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Abstract — The autonomous robot navigation, avoiding collisions, 

in an unknown environment is an active area of research. This 

recognition usually relies on sensors implemented in the system 

itself, such as cameras or lasers. The system studied in this 

dissertation is a scale radio controlled vehicle in which it was 

intended to implement a single camera and to develop software 

that would allow the system (RC and sensor) to move 

autonomously. 

Since depth recognition through monocular vision is 

mathematically impossible, a method has been developed that 

takes advantage of the RC movement and of the capture of 

multiple images, to detect obstacles and to calculate distances to 

them. This method involves the pairing of points of interest in the 

captured images and the displacement relations of these points for 

the segmentation of obstacles and their mapping. A path planning 

method (A* algorithm) was implemented after mapping the 

location of obstacles in space, to define the system paths on the 

map. 

The results in 30 performed tests show that the implemented 

algorithm causes the system to collide with some obstacle 2.9% of 

the times when the map is updated. These results are due to small 

differences between the expected position and the measured 

position of the system at each time, which directly influence the 

clustering processes which consequently leads to a poor mapping 

of the environment. 
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I. INTRODUCTION 

A. Motivation 

he last decade has seen an expansion in the development 

of autonomous driving vehicles. It seems certain that this 

expansion will expand your impact on society [1]. The 

evolution of the means of transport has been mainly to improve 

security conditions, reduce energy consumption and decrease of 

the gaseous pollutants emitted by transport. Research in these 

areas has led to an increase of interest in the development of 

autonomous vehicles [2]. Like the transport of people and 

goods, also in reconnaissance vehicles as drones or ground 

vehicles have been wide scientific development. It is in this 

framework that is this dissertation. 

This work was carried out with the objective of developing 

software to implement on a sensor to be applied in a scale RC 

model, so that it could move autonomously in space. For this 

purpose, the system would have to interpret the information 

captured by the sensor and create a map where it could move. 

The sensor to be coupled to the RC is a camera. However, with 

only one camera, the identification of objects and calculation of 

distances to them is not a trivial problem, so the first part of the 

dissertation rests on the method developed to solve this 

problem. What is proposed is a way of getting around the 

ambiguities that arise from the capture of an image alone, with 

the capture of multiple images in distinct positions of the 

system. This procedure is generally known in research literature 

as getting "structure from motion". The movement of the 

system in space is studied next, introducing the principles of 

path planning and the algorithm developed for the overall 

system to work. followed by a section of system identification 

where the parameters of motion of the RC are studied. Finally, 

the results of the implementation are stated and discussed, 

finishing with conclusions and future work.  

 

Fig.  1 – System 

The RC is a 1/18 scale model in which previous software [3] 

was already developed for its remote control through Matlab. In 

the RC itself there is a Raspberry Pi 3 Model B which deals with 

the communication between the Matlab commands sent by a 

remote computer and the power and direction controller of the 

RC. There is also an IMU attached to the raspberry Pi present 

in the RC, equipped with accelerometer, magnetometer and 

gyroscope.  

The majority of the code developed in this work was written for 

Matlab. Only the communication with the RC had a python 

code component. 

T 
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B. Related work 

The human being and most mammals have in their vision their 

most important sense for the perception of the reality that 

surrounds them. It is amazing how easily the brain interprets the 

three-dimensional world through our eyes. Without apparent 

effort, it is possible to identify objects, count the number of 

objects, have depth notion or distinguish the various colors and 

transparencies [4]. The area of research called Computational 

Vision aims at the approximation to the vision capabilities of 

living beings with cameras and computational means. 

Within the area of computational vision, one of the main 

challenges is the recovery of the three-dimensionality of the 

world from an image. Among the various image-based methods 

for measuring object distances are, stereo vision (two cameras), 

a single camera, structured light, time of flight cameras, among 

others. Much of the existing literature addresses this subject 

with binocular vision (stereo) [5] [6] [7], since it is a relatively 

accurate way of calculating depth. However, due to the need to 

obtain and process two images simultaneously, it becomes a 

more computationally loaded method. In the field of robotics 

there are already simpler solutions with only one camera, so the 

use of stereo vision is now more limited. Time-of-flight 

cameras allow you to obtain information about distances to 

objects by measuring how long the light takes to travel the 

distance from the camera to the subject and back to the camera. 

However, these cameras still have prohibitive costs and their 

use is limited to specific applications. 

The structured light method, also reserved for specific 

applications, has become very popular, in particular, through 

the Microsoft Kinect sensor. 

Despite that, in this project it was intended to implement a 

method that uses only one camera, since the space available in 

the RC to couple sensors is not much, which leads to the need 

to think of simpler sensors, and because it presents an 

interesting challenge to attempt to find a method to circumvent 

the fact that it is mathematically impossible to extract depth 

from a single image. 

Existing works related to depth perception using a camera only 

focus on machine learning algorithms [9], or adding a laser or 

lateral movement of the camera to obtain two lateral 

perspectives and adapt the stereo vision [6] [8]. 

The challenge of the work is to use the movement of the system 

(RC and sensor) to help with the identification and location of 

obstacles. 

After defining a method of locating the obstacles by the camera, 

it is necessary to formulate a method that creates a path around 

the obstacles encountered. This path is defined by a path 

planning algorithm. It is important to note that the path created 

by the route planning algorithm will have to be updated as the 

camera gets more information about the space. The path 

planning algorithms have as principle the displacement of an 

initial configuration of the system to a final configuration. For 

the definition of the algorithm to be used, it is important to 

define whether the algorithm will be introduced in an offline or 

online system and what the dimensionality of the space in which 

the system can move. These algorithms are optimization 

processes, since, in most cases, the paths found are optimal or 

sub-optimal with respect to time, distance or energy. 

The robotic path planning problem is a problem that continues 

to be studied and for which many solutions have already been 

proposed [8] and several different types of methods applied, 

such as C space methods, potential field methods or neural 

networks [9]. For the problem present in this work, given that it 

is a problem where the configuration space in which the system 

can move is two-dimensional, an algorithm based on a C-space 

method was used, since it would not overload the system 

computationally. In order to solve the problem, it was mainly 

used [10] [11], where Steven M. LaValle presents an extensive 

investigation and explanation of methods related to path 

planning. 

II. IMAGE PROCESSING 

C. Pinhole model 

 

Fig.  2 – Pinhole model [12] 

The pinhole model uses triangle similarity to mathematically 

match a point in an image to a physical point in the three-

dimensional real world. In the previous figure is represented a 

schematic representation of the pinhole model. Three 

orthogonal axes (X1, X2 and X3) are represented where the 

point of interception of those axes corresponds to the optical 

center of the camera (O). The X3 axis is called the main axis of 

the camera, and the plane represented, perpendicular to the 

main plane at a distance f (focal length), is called the focal 

plane. 

The point P has coordinates (x1, x2, x3) and is projected in the 

focal plane, where it is identified by the point Q whose 

coordinates in the local ordinate axes (Y1, Y2) are (y1, y2). 

 

Fig.  3 – Perpendicular plane to X2 

The similarity of triangles mentioned above is explicit in the 

figure, and some important relations can be taken from it. 
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tan(𝜃1)  =
𝑥1

𝑥3

 (1) 

tan(𝜃1)  =
−𝑦1

𝑓
 (2) 

Similarly, for a projection on the X1 axis, 

tan(𝜃2)  =
𝑥2

𝑥3

 (3) 

tan(𝜃2)  =
−𝑦2

𝑓
 (4) 

Note: for all the equations is important to notice that the focal 

length is constant throughout.  

With two images captured after linear movement of the camera 

there are no ambiguities regarding the positions of the elements 

in the environment. It is based on this premise that the method 

of calculation of distances to objects proposed in this work is 

sustained. 

 

Fig.  4 – trigonometric deductions  

In Fig. 4, the red dots represent the camera positions for 

capturing the images, p1 and p2 are the pixel values 

corresponding, on the images, to the distance a.  

tan(𝜃1)  =  
𝑎

𝑥1 + 𝑥2
 (5) 

tan(𝜃2)  =  
𝑎

𝑥2
 (6) 

Isolating and solving both of the above equations in order to a, 

we arrive at the following results: 

a = (𝑥1 + 𝑥2) tan(𝜃1) (7) 

a = x2 tan(𝜃2) (8) 

Equating equations (7) and (8) and isolating x2, 

𝑥2 =  
𝑥1 𝑡𝑎𝑛(𝜃1)

𝑡𝑎𝑛(𝜃2) − 𝑡𝑎𝑛(𝜃1)
(9) 

Developing (2) an (9), 

𝑥2 =  
𝑥1 𝑝1

𝑝2 − 𝑝1
(10) 

Eq. (10) only depends on known variables, the distances 

measured in pixels in the two image captures (p1 and p2) and 

the distance traveled by the camera between these two points 

(x1), so this is the relation found to calculate distances to 

obstacles in this project. 

D. Interest Points and descriptors 

Finding correspondences between two images referring to the 

same scenario is an area studied exhaustively by the field of 

computer vision and that has several applications, such as: 

camera calibration, 3D reconstruction or identification of 

objects [13]. This process is called feature detection and feature 

matching. 

From all the existing methods, in this project it was necessary 

to use a scale invariant and rotation invariant one, so, two of the 

most common were studied, SIFT [14] (Scale-Invariant Feature 

Transform) and SURF [15] (Speeded Up Robust Features), 

which is a faster, slightly different method than SIFT, and so, 

the SURF method ended up being the one implemented. 

The SIFT method uses difference of Gaussian as an 

approximation to Laplacian of Gaussian (LoG) for the detection 

of interest points, whereas the SURF method uses a box filter 

based on the Hessian matrix, also as an approximation to LoG. 

The advantage of using a box filter in relation to methods for 

detecting interest points in other approaches is due to the 

possibility of using the integral image, so that the time spent in 

detecting points of interest does not depend on the size of the 

filter, whereas in the case of Gaussian filters, the time required 

to perform the same process is in the order of magnitude of the 

image size multiplied by the size of the filter. The SURF 

method subdivides the neighborhood of each point of interest 

into squares of 20x20 pixels, further subdivided into sets of 4x4 

pixels and in each of these sets passes a Haar filter. For each 

subdivision of 4x4 pixels, values are calculated for the sum of 

the filter responses and for the filter responses module, in the 

horizontal and vertical direction, 𝑣 =

(∑ 𝑑𝑥 , ∑ 𝑑𝑦 , ∑|𝑑𝑥| , ∑|𝑑𝑦|). The vector of characteristics of 

this method then has only 64 dimensions, that is, half the size, 

when compared to the SIFT method. 

E. DBSCAN 

The data to be grouped in clusters comes from the interest points 

found in the images, aiming to group the points belonging to 

each different object, in different clusters as well. Thus, it is 

assumed that the collected points of each object are grouped 

next to each other in agglomerate. Knowing that the clustering 

algorithm used shouldn’t take a lot of time to run and that the 

number of clusters to form is not defined beforehand, several 

clustering algorithms were thought of arriving at the DBSCAN 

algorithm.  

DBSCAN stands for Density-Based Spatial Clustering of 

Applications with Noise. 

The algorithm requires 2 parameters: ε, maximum possible 

radius for the neighborhood of the point p, and the minimum 

number of points required to form a cluster (minPts). It starts at 

a random point p and adds points from its neighborhood. If it 

contains enough points to satisfy the conditions imposed, a 

cluster begins. Otherwise, this point is classified as noise. 

If a point belongs to a cluster, its entire neighborhood ε also 

belongs to that cluster. When all points in a given cluster are 

defined, the algorithm moves to an unvisited point and follows 

the same procedure. 
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Fig.  5 – DBSCAN method [16] 

In Fig. 5, some points of a data group are represented. It was 

defined that the minimum number of points needed to form a 

cluster would be minPts = 4 and that the maximum radius of the 

neighborhood of each point would be represented by the circles 

around each point. The point A, together with all the red dots 

represented, belong to the cluster core, since all of them have, 

in their neighborhood ε, at least 4 points (including the point 

itself). Points B and C, although they do not have 4 points in 

their vicinity, are in the vicinity of nuclear points, so they also 

belong to the cluster formed by red dots. The point N is a point 

of noise, because in its neighborhood there is no point 

belonging to the nucleus of the cluster. 

F. Distance calculations 

Before being able to apply (10), the data from the images must 

be processed. This starts with identifying the different obstacles 

that need to be mapped.  

 

Fig.  6 - SURF matching 

Fig. 6 illustrates the matching between two different images 

taken 10 cm apart in a straight line. The vectors formed with the 

points matched will be used to identify the different obstacles 

using the clustering algorithm. As the object on the right is 

closer than the one on the left, it is easy to notice that the vectors 

formed from the points on the right have bigger magnitudes, 

and also, because of the different positions, opposing directions. 

After the clustering of the points in distinct groups, the 

differences between distances of points in the first and the 

second image taken are used to calculate the positions of the 

obstacles in space using (10). 

 

Fig.  7 – Iterations for mapping calculations 

In Fig. 7, the points in green represent the interest points 

detected on the second image taken, and the red points, on the 

first. The method compares all the possible values of p1 and p2 

to get better results regarding distance measuring. After all the 

possible values for the distances are calculated, for all the 

clusters, the mean value of those distances is found and that is 

the value used for the longitudinal distance mapping the 

obstacle.  

As for the lateral distance of the obstacles, a similar approach is 

taken, just with a slight difference, that has to do with the final 

measure needed. For the problem before, the unknown value 

from the triangle similarity seen in Fig. 4 was x2, but for lateral 

distance measuring, the unknow part is the distance between the 

center of the image and the obstacle. Having calculated the 

longitudinal distance to the obstacles already, the pinhole 

method gives the required relations to calculate the lateral 

distance as well. Equating (1) and (2), 

𝑝

𝑓
=  

𝑎

𝑏
 (11) 

Unlike the case before, for the lateral calculation, there’s the 

need to know the focal length of the camera in use.  

III. PATH PLANNING 

G. Problem Formulation 

The formulation of the problem is done using state space 

models. The basic principle is that each specific situation is 

defined by a state x, and that the set of all possible states is 

called X. Each state x can undergo changes when an action u is 

applied, thus producing a new state x '. This transformation can 

be defined by a function f, called the state transition function. 

Thus, the discrete state transition equation can be defined as 

follows: 

x′ = f(x, u) (12) 

Similarly to what has been defined previously for the set of 

states X, U (x) defines the space of actions for each state x, 

which represents the set of all possible actions. It should be 

noted that for x, x' ∈ X, U (x) and U (x') are not necessarily 

different. The same action can be applied in different states. In 

this way, it is convenient to define the space U corresponding 

to all possible actions on all states. 

U = ⋃ 𝑈(𝑥)

𝑥∈X

(13) 

x 

y 
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Part of the formulation problem involves defining a set of 

objective states Xg ∈ X. The purpose of a planning algorithm is 

to find a finite sequence of actions that transforms the initial 

state x1 into a final state Xg. 

Summarizing, the formulation of a discrete planning problem: 

• Define a state space X, which is a set of finite states. 

• For each state x ∈ X, define a finite space of actions U 

(x). 

• Define a state transition function f that produces a state 

x '∈ X for each state x ∈ X and u ∈ U (x). The state 

transition equation is given by x '= f (x, u). 

• Define an initial state x1 ∈ X. 

• Define an objective set Xg ∈ X. 

H. Configuration Space 

The configuration space includes all possible configurations 

that the RC can take in space. In the case presented in this paper, 

the space is considered to be 2D (The RC always moves in the 

ground plane, z = 0), however the RC configuration has to be 

defined by three parameters, since it is a rigid body with 

relevant orientation. Thus, each configuration is defined by two 

position values (x, y) and one orientation value (θ). Within the 

set of configurations C, two relevant complementary subgroups 

are defined, Cfree and Cobs. 

 

Fig.  8 – Configuration space example 

Cfree is called free space and consists of configurations that 

avoid obstacles, while Cobs is just the opposite, the set of 

configurations that match the obstacles. 

I. Grid-Based Search 

The principle behind this type of algorithm is to define a grid 

above the space in which it is intended for the system to 

navigate, and each position of the grid (i,j) corresponds to a 

possible configuration. Within the grid, the RC can move to any 

point adjacent to the position in which it is. 

The definition of grid size results from a trade-off between 

computation time and motion precision, i.e. the larger the unit 

of the grid, the faster the path computation will be, however, a 

Grid with very large divisions may not admit paths between 

obstacles because they are in adjacent grid positions, whereas 

in reality there is sufficient space to pass between them. This 

problem can result in paths that deviate from the optimum path 

or the non-existence of a solution. 

J. A* Algorithm 

The A* algorithm [17] [18] follows a search model of paths 

called forward search, like this, 

 

At every moment of the search for paths, there are three types 

of states: 

• Unvisited - States that, as the name implies, have not 

yet been tested by the algorithm. All points are points 

not initially visited, except for the starting point xi. 

• Closed - States already visited and for which, already 

all possible consequent states have been tested. A 

consequential state x is a state x 'for which there exists 

an action u ∈ U (x) such that x' = f (x, u). 

• Open - States already visited, but that may still have 

unaccompanied states. Initially the only living state is 

the initial state xi. 

This algorithm is an extension of the Dijkstra's algorithm [19] 

that attempts to reduce the number of states explored by 

introducing a heuristic estimation of the cost to reach the target 

state. Its formulation is done by creating possible path trees with 

an associated cost, starting from a specific point and continuing 

each one of these paths until it reaches the desired objective 

point. 

Let C (x) be the cost of going from xi to x, and G (x) denote the 

cost associated with going from x to a state xg. C*(x) should be 

possible to calculate by dynamic programming, however, it is 

not possible to know in advance the value of G*(x). What 

happens is that in many applications, it is possible to reasonably 

underestimate this cost. An example of such an estimate would 

be to consider the straight-line distance between a starting point 

and an end point, since this cost estimate ignores possible 

obstacles. When obstacles are introduced, this cost can only 

increase. The objective will be to have an estimate as close as 

possible to the optimal cost, without exceeding that same cost. 

Let G* (x) be this estimate. In this algorithm, we use the sum 

C* (x) + G*(x), implying that the path search order is made 

from the estimated cost G*(x). 
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K. Global Algorithm 

The implemented algorithm is composed by two different 

sections, one that is defined as the algorithm initialization and 

is only executed once, when the system is turned on, for the 

creation of the first map, and a second section where a loop 

cycle is executed until a termination order from the user. 

After the initialization of the algorithm, the obstacle positions 

are calculated and the developed path planning method is 

applied. The route is defined by a set of commands that guide 

the RC between the positions of the map mesh. 

The first command of the route is executed and the next 

command is evaluated. At this point, the system has two 

options. If the next command is in the same direction as the 

executed command, the map can be updated, then a new image 

is captured and then the evaluated command is executed, 

moving the system in a linear fashion. At this time, none of the 

commands in the previous route will be executed. After the 

movement, a new image is captured and the system returns to 

the obstacle mapping process, restarting the cycle. 

The other option, when the command following the current 

command is evaluated, is this command having a direction 

different from the current direction, thus making it impossible 

to capture two linearly followed images. The system then 

continues on the previously calculated route, iterating the 

number of the command to execute and returning to the 

execution step of commands. 

IV. SYSTEM IDENTIFICATION 

Due to bad IMU data measurements, the system identification 

ended up being done relying only on the position data through 

time. To avoid sliding of the RC tires, the power used for the 

tests was always constant and low. 

L. Straight-line 

Regarding the path in a straight-line, it was assumed that, given 

constant power, the position would change in relation to time 

following a third-degree polynomial curve until stationarity was 

achieved. This turned out to be a fair assumption as it will be 

shown. 

Fig.  9 – 3rd degree polynomial regression 

The function found that describes the regression represented in 

the graph is as follows: 

𝑝(𝑡) = −30.44𝑡3 + 385.6𝑡2 + 3.835𝑡 (14) 

The first derivative of p (t) determines the velocity function v(t) 

and the second derivative determines the acceleration function 

a(t) of the system. 

𝑣(𝑡) = −91.32𝑡2 + 771.2𝑡 + 3.835 (15) 

𝑎(𝑡) = −182.64𝑡 + 771.2 (16) 

Knowing that in uniform linear motion the speed is constant and 

the acceleration is zero, the acceleration function is equal to 

zero in order to find the point at which this regime is reached. 

0 = −182.64𝑡 + 771.2  →   𝑡 = 4.2𝑠 (17) 

Substituting t = 4.2s into the velocity equation determines the 

stationary terminal velocity. 

𝑣(4.2) = −91.32×4.22 + 771.2×4.2 + 3.835
→  𝑣𝑓𝑖𝑛𝑎𝑙 = 1632 𝑚𝑚/𝑠 (18)

 

Assuming that on the last second of measured points gathered 

the system is already at uniform linear motion, a linear 

regression was performed on that set of data which resulted in 

the function: 

𝑝(𝑡) = 1611𝑡 − 5250 𝑚𝑚 (19) 

Deriving the position function previously stated, the stationarity 

velocity of the system, v(t) = 1611 mm/s, is found. 

Comparing this final velocity value with the value found in the 

linear regression, it is noticed that the value from the 

polynomial function is a little higher and that on the final 

seconds of data, the polynomial regression is starting to deviate 

from the points measured, so, a final composed regression was 

drawn from the t = 4.2s point. 

𝑝(𝑡) = {
−30.44𝑡3 + 385.6𝑡2 + 3.835𝑡 , 𝑡 ≤ 4.2

1611𝑡 − 5250 , 𝑡 > 4.2
(20) 

M. Curves 

Tests were performed for the maximum direction values for the 

two directions, left and right, and what was important to model 

was the movement of the RC in the extension from 0 to 45º and 

0 to -45º of orientation, since in the algorithm implemented, in 

no position the system takes different orientations from this 

range. 

Since the points from the data measured didn’t draw a perfect 

circle from the start position on, the data was approximated by 

ellipses. 

(𝑥 − ℎ)2

𝑎2
+

(𝑦 − 𝑘)2

𝑏2
= 1 (21) 

For the left hand turn (21) describes the ellipse formed by the 

trajectory of the vehicle, where a and b are the values of the 

largest and smallest radius respectively of the ellipse, and 

C(h,k) is the center of the ellipse. All these values are constant: 

a = 597, b = 562, C(h,k) = (-597,0) 
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Fig.  10 - Ellipse approximation to left-hand turn 

After having an expression for the ellipse, one has to know at 

which point the orientation of the RC is equal to -45º, to know 

in what position in space is the system and how long it took to 

get there. Thus, knowing that the orientation of the RC is equal 

to the angle formed by the slope of the tangent of the curve and 

the y-axis, it is necessary to calculate the tangents along the 

previous curve and find the point at which the tangent equals                 

-45°. 

 

Fig.  11 - Tangent to the left-hand turn ellipse 

In the graph from Fig. 11 it is drawn once again the curve made 

by the RC and also the tangent with slope equal to -45º that 

allows to find the position in space where the system is when it 

has this orientation is (-161.8,384.7) mm. Knowing the position 

occupied, it remains to know how long it takes to reach this 

position, and this is achieved by comparing the position 

coordinates with a coordinate curve and time taken in the test. 

As the values collected in the test are of a discrete nature, the 

calculated exact position is not included in any of the points 

collected, so that interpolation could be done between the 

nearest points, but since point-to-point differences are only half 

second, and that one of the collected points p = (-164,394) is 

very close to the desired point, the desired time is approximated 

to the time it took to arrive at this point, arriving at t(p) = 0.75s. 

For the right-hand turn, the same approach was taken and the 

values gathered for the ellipse equation are: 

a = 478, b = 511, C(h,k) = (478,0) 

Equating the tangent of the curve and doing the same procedure 

as was done for the left-hand turn, the position in space that the 

system occupies at the point where the drawn tangent touches 

the ellipse is (155.4,377.1). 

Again, the time taken for the system to reach the point at which 

its orientation was equal to 45 ° was ascertained. As before, due 

to the fact that the collected data is discrete, the exact point at 

which the time was intended did not correspond to a point in the 

data, so it was approached by the nearest point, which was at 

the position p = (157,368). The time the system took to arrive 

at this point was then t(p) = 0.85s. 

V. TESTS AND RESULTS 

N. Parameters evaluation 

The grid’s size for the system’s map was defined as a 3x3m 

divided by 10x10 squares of 30x30cm each. 

To test the accuracy with which the RC executes the paths 

delineated by the path planning algorithm, three tests were 

performed, where paths were inserted manually and the 

differences between expected positions and effective positions 

were evaluated through the length of the paths. 

Table  1 

 Mean error 

 x (mm) y (mm) 

Right-Left turn -10,7 140,0 

Left-Right turn 1,3 39,4 

Straight-line -10,8 -20,2 

From Table 1 it can be concluded that the largest position errors 

occur in the y coordinate, and mainly after a right-left turn, 

although this was somewhat expected since the variations in the 

y coordinate occur every step of the way, while in the x 

coordinate there are only changes when there are turns, so it’s 

supposed to accumulate less error than the y coordinate. 

O. Results of system tests 

Thirty tests were performed, where several different 

environments were disposed in front of the system, so that every 

aspect of the implementation could be evaluated. 

Table  2 

No. of 

identified 

clusters 

No. of 

occurrences  
Obstacle 

position   

Path 

Planning 
Total 

1 18 1,2 0,09 1,29 

2 31 2,3 0,11 2,41 

3 29 3,3 0,1 3,4 

4 13 4,4 0,12 4,52 

5 7 5,4 0,13 5,53 

Adding the values from the second column of the previous table 

leads to the total number of times the map was updated in the 
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thirty tests performed (98). By dividing this value by the total 

number of tests, an average ratio of map updates per test equal 

to 3.27 is reached, which amounts to 0.93 map updates per 

meter. 

By evaluating the remaining columns of the table, it is possible 

to conclude that the number of clusters identified by the process, 

as expected, only affects the time spent calculating obstacle 

positions, increasing with the growth in the number of clusters 

identified, without affecting the processing time of the path 

planning algorithm. 

In the 98 map updates verified in the tests, problems occurred 

multiple times that led the path planning algorithm to calculate 

a path that collided with the obstacles in the environment, 

however, many times errors in some parts of the layout of the 

map that led to the system being on a collision course were 

dissipated by a new map update and correction of what had been 

previously calculated. These problems derive from not 

completely linear system movements or outliers in the 

clustering method. 

Table  3 

 
Wrong 

obstacle 

position 

Unidentified 

obstacle 

Inexistent 

obstacle 

identified 

No. of 

ocurrences 
15 7 4 

Frequency 

per test (%) 
50,0 23,3 13,3 

Frequency 

per map 

(%) 

21,7 10,1 5,8 

From table 3, the frequency with which an obstacle is not 

identified or that, on the other hand, a non-existent obstacle is 

identified does not seem high, but with no comparative 

reference, nothing can be concluded. Unlike the two columns 

on the right, the values in the first column appear to be high and 

prohibitive for the system to work, however, these values can 

be somewhat misleading since it was considered that a wrong 

position of an obstacle will be a deviation in any direction from 

a position in the map mesh in relation to the expected position. 

Table  4 

 
Paths leading to 

colision 

No. of 

colisions 

No. of 

ocurrences 
7 2 

Frequency per 

test (%) 
23,3 6,7 

Frequency per 

map (%) 
10,1 2,9 

The problems listed in table 13, by themselves, do not elucidate 

the effects of misclassification of obstacles. Table 14 shows the 

results of this defective mapping. First of all, it is important to 

check, by relating the two previous tables, that of the total of 26 

defects verified in the mapping, only 7 calculated routes 

resulted which would result in a collision with some of the 

obstacles, which corresponds to approximately one route in a 

collision course with every ten updates of map. Due to the map 

updates, only two collisions occurred during the 30 tests 

performed, however the goal was not to collide, at all. 

VI. CONCLUSIONS AND FUTURE WORK 

P. Conclusions 

The main idea behind the calculation of distances to obstacles 

of unknown shapes and sizes in space is based on the premise 

that these obstacles do not change these characteristics over 

time, and as such it is possible to obtain relations between the 

dimensions of obstacles by capturing images after linear 

movement of the camera, even without prior knowledge of the 

characteristics of the objects. These differences in dimensions 

are sufficient, together with the focal length value of the camera 

to calculate distances from the camera to the obstacles. Having 

said this, it was discussed how to obtain information about the 

objects through the camera. In order to extract information from 

an image and compare this information with another image in 

sequence, we used methods of detection of characteristics such 

as the SIFT and SURF methods, and the SURF method was 

implemented in the system algorithm because it presented 

similar results to the SIFT method and was a faster processing 

method. 

One of the crucial points, and also more difficult to implement 

with validity, for the system to work is the segmentation of 

obstacles in the captured images. For this part of the algorithm, 

instead of segmenting each image individually, using the 

perception that objects closer to the camera have larger 

displacements and, more distant objects, smaller displacements 

between two images, vectors are formed that join the points of 

interest paired in the images, segmenting the vectors. After the 

vectors were formed, a clustering method (DBSCAN) was used, 

which would then segment, without having to input a defined 

number of groups as input. In addition, this method is 

important, since it is robust to the appearance of outliers, thus 

eliminating vectors formed by wrongly matched points. 

After calculating the distances to the obstacles by the mentioned 

methods, it was necessary to resort to a method that decided 

which direction to take each moment. For this we used a route 

planning algorithm that took into account the mapping of the 

obstacles encountered. The algorithm A * was chosen because 

it is a relatively fast algorithm in computational terms and 

versatile, since it is based on a principle of grid-based search, 

where it is possible to define the size of the grid to be disposed 

on the Map and the start and end points. This method creates a 

path between the starting point and the target point, avoiding 

the obstacles on the map. Since it was intended that the system 

function autonomously, the paths calculated by the algorithm 

would have to be updated as the system moved. Thus, it was 

defined that as the system progressed, the camera would capture 

two images at different positions on the map after linear motion, 

and the algorithm created a new map with the obstacles 

displayed, then processing a new way to go, restarting the cycle. 
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Before performing the tests to the operation of the system, tests 

were made to identify the parameters of movement of the 

system. To move on the grid defined on the map, the system 

could only take three different orientations in each position and 

would have at most three different positions to move next, so it 

was necessary to notice the movement of the RC in space. After 

this process, the movement in the defined grid had to be 

adapted, since the movements of the RC did not allow to reach 

the positions and orientations, previously defined, of the way 

the map was defined. 

Finally, the system was tested. It was initially verified the 

validity of the parameters resulting from the system 

identification, where it was noticed that there were some 

discrepancies between the expected positions and the effective 

positions, and that these could influence the calculations of the 

positions of the obstacles in the global system. To test the 

system, 30 tests were performed, in which the system was 

exposed to several different scenarios. From these tests it was 

found that in two of them the system collided with some of the 

obstacles in its path due to poor identification of the 

environment, which resulted in a definite path leading to 

collisions. 

The objective of the work was to get the system to move 

autonomously avoiding collisions. Although a small number of 

collisions have occurred, it has been found that in 2.9% of the 

times that the map is updated and a new route planned, the 

system ends up colliding with an obstacle. Thus, it is concluded 

that the system is not effective in avoiding collisions, and as 

such the objective has not been fully achieved. However, the 

method introduced for the calculation and positioning of 

obstacles in space is effective, although computationally heavy, 

as well as the method of route planning, and the major problems 

for the correct functioning of the system as a whole relate to the 

clustering process and the small differences between expected 

positions and effective positions of the system. 

Q. Future Work 

Taking as a starting point the work done here, and realizing 

from the last paragraph of the conclusions that the problems 

found in the operation of the system concentrate mainly on the 

control of movement of the system and in the process of 

segmentation, the following follow-up points are proposed for 

works Improvement of this thesis: 

• Study of new approaches to individual image 

segmentation, identifying only points of interest in the 

image for calculations of distances to obstacles; 

• Possibility of introducing a camera that allows the 

variation of the focal distance to be able to have depth 

perception, facilitating the process; 

• Study of new processes that allow to extract 

information of sequence of images, for example 

registration of images; 

• Introduction of control for the position of the RC in the 

space so that the movements are more precise, 

improving the perception of the system of the 

environment; 
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