases the error
between the desired and the computed velocities.
It is therefore extremely important to have in mind
these issues when selecting the damping factor k
during testing, so we can achieve the correct bal-
ance between them. It is important to mention that
usually the gain k is not considered constant, but
rather a significantly small value that increases in
the neighbourhood of singularities. Naturally, had
this variable gain been considered the obtained tra-
jectory would be closer to the desired one. However,
and taking into account the already satisfactory re-
sults obtained with a constant gain, the variable
gain approach was not considered.

The chosen Inverse Kinematics method is pre-
sented in [10]. It can be defined by the following
equation:

q̇ = J−1(q)(ζ̇d +KP e) + (I − J−1J)q̇0 (12)

Which is the result of approaching the Inverse
Kinematics of the studied redundant robot as a Lin-
ear Programming problem, with the following ob-
jective function and restriction, respectively:

g′(q̇) =
1

2
∗ (q̇ − q̇0)T (q̇ − q̇0) (13)

q̇ = J−1(q)ζ̇r (14)

Due to ease of implementation, the second term of
equation 12 is dropped. Defining the velocity error
as:

ė = ζ̇d − J(q)q̇ (15)

It is possible to solve 15 and 12 after the second
term is dropped for q̇. Putting the resulting equa-
tions together, the following result is achieved:

ė+KP e = 0 (16)

Which means that the velocity error converges to
zero, proving that the above system is asymptoti-
cally stable.

4

2.5. Sensors
2.5.1. Encoders

Initially, all of the robot’s joints were controlled
by encoders. However, there is considerable lack
of precision inherent to the calculation of positions
and velocities through odometry. Several sources of
imprecisions may occur, such as:

• Error accumulation, especially noticeable in
big trajectories

• Wheel slipping is not taken into consideration

• Precision is highly dependant on human made
measurements, such as the mechanical gains
and the distance between both wheels

The use of encoders in the manipulator’s joints is
not as problematic as in the wheels, seeing that in
this case problems like wheel slipping or lack of ad-
hesion of the wheels to the floor due to unbalanced
weight of the robot do not occur. This precision
was corroborated by human made measures during
the simulations. Obviously, in latter stage of the
project this will be changed but for the time be-
ing, the use of encoders as a feedback sensor for the
joints is acceptable to validate the model.

2.5.2. Mobile Platform Positioning System

Two cameras and two targets are going to be used to
estimate the Rasteirinho’s position. Naturally, the
logical progression is to first transform the points
defined in Image Plane reference frame coordinates
to Camera frame reference coordinates, to posteri-
orly enable the transformation of these points into
world reference frame points. The scenario was ma-
nipulated in a way both camera centres and both
target centroids were placed in the same plane. In
other words, the camera centres and the targets’
centroids were placed at approximately the same
height. Consequently, only the cameras’ XZ plane
will be considered (the Y axis is pointing upwards).
The centre of camera one (the left one) is consid-
ered to be the origin of the camera frame. x1 is
the x coordinate in the image plane (in pixels) of
any point P and x2 is the x coordinate of the same
point in camera two.The goal is to find the X and
Z coordinates of both target centroids and the first
step is to determine Z , as defined in 5. The calcu-
lations to do so are based on the work presented in
[3]. Consider the following image: Where b is the
distance between the two cameras. To calculate the
Z coordinate of point P we considerer the equations
of both lines represented in Figure 5, as defined in
the pinhole model:

Z =
f

x1
∗X,

Z =
f

x2
∗X − f

x2
∗ b.

(17)

Figure 5: Point in Stereo Cameras [3]

The capital letters X and Z represent the coordi-
nates in the camera frame. Solving both these equa-
tions for X and putting them together we end up
with:

x1
f
∗ Z = (Z +

f ∗ b
x2

) ∗ x2
f
⇔,

⇔ Z =
f ∗ b
x1 − x2

.

(18)

Having the coordinates of the two target centroids
in both cameras, it is possible to calculate the Z
coordinate of the first target (Z1) and of the second
(Z2). Having both of these distances and 4 x (the
distance between the two targets), θq (the robot’s
angular position regarding the world coordinates
frame) can be calculated from the following equa-
tion:

θq = arcsin(
∆Z

4 x
). (19)

The distance of the centre of camera 1 to the first
target can also be calculated using the pinhole
model formula:

X =
x ∗ Z
f

. (20)

After this step, the transformation from Image
Plane reference frame coordinates to Camera refer-
ence frame coordinates is complete. Henceforth, the
computation of the world’s coordinates of the plat-
form is relatively straightforward. As previously de-
fined, X and Z are coordinates regarding the cam-
era reference frame (only absolute values are con-
sidered). Two auxiliary variables are calculated:

h =
√
X2 + Z2 (21)

γ = atan
X

Z
(22)

The final xq and yq values computation vary ac-
cording to the signals of θq and X. They can be
calculated the following way:

φ = θq ± γ (23)

5

xq = h ∗ cos(φ) (24)

yq = ±h ∗ sin(φ) (25)

φ is an auxiliary variable that represents the angle
between point P and the camera’s Z axis repre-
sented in 5. One more detail is worth mentioning:
the calculated position represents the world coor-
dinates of the left camera. An adjustment to con-
sider the central point between the two wheels can
be made through the following equation:

(xq, yq) = (xq, yq) + (
b

2
∗ cos(θ), b

2
∗ sin(θ)). (26)

2.6. Control Algorithms

Due to the nonholonomic nature of the robot, two
different control methods will be applied: one for
the mobile platform’s wheels and another one to
the remaining joints.

2.6.1. Non-linear Model Based Predictive Control
(Robot’s Joints Control)

The control method presented in this section was
developed by Adel Merabet and Jason Gu, and can
be consulted in [6]. In order to estimate the robot’s
dynamic model the Newton-Euler method was ap-
plied. This recursive algorithm was chosen due to
its computational efficiency. It is based on a bal-
ance of the actuating forces in each of the robot’s
links and it can be divided in two stages. The first
consists of a forward recursion from the first joint
to the end-effector, that calculates all the veloci-
ties and accelerations corresponding to each of the
joints. In a second phase, a backward recursion
takes place (from the end-effector to the first joint).
This recursion determines all the forces and torques
the joints are subjected to. Disregarding the effects
of the viscous friction, the Coulomb friction and the
forces and torques applied by the end-effector in the
surrounding environment, we can simplify the dy-
namic of the system:

B(q)q̈ + C(q, q̇)q̇ + g(q) = τ (27)

However, there are several sources of uncertainties
that can have an influence on the calculation of the
various parameters in this equation. Of these uncer-
tainties, the following stand out: modelling errors,
unknown forces applied to the robot, computation
errors or the disregard of several terms during the
application of the Newton-Euler method. Having
this limitation in mind, the objective is to define
a control law u(t) to be applied in real time. It is
a predictive control method, which means that the
control law u(t) designed to follow a reference tra-
jectory Yd is calculated based on the predicted out-
put of the system in the ensuing time step: Y (t+τ).
The term τ designates the sample time. This is
made through the minimization of a cost function,

based on the quadratic form of the predicted error
in t+ τ :

κ = 1
2

∫ τr
0

(Y (t+ τ)− Yd(t+ τ))T (Y (t+ τ)− Yd(t+ τ))dτ (28)

Where

eY (t+ τ) = Y (t+ τ)− Yd(t+ τ) = T (τ)(Y (t)− Yd(t)) (29)

and

T (τ) =
(
INj×Nj

τ ∗ INj×Nj

τ2

2 ∗ INj×Nj

)
(30)

After differentiated and matched to zero (along with
a few other changes), the final control law is ob-
tained:

u(t) = −B0(X1)
{
K1(Y − Yd) +K2(Ẏ − Ẏd)

−B−10 (C(X1, X2)X2 +G(X1))− Ÿd
}
− δest(t)

(31)

The uncertainties can be estimated by:

δest(t) = L

(
ėY (t)+K2eY (t)+K1

∫
eY (t)dt

)
(32)

2.6.2. Nonholonomic Mobile Platform Control

In this section, the control law [8] applied to the mo-
bile platform is presented, an alternative approach
to the method presented in [4]. It is important to
emphasize that this is the method chosen to con-
trol the platform only, and that the previously pre-
sented method (Non-linear Model Based Predictive
Control) is used to control the manipulator’s joints.

In order to define the tracking errors used to exe-
cute the control law, a new local coordinate system
is defined. The Z axis will remain the same, but two
new axis will be defined in the original XY plane:
The D axis, parallel to the driving direction and the
L axis, perpendicular to the driving direction. The
new coordinate system is illustrated in the following
image:

Figure 6: Driving Platform Coordinate System [8]

This transformation allows the definition of the
position errors as the following:

e =

 eD
eL
eθq

 =

 cos(θq) sin(θq) 0
−sin(θq) cos(θq) 0

0 0 1

 xqd − xq
yqd − yq
θqd − θq

 (33)

6

Where eD represents the error in the driving di-
rection and eL the error in the lateral direction. The
velocity errors can be defined as:

ė =

 ˙eD
ėL
˙eθq

 =

 θ̇q ∗ eL − v + vd ∗ cos(eθq)
−θ̇q ∗ eD + vd ∗ sin(eθq)

θ̇qd − θ̇q

 (34)

The proposed solution is a tracking controller,
represented by the following equations:

[
v

θ̇q

]
=

[
vd ∗ cos(eθq) + k1 ∗ eD + k4 ∗ sign(eD) ∗ e2L

θ̇qd + vd ∗ (k2 ∗ eL + k3 ∗ sin(eθq))

]
(35)

With k1, k2, k3 and k4 being positive constants
and

sign(eD) =

{
−1, eD < 0

1, eD ≥ 0
(36)

These velocity values can be converted into β
values to provide as input to the Rasteirinho as
detailed in [11].

3. Implementation

A few aspects are worth mentioning regarding the
implementation of the previously studied model in
the real robot.

3.1. Md-25 Boards and EMG30 Motors

As explained before, the five motors incorporated in
the robot are all driven by MD-25 boards. These
drivers already come with integrated speed control,
achieved through the encoders’ feedback of each mo-
tor. Consequently, when a certain set of velocities is
intended, instead of directly controlling the match-
ing voltages a 1 byte value that corresponds to the
desired velocity should be provided to the board
(out of 256 possible values). The selected manipula-
tor control law (used only to manipulate the robotic
arm) calculates the torques to apply to the various
joints in each time step. Therefore, it becomes nec-
essary to find the motor velocities that correspond
to each of those torques, so that later the corre-
sponding input byte can be computed. The calcu-
lation of this input to provide to the Md-25 board
is relatively straightforward in the mobile platform
case, because the control law already provides the
desired velocities, instead of torques.
Ignoring the influence of inductance in the motors’
dynamics in an initial stage, the functional relation-
ship between joint torques and the corresponding
motor voltages can be defined as :

v = Ra ∗K−1s ∗K−1r ∗ τ +Ks ∗Kr ∗ q̇ (37)

Where Ra is the matrix containing the resistances
of the motors. For ease of notation, Ks is the ma-
trix that represents both the torque and the voltage
constants, that are considered to be the same. Kr

is defined as the matrix that relates the angular
velocities of each motor with their respective joint
velocities:

Kri q̇i = ϑ̇mi
(38)

Assuming a steady state regime, the function de-
scribing the relation between the voltage of a motor
and its corresponding angular velocity is:

ϑ̇m =
Ks

K2
s +Ra ∗B

+
R ∗ Tc

K2
s +Ra ∗B

(39)

The parameters required for this equation are es-
timated in [2]. After obtaining the desired motor
angular velocity, its conversion to a β value to pro-
vide to the MD − 25 driver is necessary. Again,
these transformations are only required when the
robotic arm is considered, since the mobile platform
control already provides linear and angular velocity
inputs, that can be used directly to calculate the
desired β inputs. This above mentioned conversion
is described by the equation:

β =
ϑ̇

0, 02546479 ∗ 2 ∗ π
(40)

The obtained result is then rounded to the nearest
integer, because the value sent to the board should
be a whole number ranging from 0 to 255.

3.2. Trajectory

Considering that the sensoring system used for feed-
back is still being developed, it is easier to assess
its precision if each of the joints moves individually
(one at a time). For this reason, and just for the
time being, a trajectory computed through the de-
scribed Inverse Kinematics method was not used.
Instead, a trajectory in the generalized coordinates
space was created and applied directly to the robot:

• Holding still for 5s, followed by a linear move-
ment of the mobile platform (10cm in 10s)

• Rotation of the revolute joint (0.25rad in 10s),
followed by its return to the original angular
position in 10s

• Rotation of the mobile platform (0.0.1745rad
or 10 degrees in 10s)

• At the same time, both the horizontal and the
vertical prismatic joints advance 2cm in 10s

• Return of both prismatic joints to their original
positions.

• Hold the final position for 5 seconds, resulting
in a total trajectory time of 65 seconds.

7

All of the defined sub-trajectories (platform, revo-
lute and prismatic joints) have a cubic time evolu-
tion of their respective coordinates. A more de-
tailed explanation of the first presented point is
in order. As it will be posteriorly approached in
the Results section, the computation of the plat-
form’s θq angle is subjected to considerable fluctu-
ation, which can affect a more precise calculation
of both xq and yq. Therefore, a Kalman filter will
be applied to the calculation of this variable. The
considered filter computes the filtered values based
on the previously obtained unfiltered ones, and so
the during the first five seconds no movement is en-
forced on the platform so as to allow the value of
θq to stabilize. These filters are also applied to the
computation of xq and yq, naturally with different
covariances.

4. Results

The errors associated with the manipulator’s joints
are the following:

0 10 20 30 40 50 60 70

Real Time

-4

-3

-2

-1

0

1

2

3

4

5

6

E
rr

or
 in

 m

×10-4 Error associated with the Prismatic Joints

z
r

Figure 7: Manipulator’s Prismatic Joints Errors

0 10 20 30 40 50 60 70

Real Time

-6

-4

-2

0

2

4

6

8

10

E
rr

or
 in

 R
ad

ia
ns

×10-3 Error associated with the Revolute Joint

rot

Figure 8: Manipulator’s Revolute Joints Errors

The evolution of xq throughout time is presented,
as well as the corresponding error:

0 10 20 30 40 50 60 70

Real Time

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

m

X Coordinate Value - Camera

Filtered
Unfiltered

Figure 9: Evolution of xq with time

0 10 20 30 40 50 60 70

Real Time

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

E
rr

or
 in

 m

Error associated with the X Coordinate

X Error

Figure 10: Error associated with xq

The evolution of yq throughout time is presented,
as well as the corresponding error:

0 10 20 30 40 50 60 70

Real Time

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

m

Y Coordinate Value - Camera

Filtered
Unfiltered

Figure 11: Evolution of yq with time

8

0 10 20 30 40 50 60 70

Real Time

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
E

rr
or

 in
 m

Error associated with the Y Coordinate

Y Error

Figure 12: Error associated with yq

Finally, the evolution of θq throughout time is
presented, as well as the corresponding error:

0 10 20 30 40 50 60 70

Real Time

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ra
d

Teta Coordinate Value - Camera

Filtered
Unfiltered

Figure 13: Evolution of θq with time

0 10 20 30 40 50 60 70

Real Time

-0.04

-0.02

0

0.02

0.04

0.06

0.08

E
rr

or
 in

 r
ad

Error associated with the Teta Coordinate

Teta Error

Figure 14: Error associated with θq

4.1. Discussion

The errors associated with the three manipulator
joints were highly satisfactory. However, there a
few remarks that can be made regarding the plat-
form’s results. First of all, the fact that the pro-
vided cameras’ angle of view is fairly limited has to

be taken into consideration. Given that the goal is
to be able to print with an unlimited area and that
the camera has to always be able to detect both
targets, the following scenario adjustments had to
be imposed:

• An effort was made so that the targets would
remain as close as possible (60mm)

• The platform had to be as far as possible from
the targets in the initial time step

Although this adjustments allowed a significant
widening of the working area (again, the cameras
always have to see both targets), one problem arose.
During the computing of the centroids’ targets,
there are unavoidable fluctuations in the obtained
pixel. Even if these fluctuations are not that sig-
nificant (one or two pixels for example), allied with
the cameras’ lack of resolution they can cause the
obtained angle value to oscillate tremendously (see
the unfiltered results of the obtained angle in figure
13). It is important to emphasize that the fact that
these fluctuations occur despite the correct calcu-
lation of the angle, as the oscillations always take
place around their correct value (this was confirmed
by human-made measures). Consequently, this is-
sue can lead to oscillations in both the xq and yq
values, due to the coordinate transformation that
occurs when we pass from camera coordinates to
world coordinates. Naturally, it affects the yq coor-
dinate more noticeably, given the fact that the ini-
tial distance from the camera to the first target is
considerably bigger in the xq coordinate than in yq.
This comparison can be made through the analysis
of figures 9 and 11. It is evident that the fluctua-
tions in both xq and yq occur proportionally to the
fluctuations of θq. This theory is strongly corrobo-
rated by the fact that when the angle stabilizes at
its final position, xq stabilizes at 0.1m and yq be-
gins to stabilize at values close to 0. Despite this
issue, the obtained results were quite positive.

5. Conclusions

5.1. Achievements

In this dissertation, significant progresses regard-
ing the mobile 3D printer’s project were made. A
Direct kinematics model for the robot was devel-
oped, as well as an Inverse Kinematics one. A
dynamic model was proposed for both the motors
and the mobile manipulator. Different control laws
were studied and applied to the manipulator and
the platform, taking into consideration its nonholo-
nomic constraint. A positioning system using stereo
cameras was also developed, despite the previously
discussed limitation. The model resulting from
putting all of these points together lead to a satis-
factory tracking of a desired predefined trajectory,
presented in the previous section. All of this was

9

made taking into consideration the computational
efficiency of the algorithm.

5.2. Future Work

As discussed, this is an ongoing project with still a
considerable way to go before any actual 3D print-
ing becomes a reality. The following suggestions for
possible future work are made:

• Replacing the cameras with ones with a wider
angle of view and resolution. This would signif-
icantly soften the angle fluctuation discussed in
the Results section and would imply almost no
changes in the developed code.Other strategies
aiming to tackle this issue could also be rele-
vant.

• Changing the positioning of the cameras so
they could be used as feedback sensor for all
the joints, not just the platform. Naturally,
it would be important to deal with first point
before moving on to this one.

• Control implementation without the MD-25
boards, and the limitations that the use of
these boards implies.

• Development of trajectory planning software

• Installation of a printing head

Acknowledgements

In this section, I would like to acknowledge all
my lab mates, for all the support they have given
me throughout the writing of this dissertation. In
particular, I would like to thank my friends Fran-
cisco Fernandes, Tobias Pereira, Miguel Roque and
Guilherme Leite for their endless patience towards
me and their unwavering willingness to help when-
ever needed. Moreover, I would like express my
sincere gratitude to all the people at Instituto Su-
perior Tcnico who were a part of my academic jour-
ney. Namely, I would like to thank my supervisors
Prof. Paulo Oliveira and Prof. Carlos Cardeira for
setting such high standards and constantly pushing
me to do better. Finally, I would like to thank my
family and friends for their unconditional support,
and for keeping sane throughout the writing of this
dissertation.

References

[1] B. Bayle, M. Renaud, and J. Y. Fourquet. Non-
holonomic mobile manipulators: Kinematics,
velocities and redundancies. Journal of Intelli-
gent and Robotic Systems: Theory and Appli-
cations, 36(1):45–63, 2003.

[2] J. Gonçalves, J. Lima, P. J. Costa, and A. P.
Moreira. Modeling and simulation of the
EMG30 geared motor with encoder resorting

to simtwo: The official robot@factory simula-
tor. Lecture Notes in Mechanical Engineering,
7:307–314, 2013.

[3] L. Iocchi. Stereo Vision: Triangulation, 1998.

[4] Y. Kanayama, Y. Kimura, F. Miyazaki, and
T. Noguchi. A stable tracking control method
for an autonomous mobile robot. Proceedings.,
IEEE International Conference on Robotics
and Automation, 30(5):384–389, 1990.

[5] A. Liszewski. A Robotic 3D Printer Could
Print Anything, Anywhere It Wants. Gizmodo,
2014.

[6] A. Merabet and J. Gu. World ’ s largest Science
, Technology & Medicine Open Access book
publisher The Oil Palm Wastes in Malaysia. In
Robot Manipulators New Achievements, chap-
ter Advanced N, pages 107–128. InTech, 2010.

[7] L. Morris. A robotic 3D printer could print
anything, anywhere it wants. Electronic Engi-
neering Journal, 2014.

[8] I. M. H. Sanhoury, S. H. M. Amin, and A. R.
Husain. Tracking Control of a Nonholonomic
Wheeled Mobile Robot. 1(April):7–11, 2012.

[9] K. Schwab. The Fourth Industrial Revolution:
what it means, how to respond. World Eco-
nomic Forum, 2016.

[10] B. Siciliano, L. Sciavicco, L. Villani, and
G. Oriolo. Robotics - Modelling, Planning and
Control. Springer, 2009.

[11] D. Valério and C. Cardeira. Labguide2015 -
Control Systems Lecture Slides. Technical re-
port, Instituto Superior Técnico, Lisboa, 2015.

[12] Wikipedia. Fourth Industrial Revolution,
2017.

10

