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Abstract

This thesis presents methodologies for height control of a quadrotor that transports a piecewise
constant unknown load, given the estimates on both weight and state variables, based on measurements
from motion sensors installed on board. The control and estimation solutions were required to guarantee
null steady state position error and provide vertical velocity estimates, given that there is no velocity
sensor on board the quadrotor.

The approaches considered encompass linear and non-linear methods. They include an algebraic
solution, classical control, optimal control and estimation, integrative action, multi-model methods,
sliding mode control, and adaptive control techniques. All methods were tested in simulation and the
three most promising approaches were selected for proposal.

The first proposed solution has as controller the sub-optimal steady state solution of a Linear
Quadratic Regulator (LQR) problem, where an integrative effect is added. The in-flight estima-
tion problem is tackled resorting to a multiple-model adaptive estimator. The second solution is
a Multi-Model Adaptive Controller, using LQR with integrative action, and Kalman filter with
integrative component. The last solution incorporates an adaptive controller, scheduling LQR gains
and gravitational force compensation. The in-flight estimation problem is tackled resorting to a
multiple-model adaptive estimator. The control systems obtained were validated resorting to an
off-the-shelf commercially available quadrotor, equipped with an Inertial Measurement Unit (IMU), an
ultrasound height sensor, and a barometer, among other sensors.
Keywords: Quadrotor, Height Control, Estimation, Unknown Load

1. Introduction

With the rise of self-driving cars and autonomous
vehicles, one of their future uses could be to make
deliveries. With high pedestrian and automotive
traffic, deliveries can be delayed, but an aerial vehi-
cle has no such inhibition. Nowadays, low altitude
flight could be achieved without high traffic con-
cerns. Additionally, the UAV of choice for these
delivery systems has been multi-rotors. These ve-
hicles have high maneuverability and have hovering
capabilities, which makes them ideal for operation
in environments with multiple obstacles, such as ur-
ban environments.

One problem that relates to delivery systems is
the control of a quadrotor transporting a load of
unknown mass. A delivery system should be capa-
ble of transporting their cargo regardless of its mass
(within reason). The dynamics of the system would
change based on the mass and a fixed control might
not be capable of transporting loads with a mass
too different from the nominal mass considered. To
achieve a versatile solution, the quadrotor should

be capable of compensating, and/or estimating the
unknown mass of the load, making the necessary
adjustments during flight.

This is a summarized version of the thesis and
only contains details on the three solutions that
were selected for experimental testing.

1.1. Topic Overview
Mz̈ = f (u, ż, g) (1)

The height dynamics of a quadrotor are shown in
equation 1, where z is the height of the quadrotor,
M is its mass, u is the thrust and g is the accel-
eration of gravity, assumed constant at the mission
environment. Although it is a non-linear equation,
control solutions with an LQR controller and a con-
stant compensation of the gravitational component
can be used. However, this is not as simple for the
problem of piecewise constant unknown load mass
(m) transportation. Re-writing the equation, re-
sults in

(M +m)z̈ = f (u, ż, g,m) (2)
In this case, the solution for the control is not

as immediate, the performance degrades, and the
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platform stability is compromised. The gravita-
tional effect influenced by m is, therefore, unknown.
Only a lower bound for the gravity effect can be
known a priori. Additionally, the (M + m)z̈ com-
ponent presents an added non-linearity to the prob-
lem. Since linearization of this equation would limit
a solution to only work for a specific mass and pos-
sibly a small range of masses, the use of standard
linear solutions is out of question and alternative
solutions should be considered.

Given the non-linearity of the dynamics, the es-
timation problem is harder. Additionally, the avail-
able sensors of the quadrotor do not provide a mea-
surement of the z velocity or, if estimated based on
optical flow techniques, has poor quality. To tackle
the optimal control problem, the velocity is needed
and, in the absence of sensory data, an estimate is
required.

1.2. Objectives
In this work, it is intended to provide a solution
for controlling the height of a quadrotor carrying
a piecewise constant unknown load. Solutions for
this problem can be a controller which is capa-
ble of handling the height control without knowing
the mass, or devise a way of estimating the addi-
tional mass and have the controller adapt accord-
ingly. Both of these possibilities will be explored.

Additionally, estimation techniques for filtering
and fusing sensory data will be studied, as these
go hand in hand with many control techniques and
may also be capable of performing identification.

1.3. State of the Art
There is scarce control system design work made
for unknown loads. One such example can be found
in [1]. On the other hand, known load cases have
been explored extensively. In [2] a Mixed Integer
Quadratic Program was designed for the control
of a quadrotor with a load suspended by a cable
for aggressive maneuvering. In [3] the same prob-
lem is studied, but using a backstepping controller.
Another approach to suspended load transporta-
tion is to use multiple UAVs, like the one shown
in [4]. Here, a cooperative control scheme where
the quadrotors simultaneously carry the load is pro-
posed.

1.4. Extended Abstract Outline
This extended abstract is organized as follows: The
details of the model, physical representation, and
software used are discussed in section 2. The math-
ematical definition of the estimation methods is pre-
sented in section 3. The mathematical definition of
the control methods is presented in section 4. In
section 5 the simulation results for the discussed ap-
proaches are presented and analyzed. The experi-
mental results are presented and analyzed in section
6. Finally, in section 7 some concluding remarks are

drawn and possible future work is suggested.

2. Aerial Vehicle
The quadrotor model used is the Parrot Ar.Drone
2.0. The drone is equipped with four brushless mo-
tors. These actuators are controlled through the
use of PWM commands ranging from 0 to 100.

This quadrotor is equipped with an inboard IMU
(Inertial Measurement Unit), and front and ground
cameras, the later being an optical flow camera.
The inboard IMU is equipped with an accelerom-
eter, a gyroscope, a magnetometer, an ultrasound
sensor, and a barometer. With these sensors it is ca-
pable of measuring its height, angles, acceleration,
horizontal velocities and angular velocities.

The physical model of a quadrotor is described
in [5]. Since the purpose of this thesis is to control
the height, most work will be performed using the
isolated z component of the dynamics. Small angles
will be assumed, neglecting the effect of the rotation
on the z dynamics. Additionally, a linear drag effect
will be considered. Therefore, the simplified model
with the added load mass is the one presented in
(3), where M is the mass of the drone, m is the
mass of the load, a is actuation factor, g is gravity,
u is the thrust generated by the rotors, γ is the drag
coefficient, and z̈ is the height acceleration.

(M +m)z̈ = au− (M +m)g − γż (3)

Since most of the proposed techniques rely on op-
timal control methods, a state-space representation
is required. Taking into account that for the height
dynamics the available sensors are the ultrasound
(or barometer) and the accelerometer, the resulting
state-space representation is as presented in (4):[
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ż
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(4)

Finally, values for the relevant parameters are
presented in Table 1 and were taken from the drone
specifications and from [6].

Table 1: Drone Parameters.

Parameter Value
a 1

M (Kg) 0.420

γ 0.1

3. Estimation
In this section, the estimation methods are pre-
sented and detailed.

3.1. Multiple-Model Adaptive Estimation
The Multiple-Model Adaptive Estimation (MMAE)
algorithm [7] is a combined state-estimation and
system identification method. Its uses include pro-
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Figure 1: MMAE Structure.

viding a solution for parametric uncertainties and
for non-linear state-estimation (using different lin-
earizations). As the name implies, it relies on multi-
ple models for the same system, but assuming differ-
ent values of the parameter (or linearization points).
For each of these underlying models a Kalman filter
is designed, providing accurate optimal estimates
for its assumed model. The merging and process-
ing of the information provided by the bank of fil-
ters is computed resorting to the Bayesian Posterior
Probability Estimator (PPE) that selects the most
accurate filter.

The PPE assesses the accuracy through the
residues of the known sensory data, by assigning a
probability to each filter. The initial value of these
probabilities are known as the a priori probabilities
and are commonly initialized equal for the n filters
(1/n), unless there is a priori knowledge to support
giving a higher or lower probability at start. Fol-
lowing values are called the posterior probabilities
Pprobk(t + 1), calculated iteratively using the past
probabilities Pprobk(t) and residues of the filters ei
according to (5-7) [8] (h represents the number of
sensors used). The residual covariance matrix of
each filter (Si) is also used as a weighting parame-
ter in the calculations. βi(t) is a weighting param-
eter based on the residual covariance and number
of sensors, and wi(t) is a quadratic weighting pa-
rameter for the residue which also uses the residual
covariance.

Pprobk(t+ 1) =
βk(t+ 1)e−

1
2
wk(t+1)∑n

j=1 βj(t+ 1)e−
1
2
wj(t+1)

Pprobk(t) (5)

βi(t+ 1) =
1

(2π)
h
2
√
detSi(t+ 1)

(6)

wi(t+ 1) = r′(t+ 1)S−1
i (t+ 1)r(t+ 1) (7)

The state estimation of the MMAE algorithm is
obtained with a weighted average (see [7]) using
the posterior probabilities as a weighting factor, as
shown in (8), providing low pass filtered state esti-
mates.

x̂T =

n∑
j=1

Pprobj(t)x̂j (8)

The resulting structure is shown in Fig. 1.

Kalman
Filter

KI/s
u
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e

x̂

gr

Figure 2: Kalman Filter with Integrative Compo-
nent.

3.2. Kalman Filter with Integrative Component
Since the gravitational force will only match the real
value when there is a corresponding model, an ad-
ditional mechanism for handling the unknown grav-
itational force is necessary to account for the error
of the assumed gravitational force in the filters.

Since the residue (e) is a must for the MMAE,
it is possible to use it to adjust the gravitational
force (gr). By creating a feedback loop to the actu-
ation input (u) with an integrator, it allows for the
height estimate to follow the height measurement
closely and provide a more accurate estimate of the
velocity. For tuning purposes a gain can be given
to the integration, allowing to adjust the overshoot
and speed of the estimate. The resulting structure
resembles Fig. 2.

Since this method solves the gravitational force
issue, it could be considered sufficient to use a single
model approach. However, even if disregarding the
gravitational force, the mass still has weight on the
dynamics of the quadrotor and the larger the dif-
ference in the assumed mass of the filter, the higher
the error of the velocity estimate. Therefore, the
use of the MMAE algorithm is still beneficial.

3.3. Filter Design
Using the proposed state-space representation, the
Kalman gains L are obtained and are combined
with the integrative gain for the residue of the
height to provide the filter presented in (9) and (10). ¨̂z

˙̂z
ġr

 =

[
A−LC B −LD[
0 −KI

]
0

] ˙̂z
ẑ
gr

+

[
B −LD L

0
[
0 KI

]] [U
s

]
(9)[

ez̈
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]
=

[[
1 0

]
(−A+LC)

[
1 0

]
(−B +LD)[

0 −1
]

0

] ˙̂z
ẑ
gr


+

[[
1 0

]
(−B +LD)

[
1 0

]
(−L+ I)

0
[
0 1

] ] [
U
s

]
(10)

4. Control
In this section, the control methods are presented
and detailed.

4.1. LQR with Integrative Action
To account for the unknown gravitational force,
methods using integration were considered. The
LQR controller with integrative action is a varia-
tion consisting of a cascading controller with an in-
ner feedback of all the state-variables and an outer
layer that integrates the difference between refer-
ence and current value of the control variable, which
is equivalent to the structure shown in Fig. 3.
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To obtain a controller like this using LQR con-
trol it is only necessary to modify the model of the
dynamics when calculating the LQR gains. By us-
ing the modified version of the model presented in
(11), there will be a state-variable associated with
the integration that will be used for defining the
integrative control gain.

AI =

[
A 0
−C 0

]
BI =

[
B
0

]
(11)

Having a modified model, the next step is very
straightforward, just calculate the LQR gains for
the new model. Finally, from the resulting gains we
obtain two different sets. K is the vector of gains
for the state variables and KI is the gain for the
integrative component, selected according to Kcalc:

Kcalc = [K| −KI ] KIT = [K KI ]
K = [Kv Kh]

Since this is a methodology for linear systems, a
restructuring of the dynamics is required. There-
fore, the restructuring used in Section 3.2 will also
be used on the design of the controller. As men-
tioned in section 1.1, feedback linearization is a pos-
sible solution for the known load case, but it can still
be used with an unknown load. Using a feedback
linearization of the mass of the quadrotor lessens
the work required by the LQR controller with inte-
grative action and results in a faster control. The
controller structure used is, therefore, presented in
Fig. 4.

4.2. Multi-Model Adaptive Control

The Multiple-Model Adaptive Control (MMAC) al-
gorithm [7] is a combined state-estimation, con-
trol and system identification method. Its uses in-
clude providing a solution for parametric uncertain-
ties and for non-linear control (using different lin-
earizations). It performs the necessary estimation
and control for different models of the system in
study. It uses Multiple models and the PPE like
the MMAE algorithm, but it replaces the bank of
Kalman filters with a bank of combined Kalman
filters and LQR controllers.

The total actuation of the MMAC can be ob-
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Figure 4: LQR with Integrative Action and
Quadrotor Mass compensation.
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Figure 5: MMAC Structure.

tained in a similar way to the MMAE algorithm
overall estimation. In this work, it was adopted the
use of the average weight, as it provides low pass
filtered actuation, i.e.

ûT =

n∑
j=1

Pprobj(t)uj (12)

The resulting structure is depicted in Fig. 5.

4.3. Adaptive Control

The adaptive mechanism selected is an MIT rule
reference model identifier of the mass. The
reference model is a second-order transfer function
based on the desired height and the mechanism [9]
is described by (13). Where zp is the height mea-
surement, zm is the reference model height and k is
an adjustment parameter.

˙̂m = k (zm − zp) zm (13)

Having an estimate of the mass that does not
depend on the values of the assumed models of the
MMAE, it is possible to solve the problem of the un-
known gravitational force, which allows the use of a
feedback linearization to remove this non-linearity
from the system. In doing so, the remainder of the
control will not require to account for this force,
removing the need for solutions like adding integra-
tive action.

Use of the feedback linearization solves the hover
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Figure 6: Top (a) - Control Structure; Bottom (b)
- Controller.
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force problem, but does not fully linearize the sys-
tem. The mass of the quadrotor is still present in
the remainder of the dynamics. Therefore, a static
gain controller does not provide an optimal solu-
tion. Given that the adaptive mechanism provides
an estimate for the mass of the quadrotor, this can
be used to adjust an LQR controller according to
the estimate and ensure the optimality of the con-
troller. For this purpose, an explicit calculation of
the LQR gains is necessary, that departs from the
optimal steady state H2 control problem solution.
The obtained steady state gains equations are pre-
sented in (14-17), where K2 is constant.

α = M +m (14)

p11 =

√
α
(
r
(
a2q1 + γ2r + 2aα

√
rq2
))
− αγr

a2
(15)

p12 =
α

a

√
rq2 (16)

K = [K1 K2] = R−1BTP =
a

rα

[
p11 p12

]
(17)

The structure of the full solution (a) and the con-
troller (b) are presented in Fig. 6.

5. Simulation Results
In this section, the preparation and results of the
simulation are presented. Limitations related to the

available thrust of the motor limited the range of
load masses to a maximum of 0.15 kg and seven
masses 0.025 kg apart were used for the multi-model
algorithms.

5.1. LQR with Integrative Action with Integrative
MMAE Estimation

The simulated load of this simulation was given a
mass of 0.025 kg. For the purpose of the Kalman
gain calculations, the covariance of the sensor noise
was defined as 1 and 0.001 for the acceleration
and height respectively, while the process noise was
given a covariance of 0.5. The integrative gain of
the filters was set as 4. The PPE was set to hold
until a height of 0.01 m had been reached, which
also triggered the filters’ reset. The calculated LQR
integrative gain was KI = 0.5 and the state gains
were K = [0.8877 1.1494] for velocity and height
respectively. A stop condition for the integrative
component of the control was set for the thrusts
outside a range of 3 to 5 N.

The results of the simulation are presented in
Figs. 7 and 8, where it is observed that there is
a 1 second lift-off period, followed immediately by
the filter reset. The settling time (5%) is at 4.8 sec-
onds and the height stabilizes around the 6 second
mark. There is no overshoot and the filters settle
0.5 seconds after resetting. At the same time that
the state error settles, the 0.445 kg filter is selected,
providing accurate mass estimation. However, the
mass estimate can have an error in cases where the
real mass does not match any of the filter masses.

5.2. MMAC with Integrative Action and Integra-
tive Kalman Filters

The simulated load of this simulation was given a
mass of 0.025 kg. For the purpose of the Kalman
gain calculations, the covariance of the sensor noise
was defined as 1 and 0.001 for the acceleration
and height respectively, while the process noise was
given a covariance of 0.5. The integrative gain of the
filters was set as 4. The PPE was set to hold un-
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til a height of 0.01 m had been reached, which also
triggered the filters’ reset. The LQR gains were
calculated using Q = diag ([0.001 5 3.75]) and
R = 15. A stop condition for the integrative com-
ponent of the control was set for the thrusts outside
a range of 3 to 5 N.

The results of the simulation are presented in
Figs. 9 and 10. The settling time (5%) is at 4.5
seconds and the height stabilises around the 5 sec-
ond mark for both tests without overshoot. The fil-
ter selection was made in under 0.5 seconds in both
tests, providing accurate mass estimation in the no
load case and having a slight error in the load case,
as the mass of the no load matched one of the filters
and the mass of the load case did not. The MMAC
did not attribute full probability to the selected fil-
ter in the load case, having a small residue for the
0.495 kg filter, resulting in a higher mass than that
of the nearest filter. The actuation did not saturate
and was quick to adjust to fit the case in testing,
as evidenced by the quick change in actuation for
the no load case. These results were promising and
provided similar results independently of whether

the mass matched the assumed masses of the filters
or not.

5.3. Adaptive LQR Controller with Integrative
MMAE Estimation

The simulated load of this simulation was given a
mass of 0.0625 kg. For the purpose of the Kalman
gain calculations, the covariance of the sensor noise
was defined as 1 and 0.001 for the acceleration
and height respectively, while the process noise was
given a covariance of 0.5. The integrative gain of the
filters was set as 4. The PPE was set to hold until
a height of 0.01 m had been reached, which also re-
turns the filters to their initial condition to avoid er-
ror accumulation before lift-off. The adaptive LQR
gains were calculated using a Q = diag (2.5 25)
and R = 10. The adaptive mechanism gain was set
to 0.07 and the reference model was a second-order
transfer function with the desired height as input
and parameters of wn = 10 and ζ = 1.5. Addition-
ally, for low height, the reference value was changed
to 0.1 to allow for a less aggressive initialization.

The results of the simulation are presented in
Figs. 11 and 12. The settling time (5%) is at 4 sec-
onds and the height stabilizes around the 4.5 sec-
ond mark. There is an overshoot of 8% and the
filters settle 1 second after resetting. The actuation
saturates, but only during the start of flight. Im-
mediately after lift-off the state error settles, and
the 0.495 kg filter is selected. The resulting error
in the mass estimate was expected, as the value of
the mass doesn’t match any filter. The adaptive
estimate of the mass converges to the correct value
and settles at 3 seconds with little overshoot.
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6. Experimental Results

In this section, the experimental set-up is presented.
Then, the implementation platform for the solu-
tions and the additional components required for
the full control of the quadrotor will be discussed.
Finally, the experimental results of the proposed
solution will be presented and analyzed.

6.1. Implementation

For the purpose of implementing the control, the
AR.Drone 2.0 Quadcopter Embedded Coder [10]
was used, as it provides a Simulink based envi-
ronment for development of software to run in the
quadrotor, and allows direct access to its sensors
and actuators.

The control and estimation approaches were
transferred onto the Embedded Coder Simulink en-
vironment. The commands for the four rotors were
defined by first calculating the necessary thrust
from each rotor, from the desired overall thrust and
the desired torques, and converting them into their

equivalent PWM commands.

The total mass of the load used was 0.057 kg.
Additionally, the mass of the quadrotor was higher
than expected having an added 0.05 kg without us-
ing a load.

6.2. LQR with Interative Action with Integrative
MMAE Estimation

The results obtained with the set-up in Section 6.1
are presented in Figs. 13 and 14. The thrust gain
a had to be changed to 1.025 to ensure accurate
mass estimation. It is observed in Fig. 13a that
the settling times (5%) are 5 and 7 seconds for the
no load and with load cases respectively. The one
meter height is reached at 6 and 7.5 seconds re-
spectively. The height estimate is smoother and
follows the measurement very closely for both cases,
as seen in Fig. 13c and 13d. The estimated velocity
is smooth despite the sensitivity of the accelerom-
eter and seems coherent with the height data. In
the initial stage of flight in Fig. 13e, the filter that
was given more probability was the one with 0.495
kg, but the filter with the correct mass was selected
in the end. In Fig. 13f the selection of the filter
matching the closest mass was also observed and
always had the highest probability. Additionally,
the selection of the mass with no load settled in
about 2.5 seconds, while for the load case it set-
tled in approximately 2 second. The settling time
of the probabilities is further corroborated in Fig.
14, where it can also be observed the accurate esti-
mation of the mass in the no load test and an error
of 0.007 kg in the load test, due to it not matching
the filters.
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Figure 13: LQR with integrative action experimental results. From left to right, top to bottom: (a)
Height for both tests, (b) Actuation for both tests, (c) State estimates for the no load test, (d) State
estimates for the load test, (e) Posterior probabilities for the no load test, (f) Posterior probabilities for
the load test
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Figure 14: LQR with integrative action experimen-
tal results: Mass estimate of both tests.

6.3. MMAC with Integrative Action and Integra-
tive Kalman Filters

The experimental results are presented in Figs. 15
and 16. The thrust gain a had to be changed to
1.025 to ensure accurate mass estimation. It is ob-
served in Fig. 15a that the settling times (5%) are
4 and 6.5 seconds for the no load and with load
cases respectively. The one meter height is reached
at 4.5 and 6.5 seconds respectively. There was a
4% overshoot in the no load test. The actuation
saturates only momentarily and stabilizes with lim-
ited variation, as seen in Fig. 15b. In the initial
stage of flight in Fig. 15c, the filter that was given
more probability was the one with a mass of 0.495
kg, but the filter with the correct mass was selected
in the end. In Fig. 15d the selection of the filter

matching the closest mass was also observed and
always had the highest probability. Additionally,
the selection of the mass for with no load settled in
about 2.5 seconds, while for the load case it settled
in approximately 2 seconds. The settling time of
the probabilities is further corroborated in Fig. 16,
where it can also be observed the accurate estima-
tion of the mass in the no load test and an error of
0.007 kg in the load test, due to it not matching the
filters.

6.4. Adaptive LQR Controller with Integrative
MMAE Estimation

The experimental results are presented in Fig. 17.
For the estimator, the thrust gain a had to be
changed to 1.025 in order to ensure accurate mass
estimation, while for the control it was changed to
1.05. The settling times (5%) are 6 and 6.5 seconds
for the no load and with load cases respectively.
The static one meter height is reached at 7 seconds
in both cases. The height estimate is smoother and
follows the measurement very closely for both cases.
The estimated velocity is smooth despite the sensi-
tivity of the accelerometer and seems coherent with
the height data. In the initial stage of flight, the fil-
ter that was given more probability in the no load
test was the one with a mass of 0.495 kg, but the
filter with the correct mass was selected in the end.
For the load test, the selection of the filter match-
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Figure 15: MMAC experimental results: upper left - (a) Height for both tests, upper right - (b) Actuation
for both tests, bottom left - (c) Posterior probability no load test, bottom right - (d) Posterior probability
load test.
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Figure 16: MMAC experimental results: Mass esti-
mates for both tests.

ing the closest mass was also observed and always
had the highest probability. Additionally, the selec-
tion of the mass with the MMAE settled in about
2 seconds in both cases. The settling time of the
probabilities is further corroborated in Fig. 17e,
where it can also be observed the accurate estima-
tion of the mass in the no load test and an error
of 0.007 kg in the load test, due to it not match-
ing the filters. The adaptive estimate of the mass
was accurate for the no load case, but had an error
of 0.015 kg on the load case. The height gain of
the LQR controller was constant, but the velocity
gain decreased slightly with the increasing mass es-
timate, allowing for more force to be requested in
higher mass cases. The actuation saturates at the
lift-off stage in both tests and only once more in the
load test.

7. Conclusions

The purpose of this thesis was to provide a height
control system for an off-the-shelf drone using on-
board sensors. Multiple estimation and control so-
lutions were studied, including non-linear control

solutions, which was a requirement of the selected
topic. All solutions were tested in simulation and
experimentally.

A new method for adjusting Kalman filters was
suggested: the Kalman filter with integrative com-
ponent. In this method, the filter was adjusted with
a feedback loop with integration from the residue of
a sensor (the height sensor in this case).

The proposed solutions were the LQR with inte-
grative action using an integrative MMAE estima-
tor, the MMAC using LQR with integrative action
and Kalman filters with integrative component, and
the adaptive controller using an integrative MMAE
estimator. All solutions had a settling time equal
or under 7 seconds and the maximum overshoot
was of 4%. All multi-model methods were capable
of selecting the model closest to the real load and
the adaptive identification provided accurate esti-
mation on simulation, but had some error on the
experimental estimate for the load test.

To finalize the work produced here, it would be
relevant to add horizontal position control for full
position control, define a suitable Lyapunov func-
tion for the unknown load problem, and define Lya-
punov based estimation and control approaches.
Two other problems to explore could also be the
control of a quadrotor with an unknown cable-
suspended load and the control of a quadrotor for
dropping a load while moving.
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Figure 17: Adaptive control experimental results. From left to right, top to bottom: (a) Height mea-
surement from both tests, (b) Actuation of both tests, (c) State estimates for the no load test, (d) State
estimates for the load test, (e) MMAE mass estimate from both tests, (f) Adaptive mass estimate from
both tests, (g) LQR gains for the no load test, (h) LQR gains for the load test
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