
1

Recognition and Estimation of Obstacles Trajectories

in Scale Driving Vehicles

José Guilherme Penas Silvério

jose.silverio@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

June 2017

Abstract — The autonomous robot navigation, avoiding collisions,

in an unknown environment is an active area of research. This

recognition usually relies on sensors implemented in the system

itself, such as cameras or lasers. The system studied in this

dissertation is a scale radio controlled vehicle in which it was

intended to implement a single camera and to develop software

that would allow the system (RC and sensor) to move

autonomously.

Since depth recognition through monocular vision is

mathematically impossible, a method has been developed that

takes advantage of the RC movement and of the capture of

multiple images, to detect obstacles and to calculate distances to

them. This method involves the pairing of points of interest in the

captured images and the displacement relations of these points for

the segmentation of obstacles and their mapping. A path planning

method (A* algorithm) was implemented after mapping the

location of obstacles in space, to define the system paths on the

map.

The results in 30 performed tests show that the implemented

algorithm causes the system to collide with some obstacle 2.9% of

the times when the map is updated. These results are due to small

differences between the expected position and the measured

position of the system at each time, which directly influence the

clustering processes which consequently leads to a poor mapping

of the environment.

Keywords—Autonomous System, Monocular Vision, Interest

Points, Segmentation, Path Planning

I. INTRODUCTION

A. Motivation

he last decade has seen an expansion in the development

of autonomous driving vehicles. It seems certain that this

expansion will expand your impact on society [1]. The

evolution of the means of transport has been mainly to improve

security conditions, reduce energy consumption and decrease of

the gaseous pollutants emitted by transport. Research in these

areas has led to an increase of interest in the development of

autonomous vehicles [2]. Like the transport of people and

goods, also in reconnaissance vehicles as drones or ground

vehicles have been wide scientific development. It is in this

framework that is this dissertation.

This work was carried out with the objective of developing

software to implement on a sensor to be applied in a scale RC

model, so that it could move autonomously in space. For this

purpose, the system would have to interpret the information

captured by the sensor and create a map where it could move.

The sensor to be coupled to the RC is a camera. However, with

only one camera, the identification of objects and calculation of

distances to them is not a trivial problem, so the first part of the

dissertation rests on the method developed to solve this

problem. What is proposed is a way of getting around the

ambiguities that arise from the capture of an image alone, with

the capture of multiple images in distinct positions of the

system. This procedure is generally known in research literature

as getting "structure from motion". The movement of the

system in space is studied next, introducing the principles of

path planning and the algorithm developed for the overall

system to work. followed by a section of system identification

where the parameters of motion of the RC are studied. Finally,

the results of the implementation are stated and discussed,

finishing with conclusions and future work.

Fig. 1 – System

The RC is a 1/18 scale model in which previous software [3]

was already developed for its remote control through Matlab. In

the RC itself there is a Raspberry Pi 3 Model B which deals with

the communication between the Matlab commands sent by a

remote computer and the power and direction controller of the

RC. There is also an IMU attached to the raspberry Pi present

in the RC, equipped with accelerometer, magnetometer and

gyroscope.

The majority of the code developed in this work was written for

Matlab. Only the communication with the RC had a python

code component.

T

2

B. Related work

The human being and most mammals have in their vision their

most important sense for the perception of the reality that

surrounds them. It is amazing how easily the brain interprets the

three-dimensional world through our eyes. Without apparent

effort, it is possible to identify objects, count the number of

objects, have depth notion or distinguish the various colors and

transparencies [4]. The area of research called Computational

Vision aims at the approximation to the vision capabilities of

living beings with cameras and computational means.

Within the area of computational vision, one of the main

challenges is the recovery of the three-dimensionality of the

world from an image. Among the various image-based methods

for measuring object distances are, stereo vision (two cameras),

a single camera, structured light, time of flight cameras, among

others. Much of the existing literature addresses this subject

with binocular vision (stereo) [5] [6] [7], since it is a relatively

accurate way of calculating depth. However, due to the need to

obtain and process two images simultaneously, it becomes a

more computationally loaded method. In the field of robotics

there are already simpler solutions with only one camera, so the

use of stereo vision is now more limited. Time-of-flight

cameras allow you to obtain information about distances to

objects by measuring how long the light takes to travel the

distance from the camera to the subject and back to the camera.

However, these cameras still have prohibitive costs and their

use is limited to specific applications.

The structured light method, also reserved for specific

applications, has become very popular, in particular, through

the Microsoft Kinect sensor.

Despite that, in this project it was intended to implement a

method that uses only one camera, since the space available in

the RC to couple sensors is not much, which leads to the need

to think of simpler sensors, and because it presents an

interesting challenge to attempt to find a method to circumvent

the fact that it is mathematically impossible to extract depth

from a single image.

Existing works related to depth perception using a camera only

focus on machine learning algorithms [9], or adding a laser or

lateral movement of the camera to obtain two lateral

perspectives and adapt the stereo vision [6] [8].

The challenge of the work is to use the movement of the system

(RC and sensor) to help with the identification and location of

obstacles.

After defining a method of locating the obstacles by the camera,

it is necessary to formulate a method that creates a path around

the obstacles encountered. This path is defined by a path

planning algorithm. It is important to note that the path created

by the route planning algorithm will have to be updated as the

camera gets more information about the space. The path

planning algorithms have as principle the displacement of an

initial configuration of the system to a final configuration. For

the definition of the algorithm to be used, it is important to

define whether the algorithm will be introduced in an offline or

online system and what the dimensionality of the space in which

the system can move. These algorithms are optimization

processes, since, in most cases, the paths found are optimal or

sub-optimal with respect to time, distance or energy.

The robotic path planning problem is a problem that continues

to be studied and for which many solutions have already been

proposed [8] and several different types of methods applied,

such as C space methods, potential field methods or neural

networks [9]. For the problem present in this work, given that it

is a problem where the configuration space in which the system

can move is two-dimensional, an algorithm based on a C-space

method was used, since it would not overload the system

computationally. In order to solve the problem, it was mainly

used [10] [11], where Steven M. LaValle presents an extensive

investigation and explanation of methods related to path

planning.

II. IMAGE PROCESSING

C. Pinhole model

Fig. 2 – Pinhole model [12]

The pinhole model uses triangle similarity to mathematically

match a point in an image to a physical point in the three-

dimensional real world. In the previous figure is represented a

schematic representation of the pinhole model. Three

orthogonal axes (X1, X2 and X3) are represented where the

point of interception of those axes corresponds to the optical

center of the camera (O). The X3 axis is called the main axis of

the camera, and the plane represented, perpendicular to the

main plane at a distance f (focal length), is called the focal

plane.

The point P has coordinates (x1, x2, x3) and is projected in the

focal plane, where it is identified by the point Q whose

coordinates in the local ordinate axes (Y1, Y2) are (y1, y2).

Fig. 3 – Perpendicular plane to X2

The similarity of triangles mentioned above is explicit in the

figure, and some important relations can be taken from it.

3

tan(𝜃1) =
𝑥1

𝑥3

 (1)

tan(𝜃1) =
−𝑦1

𝑓
 (2)

Similarly, for a projection on the X1 axis,

tan(𝜃2) =
𝑥2

𝑥3

 (3)

tan(𝜃2) =
−𝑦2

𝑓
 (4)

Note: for all the equations is important to notice that the focal

length is constant throughout.

With two images captured after linear movement of the camera

there are no ambiguities regarding the positions of the elements

in the environment. It is based on this premise that the method

of calculation of distances to objects proposed in this work is

sustained.

Fig. 4 – trigonometric deductions

In Fig. 4, the red dots represent the camera positions for

capturing the images, p1 and p2 are the pixel values

corresponding, on the images, to the distance a.

tan(𝜃1) =
𝑎

𝑥1 + 𝑥2
 (5)

tan(𝜃2) =
𝑎

𝑥2
 (6)

Isolating and solving both of the above equations in order to a,

we arrive at the following results:

a = (𝑥1 + 𝑥2) tan(𝜃1) (7)

a = x2 tan(𝜃2) (8)

Equating equations (7) and (8) and isolating x2,

𝑥2 =
𝑥1 𝑡𝑎𝑛(𝜃1)

𝑡𝑎𝑛(𝜃2) − 𝑡𝑎𝑛(𝜃1)
(9)

Developing (2) an (9),

𝑥2 =
𝑥1 𝑝1

𝑝2 − 𝑝1
(10)

Eq. (10) only depends on known variables, the distances

measured in pixels in the two image captures (p1 and p2) and

the distance traveled by the camera between these two points

(x1), so this is the relation found to calculate distances to

obstacles in this project.

D. Interest Points and descriptors

Finding correspondences between two images referring to the

same scenario is an area studied exhaustively by the field of

computer vision and that has several applications, such as:

camera calibration, 3D reconstruction or identification of

objects [13]. This process is called feature detection and feature

matching.

From all the existing methods, in this project it was necessary

to use a scale invariant and rotation invariant one, so, two of the

most common were studied, SIFT [14] (Scale-Invariant Feature

Transform) and SURF [15] (Speeded Up Robust Features),

which is a faster, slightly different method than SIFT, and so,

the SURF method ended up being the one implemented.

The SIFT method uses difference of Gaussian as an

approximation to Laplacian of Gaussian (LoG) for the detection

of interest points, whereas the SURF method uses a box filter

based on the Hessian matrix, also as an approximation to LoG.

The advantage of using a box filter in relation to methods for

detecting interest points in other approaches is due to the

possibility of using the integral image, so that the time spent in

detecting points of interest does not depend on the size of the

filter, whereas in the case of Gaussian filters, the time required

to perform the same process is in the order of magnitude of the

image size multiplied by the size of the filter. The SURF

method subdivides the neighborhood of each point of interest

into squares of 20x20 pixels, further subdivided into sets of 4x4

pixels and in each of these sets passes a Haar filter. For each

subdivision of 4x4 pixels, values are calculated for the sum of

the filter responses and for the filter responses module, in the

horizontal and vertical direction, 𝑣 =

(∑ 𝑑𝑥 , ∑ 𝑑𝑦 , ∑|𝑑𝑥| , ∑|𝑑𝑦|). The vector of characteristics of

this method then has only 64 dimensions, that is, half the size,

when compared to the SIFT method.

E. DBSCAN

The data to be grouped in clusters comes from the interest points

found in the images, aiming to group the points belonging to

each different object, in different clusters as well. Thus, it is

assumed that the collected points of each object are grouped

next to each other in agglomerate. Knowing that the clustering

algorithm used shouldn’t take a lot of time to run and that the

number of clusters to form is not defined beforehand, several

clustering algorithms were thought of arriving at the DBSCAN

algorithm.

DBSCAN stands for Density-Based Spatial Clustering of

Applications with Noise.

The algorithm requires 2 parameters: ε, maximum possible

radius for the neighborhood of the point p, and the minimum

number of points required to form a cluster (minPts). It starts at

a random point p and adds points from its neighborhood. If it

contains enough points to satisfy the conditions imposed, a

cluster begins. Otherwise, this point is classified as noise.

If a point belongs to a cluster, its entire neighborhood ε also

belongs to that cluster. When all points in a given cluster are

defined, the algorithm moves to an unvisited point and follows

the same procedure.

4

Fig. 5 – DBSCAN method [16]

In Fig. 5, some points of a data group are represented. It was

defined that the minimum number of points needed to form a

cluster would be minPts = 4 and that the maximum radius of the

neighborhood of each point would be represented by the circles

around each point. The point A, together with all the red dots

represented, belong to the cluster core, since all of them have,

in their neighborhood ε, at least 4 points (including the point

itself). Points B and C, although they do not have 4 points in

their vicinity, are in the vicinity of nuclear points, so they also

belong to the cluster formed by red dots. The point N is a point

of noise, because in its neighborhood there is no point

belonging to the nucleus of the cluster.

F. Distance calculations

Before being able to apply (10), the data from the images must

be processed. This starts with identifying the different obstacles

that need to be mapped.

Fig. 6 - SURF matching

Fig. 6 illustrates the matching between two different images

taken 10 cm apart in a straight line. The vectors formed with the

points matched will be used to identify the different obstacles

using the clustering algorithm. As the object on the right is

closer than the one on the left, it is easy to notice that the vectors

formed from the points on the right have bigger magnitudes,

and also, because of the different positions, opposing directions.

After the clustering of the points in distinct groups, the

differences between distances of points in the first and the

second image taken are used to calculate the positions of the

obstacles in space using (10).

Fig. 7 – Iterations for mapping calculations

In Fig. 7, the points in green represent the interest points

detected on the second image taken, and the red points, on the

first. The method compares all the possible values of p1 and p2

to get better results regarding distance measuring. After all the

possible values for the distances are calculated, for all the

clusters, the mean value of those distances is found and that is

the value used for the longitudinal distance mapping the

obstacle.

As for the lateral distance of the obstacles, a similar approach is

taken, just with a slight difference, that has to do with the final

measure needed. For the problem before, the unknown value

from the triangle similarity seen in Fig. 4 was x2, but for lateral

distance measuring, the unknow part is the distance between the

center of the image and the obstacle. Having calculated the

longitudinal distance to the obstacles already, the pinhole

method gives the required relations to calculate the lateral

distance as well. Equating (1) and (2),

𝑝

𝑓
=

𝑎

𝑏
 (11)

Unlike the case before, for the lateral calculation, there’s the

need to know the focal length of the camera in use.

III. PATH PLANNING

G. Problem Formulation

The formulation of the problem is done using state space

models. The basic principle is that each specific situation is

defined by a state x, and that the set of all possible states is

called X. Each state x can undergo changes when an action u is

applied, thus producing a new state x '. This transformation can

be defined by a function f, called the state transition function.

Thus, the discrete state transition equation can be defined as

follows:

x′ = f(x, u) (12)

Similarly to what has been defined previously for the set of

states X, U (x) defines the space of actions for each state x,

which represents the set of all possible actions. It should be

noted that for x, x' ∈ X, U (x) and U (x') are not necessarily

different. The same action can be applied in different states. In

this way, it is convenient to define the space U corresponding

to all possible actions on all states.

U = ⋃ 𝑈(𝑥)

𝑥∈X

(13)

x

y

5

Part of the formulation problem involves defining a set of

objective states Xg ∈ X. The purpose of a planning algorithm is

to find a finite sequence of actions that transforms the initial

state x1 into a final state Xg.

Summarizing, the formulation of a discrete planning problem:

• Define a state space X, which is a set of finite states.

• For each state x ∈ X, define a finite space of actions U

(x).

• Define a state transition function f that produces a state

x '∈ X for each state x ∈ X and u ∈ U (x). The state

transition equation is given by x '= f (x, u).

• Define an initial state x1 ∈ X.

• Define an objective set Xg ∈ X.

H. Configuration Space

The configuration space includes all possible configurations

that the RC can take in space. In the case presented in this paper,

the space is considered to be 2D (The RC always moves in the

ground plane, z = 0), however the RC configuration has to be

defined by three parameters, since it is a rigid body with

relevant orientation. Thus, each configuration is defined by two

position values (x, y) and one orientation value (θ). Within the

set of configurations C, two relevant complementary subgroups

are defined, Cfree and Cobs.

Fig. 8 – Configuration space example

Cfree is called free space and consists of configurations that

avoid obstacles, while Cobs is just the opposite, the set of

configurations that match the obstacles.

I. Grid-Based Search

The principle behind this type of algorithm is to define a grid

above the space in which it is intended for the system to

navigate, and each position of the grid (i,j) corresponds to a

possible configuration. Within the grid, the RC can move to any

point adjacent to the position in which it is.

The definition of grid size results from a trade-off between

computation time and motion precision, i.e. the larger the unit

of the grid, the faster the path computation will be, however, a

Grid with very large divisions may not admit paths between

obstacles because they are in adjacent grid positions, whereas

in reality there is sufficient space to pass between them. This

problem can result in paths that deviate from the optimum path

or the non-existence of a solution.

J. A* Algorithm

The A* algorithm [17] [18] follows a search model of paths

called forward search, like this,

At every moment of the search for paths, there are three types

of states:

• Unvisited - States that, as the name implies, have not

yet been tested by the algorithm. All points are points

not initially visited, except for the starting point xi.

• Closed - States already visited and for which, already

all possible consequent states have been tested. A

consequential state x is a state x 'for which there exists

an action u ∈ U (x) such that x' = f (x, u).

• Open - States already visited, but that may still have

unaccompanied states. Initially the only living state is

the initial state xi.

This algorithm is an extension of the Dijkstra's algorithm [19]

that attempts to reduce the number of states explored by

introducing a heuristic estimation of the cost to reach the target

state. Its formulation is done by creating possible path trees with

an associated cost, starting from a specific point and continuing

each one of these paths until it reaches the desired objective

point.

Let C (x) be the cost of going from xi to x, and G (x) denote the

cost associated with going from x to a state xg. C*(x) should be

possible to calculate by dynamic programming, however, it is

not possible to know in advance the value of G*(x). What

happens is that in many applications, it is possible to reasonably

underestimate this cost. An example of such an estimate would

be to consider the straight-line distance between a starting point

and an end point, since this cost estimate ignores possible

obstacles. When obstacles are introduced, this cost can only

increase. The objective will be to have an estimate as close as

possible to the optimal cost, without exceeding that same cost.

Let G* (x) be this estimate. In this algorithm, we use the sum

C* (x) + G*(x), implying that the path search order is made

from the estimated cost G*(x).

6

K. Global Algorithm

The implemented algorithm is composed by two different

sections, one that is defined as the algorithm initialization and

is only executed once, when the system is turned on, for the

creation of the first map, and a second section where a loop

cycle is executed until a termination order from the user.

After the initialization of the algorithm, the obstacle positions

are calculated and the developed path planning method is

applied. The route is defined by a set of commands that guide

the RC between the positions of the map mesh.

The first command of the route is executed and the next

command is evaluated. At this point, the system has two

options. If the next command is in the same direction as the

executed command, the map can be updated, then a new image

is captured and then the evaluated command is executed,

moving the system in a linear fashion. At this time, none of the

commands in the previous route will be executed. After the

movement, a new image is captured and the system returns to

the obstacle mapping process, restarting the cycle.

The other option, when the command following the current

command is evaluated, is this command having a direction

different from the current direction, thus making it impossible

to capture two linearly followed images. The system then

continues on the previously calculated route, iterating the

number of the command to execute and returning to the

execution step of commands.

IV. SYSTEM IDENTIFICATION

Due to bad IMU data measurements, the system identification

ended up being done relying only on the position data through

time. To avoid sliding of the RC tires, the power used for the

tests was always constant and low.

L. Straight-line

Regarding the path in a straight-line, it was assumed that, given

constant power, the position would change in relation to time

following a third-degree polynomial curve until stationarity was

achieved. This turned out to be a fair assumption as it will be

shown.

Fig. 9 – 3rd degree polynomial regression

The function found that describes the regression represented in

the graph is as follows:

𝑝(𝑡) = −30.44𝑡3 + 385.6𝑡2 + 3.835𝑡 (14)

The first derivative of p (t) determines the velocity function v(t)

and the second derivative determines the acceleration function

a(t) of the system.

𝑣(𝑡) = −91.32𝑡2 + 771.2𝑡 + 3.835 (15)

𝑎(𝑡) = −182.64𝑡 + 771.2 (16)

Knowing that in uniform linear motion the speed is constant and

the acceleration is zero, the acceleration function is equal to

zero in order to find the point at which this regime is reached.

0 = −182.64𝑡 + 771.2 → 𝑡 = 4.2𝑠 (17)

Substituting t = 4.2s into the velocity equation determines the

stationary terminal velocity.

𝑣(4.2) = −91.32×4.22 + 771.2×4.2 + 3.835
→ 𝑣𝑓𝑖𝑛𝑎𝑙 = 1632 𝑚𝑚/𝑠 (18)

Assuming that on the last second of measured points gathered

the system is already at uniform linear motion, a linear

regression was performed on that set of data which resulted in

the function:

𝑝(𝑡) = 1611𝑡 − 5250 𝑚𝑚 (19)

Deriving the position function previously stated, the stationarity

velocity of the system, v(t) = 1611 mm/s, is found.

Comparing this final velocity value with the value found in the

linear regression, it is noticed that the value from the

polynomial function is a little higher and that on the final

seconds of data, the polynomial regression is starting to deviate

from the points measured, so, a final composed regression was

drawn from the t = 4.2s point.

𝑝(𝑡) = {
−30.44𝑡3 + 385.6𝑡2 + 3.835𝑡 , 𝑡 ≤ 4.2

1611𝑡 − 5250 , 𝑡 > 4.2
(20)

M. Curves

Tests were performed for the maximum direction values for the

two directions, left and right, and what was important to model

was the movement of the RC in the extension from 0 to 45º and

0 to -45º of orientation, since in the algorithm implemented, in

no position the system takes different orientations from this

range.

Since the points from the data measured didn’t draw a perfect

circle from the start position on, the data was approximated by

ellipses.

(𝑥 − ℎ)2

𝑎2
+

(𝑦 − 𝑘)2

𝑏2
= 1 (21)

For the left hand turn (21) describes the ellipse formed by the

trajectory of the vehicle, where a and b are the values of the

largest and smallest radius respectively of the ellipse, and

C(h,k) is the center of the ellipse. All these values are constant:

a = 597, b = 562, C(h,k) = (-597,0)

7

Fig. 10 - Ellipse approximation to left-hand turn

After having an expression for the ellipse, one has to know at

which point the orientation of the RC is equal to -45º, to know

in what position in space is the system and how long it took to

get there. Thus, knowing that the orientation of the RC is equal

to the angle formed by the slope of the tangent of the curve and

the y-axis, it is necessary to calculate the tangents along the

previous curve and find the point at which the tangent equals

-45°.

Fig. 11 - Tangent to the left-hand turn ellipse

In the graph from Fig. 11 it is drawn once again the curve made

by the RC and also the tangent with slope equal to -45º that

allows to find the position in space where the system is when it

has this orientation is (-161.8,384.7) mm. Knowing the position

occupied, it remains to know how long it takes to reach this

position, and this is achieved by comparing the position

coordinates with a coordinate curve and time taken in the test.

As the values collected in the test are of a discrete nature, the

calculated exact position is not included in any of the points

collected, so that interpolation could be done between the

nearest points, but since point-to-point differences are only half

second, and that one of the collected points p = (-164,394) is

very close to the desired point, the desired time is approximated

to the time it took to arrive at this point, arriving at t(p) = 0.75s.

For the right-hand turn, the same approach was taken and the

values gathered for the ellipse equation are:

a = 478, b = 511, C(h,k) = (478,0)

Equating the tangent of the curve and doing the same procedure

as was done for the left-hand turn, the position in space that the

system occupies at the point where the drawn tangent touches

the ellipse is (155.4,377.1).

Again, the time taken for the system to reach the point at which

its orientation was equal to 45 ° was ascertained. As before, due

to the fact that the collected data is discrete, the exact point at

which the time was intended did not correspond to a point in the

data, so it was approached by the nearest point, which was at

the position p = (157,368). The time the system took to arrive

at this point was then t(p) = 0.85s.

V. TESTS AND RESULTS

N. Parameters evaluation

The grid’s size for the system’s map was defined as a 3x3m

divided by 10x10 squares of 30x30cm each.

To test the accuracy with which the RC executes the paths

delineated by the path planning algorithm, three tests were

performed, where paths were inserted manually and the

differences between expected positions and effective positions

were evaluated through the length of the paths.

Table 1

 Mean error

 x (mm) y (mm)

Right-Left turn -10,7 140,0

Left-Right turn 1,3 39,4

Straight-line -10,8 -20,2

From Table 1 it can be concluded that the largest position errors

occur in the y coordinate, and mainly after a right-left turn,

although this was somewhat expected since the variations in the

y coordinate occur every step of the way, while in the x

coordinate there are only changes when there are turns, so it’s

supposed to accumulate less error than the y coordinate.

O. Results of system tests

Thirty tests were performed, where several different

environments were disposed in front of the system, so that every

aspect of the implementation could be evaluated.

Table 2

No. of

identified

clusters

No. of

occurrences
Obstacle

position

Path

Planning
Total

1 18 1,2 0,09 1,29

2 31 2,3 0,11 2,41

3 29 3,3 0,1 3,4

4 13 4,4 0,12 4,52

5 7 5,4 0,13 5,53

Adding the values from the second column of the previous table

leads to the total number of times the map was updated in the

8

thirty tests performed (98). By dividing this value by the total

number of tests, an average ratio of map updates per test equal

to 3.27 is reached, which amounts to 0.93 map updates per

meter.

By evaluating the remaining columns of the table, it is possible

to conclude that the number of clusters identified by the process,

as expected, only affects the time spent calculating obstacle

positions, increasing with the growth in the number of clusters

identified, without affecting the processing time of the path

planning algorithm.

In the 98 map updates verified in the tests, problems occurred

multiple times that led the path planning algorithm to calculate

a path that collided with the obstacles in the environment,

however, many times errors in some parts of the layout of the

map that led to the system being on a collision course were

dissipated by a new map update and correction of what had been

previously calculated. These problems derive from not

completely linear system movements or outliers in the

clustering method.

Table 3

Wrong

obstacle

position

Unidentified

obstacle

Inexistent

obstacle

identified

No. of

ocurrences
15 7 4

Frequency

per test (%)
50,0 23,3 13,3

Frequency

per map

(%)

21,7 10,1 5,8

From table 3, the frequency with which an obstacle is not

identified or that, on the other hand, a non-existent obstacle is

identified does not seem high, but with no comparative

reference, nothing can be concluded. Unlike the two columns

on the right, the values in the first column appear to be high and

prohibitive for the system to work, however, these values can

be somewhat misleading since it was considered that a wrong

position of an obstacle will be a deviation in any direction from

a position in the map mesh in relation to the expected position.

Table 4

Paths leading to

colision

No. of

colisions

No. of

ocurrences
7 2

Frequency per

test (%)
23,3 6,7

Frequency per

map (%)
10,1 2,9

The problems listed in table 13, by themselves, do not elucidate

the effects of misclassification of obstacles. Table 14 shows the

results of this defective mapping. First of all, it is important to

check, by relating the two previous tables, that of the total of 26

defects verified in the mapping, only 7 calculated routes

resulted which would result in a collision with some of the

obstacles, which corresponds to approximately one route in a

collision course with every ten updates of map. Due to the map

updates, only two collisions occurred during the 30 tests

performed, however the goal was not to collide, at all.

VI. CONCLUSIONS AND FUTURE WORK

P. Conclusions

The main idea behind the calculation of distances to obstacles

of unknown shapes and sizes in space is based on the premise

that these obstacles do not change these characteristics over

time, and as such it is possible to obtain relations between the

dimensions of obstacles by capturing images after linear

movement of the camera, even without prior knowledge of the

characteristics of the objects. These differences in dimensions

are sufficient, together with the focal length value of the camera

to calculate distances from the camera to the obstacles. Having

said this, it was discussed how to obtain information about the

objects through the camera. In order to extract information from

an image and compare this information with another image in

sequence, we used methods of detection of characteristics such

as the SIFT and SURF methods, and the SURF method was

implemented in the system algorithm because it presented

similar results to the SIFT method and was a faster processing

method.

One of the crucial points, and also more difficult to implement

with validity, for the system to work is the segmentation of

obstacles in the captured images. For this part of the algorithm,

instead of segmenting each image individually, using the

perception that objects closer to the camera have larger

displacements and, more distant objects, smaller displacements

between two images, vectors are formed that join the points of

interest paired in the images, segmenting the vectors. After the

vectors were formed, a clustering method (DBSCAN) was used,

which would then segment, without having to input a defined

number of groups as input. In addition, this method is

important, since it is robust to the appearance of outliers, thus

eliminating vectors formed by wrongly matched points.

After calculating the distances to the obstacles by the mentioned

methods, it was necessary to resort to a method that decided

which direction to take each moment. For this we used a route

planning algorithm that took into account the mapping of the

obstacles encountered. The algorithm A * was chosen because

it is a relatively fast algorithm in computational terms and

versatile, since it is based on a principle of grid-based search,

where it is possible to define the size of the grid to be disposed

on the Map and the start and end points. This method creates a

path between the starting point and the target point, avoiding

the obstacles on the map. Since it was intended that the system

function autonomously, the paths calculated by the algorithm

would have to be updated as the system moved. Thus, it was

defined that as the system progressed, the camera would capture

two images at different positions on the map after linear motion,

and the algorithm created a new map with the obstacles

displayed, then processing a new way to go, restarting the cycle.

9

Before performing the tests to the operation of the system, tests

were made to identify the parameters of movement of the

system. To move on the grid defined on the map, the system

could only take three different orientations in each position and

would have at most three different positions to move next, so it

was necessary to notice the movement of the RC in space. After

this process, the movement in the defined grid had to be

adapted, since the movements of the RC did not allow to reach

the positions and orientations, previously defined, of the way

the map was defined.

Finally, the system was tested. It was initially verified the

validity of the parameters resulting from the system

identification, where it was noticed that there were some

discrepancies between the expected positions and the effective

positions, and that these could influence the calculations of the

positions of the obstacles in the global system. To test the

system, 30 tests were performed, in which the system was

exposed to several different scenarios. From these tests it was

found that in two of them the system collided with some of the

obstacles in its path due to poor identification of the

environment, which resulted in a definite path leading to

collisions.

The objective of the work was to get the system to move

autonomously avoiding collisions. Although a small number of

collisions have occurred, it has been found that in 2.9% of the

times that the map is updated and a new route planned, the

system ends up colliding with an obstacle. Thus, it is concluded

that the system is not effective in avoiding collisions, and as

such the objective has not been fully achieved. However, the

method introduced for the calculation and positioning of

obstacles in space is effective, although computationally heavy,

as well as the method of route planning, and the major problems

for the correct functioning of the system as a whole relate to the

clustering process and the small differences between expected

positions and effective positions of the system.

Q. Future Work

Taking as a starting point the work done here, and realizing

from the last paragraph of the conclusions that the problems

found in the operation of the system concentrate mainly on the

control of movement of the system and in the process of

segmentation, the following follow-up points are proposed for

works Improvement of this thesis:

• Study of new approaches to individual image

segmentation, identifying only points of interest in the

image for calculations of distances to obstacles;

• Possibility of introducing a camera that allows the

variation of the focal distance to be able to have depth

perception, facilitating the process;

• Study of new processes that allow to extract

information of sequence of images, for example

registration of images;

• Introduction of control for the position of the RC in the

space so that the movements are more precise,

improving the perception of the system of the

environment;

REFERENCES

[1] J. Lutin, A. Kornhauser and E. Lerner-Lam, "The

Revolutionary Development of Self-Driving Vehicles

and Implications for the Transportation Engineering

Profession," Institute of Transportation Engineers. ITE

Journal; Washington, pp. 28-32, 2013.

[2] M. Bertozzi, A. Broggi and A. Fascioli, "Vision-based

intelligent vehicles: State of the art and perspectives,"

Robotics and Autonomous Systems, vol. 32, pp. 1-16,

2000.

[3] N. Martins, "Integration of RC Vehicles in a Robotic

Arena," MSc Thesis, Mestrado Integrado em Engenharia

Aeroespacial, Lisboa, Jan 2017.

[4] R. Szeliski, Computer Vision: Algorithms and

Applications, Springer, 2010.

[5] A. Saxena, M. Sun and A. Ng, "Make3D: Depth

Perception from a Single Still Image," Chicago, USA, In

Proceedings of the Twenty-Third AAAI Conference on

Artificial Intelligence, July 13–17, 2008, pp. 1571-1576.

[6] P. Alizadeh, "Object Distance Measurement Using a

Single Camera for Robotic Applications," Ontario,

Canada, 2015.

[7] R. Hartley and A. Zisserman, in Multiple View

Geometry in Computer Vision, Cambridge University

Press, 2004, pp. 237-279.

[8] J. Latombe, Robot Motion Planning, Kluwer Academic

Publishers, 1991.

[9] S. Yang and Y. Hu, "Robot Path Planning in

Unstructured Environments Using a Knowledge-Based

Genetic Algorithm," School of Engineering, University

of Guelph, Canada, 2005.

[10] S. M. LaValle, Planning Algorithms, Cambridge:

Cambridge University Press, 2006, pp. 185-248.

[11] S. M. LaValle, Planning algorithms, Cambridge:

Cambridge University Press, 2006, pp. 27-74.

[12] "wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/DBSCAN. [Accessed 16

Janeiro 2017].

[13] C. Harris and M. Stephens, A combined corner and edge

detector, United Kingdom: The Plessey Company plc.,

1988.

10

[14] D. G. Lowe, "Distinctive Image Features from Scale-

Invariant Keypoints," University of British Columbia,

Vancouver, B.C., Canada, 2004.

[15] H. Bay, T. Tuytelaars and L. Van Gool, "SURF:

Speeded Up Robust Features," Katholike Universiteit

Leuven, Zurich.

[16] "wikipedia\DBSCAN," [Online]. Available:

https://en.wikipedia.org/wiki/DBSCAN. [Accessed 13

Fevereiro 2017].

[17] J. Crowley and R. Stern, "Fast computation of the

difference of low pass transform," IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1984, pp.

212-222.

[18] P. E. Hart, N. J. Nilsson and B. Raphael, A Formal Basis

for the Heuristic Determination of Minimum Cost Paths,

IEEE Transactions on Systems Science and Cybernetics,

pp. 100-107.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.

Stein, Introduction to Algorithms, MIT Press and

McGraw–Hill, 2001, p. Section 24.3: Dijkstra's

algorithm.

[20] J. Ponce and D. Forsyth, in Computer Vision A modern

approach, pp. 321-345.

[21] "Scholarpedia\SIFT," [Online]. Available:

http://www.scholarpedia.org/article/SIFT. [Accessed 7

Nov 2016].

