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Abstract: This thesis presents two navigation systems based on Kalman complementary filtering for position
and attitude estimation, with an application to Unmanned Air Vehicles (UAVs), in denied Global Positioning
System (GPS) areas. Resorting to inertial measurements, vector observations and landmarks positioning, the
proposed complementary filters provide attitude estimates resorting to Euler angles representation and position
estimates relative to a fixed inertial frame. Both architectures share the same attitude filter, which estimates
the Euler angles and rate gyro bias by exploiting a gyroscope noise model. In the first architecture, position and
body velocity bias are estimated. The second architecture provides estimates on position, body velocities and
acceleration bias. Stability and performance properties for the operating conditions are derived by Lyapunov
theory and the procedure tuning of the filters’ parameters in the frequency domain is detailed. Requirements on
low computational burden were a priority in both the navigation system and especially in the vision algorithm,
making it suitable for off-the-shelf hardware. Experimental results obtained in real time with an implementation
of the proposed solutions with an AR.Drone 2.0 using two different built-in Simulink platforms are presented and
discussed. The computation is provided by a laptop connected with the UAV in real time for the first approach.
In the second, the proposed architectures run in real time fully onboard of the vehicle’s processor.

Keywords: Navigation Systems, Complementary Kalman Filters, UAV, Stability, Lyapunov,
Vision sensors

1. INTRODUCTION

Nowadays, the technological development and interest in
low-cost UAVs have been on the rise in both civilian and
military aviation sectors to accomplish different missions
such as coastal surveillance operations, rescue, monitoring,
security and inspection (Mohamed et al. (2018)).

In regular UAVs, Micro Electro Mechanical Systems
(MEMS) are employed, which are low-cost and low-power
consumption sensors, for the Inertial Navigation Systems
(INS). Compared with high-end sensors like active ring-
laser and interferometric fiber-optic sensor (P. Crain et al.
(2010)), MEMS suffer from strong non-linearities such as
bias and noise that degrade the accuracy of the estimates.
To improve the performance and robustness of MEMS
based INS, sensor fusion with an appropriate model are
required to achieve a better attitude and position esti-
mation and tracking. For this reason, current INSs rely
on GPS signals to compensate position drift. To achieve
optimal results with proved stability, Kalman filters (KFs)
are the workhorse to fuse inertial measurement unit (IMU)
and GPS measurements. One of the main limitations of
the GPS-aided INS configuration is environments such
as indoors, underground, underwater, in space, etc. In
some cases, Visual-Aided INS can provide precise state
estimates replacing the GPS.

This work focuses on the development of a Visual-Aided
landmark positioning system aided IMU using complemen-
tary filters onboard of an Ar Drone 2.0. An innovative
method is proposed by using color feature recognition for
landmark tracking to compute position and attitude rela-
tive to a target via the algebraic Robust O(n) solution to
the Perspective-n-Point (RPnP) from Li et al. (2012). The
obtained measurements are fused with the MEMS sensor
outputs and with the Optical Flow (OF) velocity from

the UAV. The problem of accurate position and attitude
is addressed by exploiting the different range of relevant
frequency regions presented in each measurement. The
filtering solution is able to estimate accurately position,
attitude.

The choice of type of filter technique in INS ranges from
classical methodologies to recently proposed approaches.
In the classical approach, KF is applied in real-time
applications to fuse data from different sensors in an
optimal way. The idea is to get independent and redundant
information about navigation states, like position, attitude
and velocity, and fuse them, with the requisite of having a
prior information about the covariance values of both INS
and position sensor as well statistical properties of each
sensor system, see Gelb (1974). Extended Kalman Filter
(EKF) is a nonlinear filtering technique where a nonlinear
model is considered and a linearization occurs each time
to get Kalman gains. However, the linearization implicit
in EKF leads to performance degradation or even filter
divergence if the assumption of local linearity is violated
(Maybeck (1994)). In Crassidis et al. (2007) and Mahony
et al. (2008), a number of other alternative techniques
are introduced, namely Unscented Kalman Filters (UKF),
Particle Filters (PF), Adaptive Methods and Nonlinear
Observers.

The INS in this work is designed to be easily implemented
in a low-cost, low-power consumption hardware architec-
ture. Therefore, high computation cost filters like EKF,
UKF and PF were out of the equation. The complementary
Kalman filters proposed in this work are time-varying,
although the gains are computed offline using an auxiliary
time-invariant design system that by means of a Lyapunov
transformation becomes the proposed filter (Vasconcelos
et al. (2011)). The main contribution of this thesis is the



INS performance validation onboard of an AR.Drone 2.0
in real time.

This extended abstract is organized as follows. Section 2
presents the deduction of the complementary filters and
their stability and performance properties are discussed.
Section 3 shows the implementation of the INS using both
attitude and position filters combined. Filter observations
based on IMU and vision sensors are discussed. In Section
4 the INS experimental results onboard of an Ar Drone
2.0 are shown and its performance analyzed. Concluding
remarks are pointed out in Section 5.

2. ATTITUDE AND POSITION COMPLEMENTARY
FILTERS

In this section, complementary filters for attitude and
position are proposed and their performance and stability
is proven. The attitude filter is design making use of Alan
Variance angular velocity to model its noise and a vector
of measurements computed from accelerometer data. The
position filter is designed in the frequency domain using
the OF’s velocity as input and position measurement from
a landmark.

2.1 Attitude Filter

Gyroscope Noise Model. According to Ünver (2013),
the most predominant noises in a MEMS gyroscope are
the angle random walk (ARW), bias instability (BI) and
rate random walk (RRW). For more information about
gyro’s noises and how they can be modelled, please refer
to Petkov and Slavov (2010).

ARW is a high-frequency noise modelled as a zero-mean
white noise with an approximated variance:

σ2
arw =

N2

∆t
(1)

where ∆t is the sampling time interval and N is the ARW
parameter from the Allan Deviation (AD) plot.

BI has an impact on long term stability and can be
approximated by a Markov process (Petkov and Slavov
(2010)), with a process standard deviation proportional to
the AD parameter B. The discrete time of bω1 at time k
subject to the sample-and-hold method is given by:

bω1k+1 =

(
1− 1

T
∆t

)
bω1k + vk (2)

where k the index of time t = k∆t, bω1 is a random
process, T corresponds to the correlation time of BI and
vk a driven zero-mean white noise with variance σv

2 =

σ2
b

(
1− e−2∆t/T

)
, where σ2

b = 2B2

π ln(2) is the variance of
BI. T can be obtained from AD plot around the BI region.

RRW occurs whenever a zero-mean white noise is inte-
grated over time. The discrete time of bω2 at time k subject
to sample-and-hold method, is given by:

bω2k+1 = bω2k + ηk (3)

where ηk is a zero-mean white noise with variance ση
2 =

∆tK2, K is the RRW parameter from AD plot.

In line with the previously described noises formulations,
the gyro noise model is given in discrete state-space form
as Quinchia et al. (2013):

bωk+1 =

[(
1− 1

T ∆t
)

0
0 1

] [
bω1

bω2

]
k

+

[√
σ2
b

(
1− e−2∆t/T

)
√
K2∆t

]
wk

yk = [1 1]

[
bω1

bω2

]
k

+
[√

N2

∆t

]
ζk

(4)

wherewk and ζk are normally distributed zero-mean white
noises.

Filter. Let λ = [ψ θ φ]
T

be the vector containing the
true Euler angles yaw, pitch and roll, respectively. Euler
angles kinematic is given by:

λ̇ = Q(λ)ω, Q (λ) =

[
0 sin(φ) sec(θ) cos(φ) sec(θ)
0 cos(φ) − sin(φ)
1 sin(φ) tan(θ) cos(φ) tan(θ)

]
(5)

where ω = [ωx ωy ωz]
T

is the true angular velocity in the
body frame. The discrete-time equivalent system of (5),
resorting to the step invariant method, is:

λk+1 = λk + ∆tQ(λk)ωk (6)

The angular velocity is measured by the gyroscope sub-
jected to noise is given by:

ωk = ω̄k + yk (7)

where ω̄k represents the value of angular velocities and
yk the output of the noise model (4) for each velocity.
Rewriting the kinematic of Euler angles (6-7) in state space
form yields:[

λ
bω1

bω2

]
k+1

=

[
I −∆tQ(λk) −∆tQ(λk)
0 I − ∆tT−1 0
0 0 I

][
λ
bω1

bω2

]
k

+[
∆tQ(λk)

0
0

]
ωk +

[
−∆tQ(λk) 0 0

0 I 0
0 0 I

][
narw
nbi
nrrw

]

yλk =
[
I 0 0

][ λ
bω1

bω2

]
k

+ Θk

(8)

where bω1 and bω2 are sensor bias vectors correspondent
to the angular velocities ω. Considering the following
nonlinear feedback system of (8), as the proposed attitude
filter, depicted in Fig. 1:[
λ̂

b̂ω1

b̂ω2

]
k+1

=

[
I −∆tQ(λk) −∆tQ(λk)
0 I − ∆tT−1 0
0 0 I

][
λ̂

b̂ω1

b̂ω2

]
k

+

[
∆tQ(λk)

0
0

]
ωk

+

[
Q(λk)(K1λ − I) +Q(λk−1)

K2λ

K3λ

]
Q−1(λk−1)(λk − λ̂k)

(9)
where the hat means estimate, λk is the observed Euler
angles corrupted by a Gaussian zero-mean white-noise
Θk, and K1λ, K2λ, K3λ ∈ M(3,3) are feedback gain
matrices. The attitude observation λk can be obtained by
measuring the Earth’s gravitational and magnetic fields
or by other observations such as cameras. Rewriting the
attitude kinematics (8) considering I in place ofQ (λ) and
ωk = 0 results in a linear time invariant system:



[
Xλ
Xbω1

Xbω2

]
k+1

=

[
I −∆tI −∆tI
0 I − ∆tT−1 0
0 0 I

][
Xλ
Xbω1

Xbω2

]
k

+

[
−∆tI 0 0

0 I 0
0 0 I

][
narw
nbi
nrrw

]
k

yX k =
[
I 0 0

][ Xλ
Xbω1

Xbω2

]
k

+ Θk

(10)

Can be proven, Asymptotic stability of the system (9) with
K1λ, K2λ and K3λ being the steady state Kalman gains
of (10), if the pitch angle is bounded, |θ| < θmax <

π
2 , by

means of a Lyapunov transformation on the error’s closed
loop.

Theorem 1. Consider the discrete-time system (8). Let
K1λ, K2λ and K3λ be the steady-state Kalman gains
for the system (10) and assume a bounded pitch for the
UAV, |θ| < θmax <

π
2 . Then the attitude complementary

filter (9) is uniformly asymptotically stable (UAS).

Proof. Let λ̃k = λk − λ̂k, b̃ωik = bωik − b̂ωik denote the
estimation errors. This error dynamics are given by[
λ̃

b̃ω1

b̃ω2

]
k+1

=

[
Q(λk)(I −K1λ)Q−1(λk−1) −∆tQ(λk) −∆tQ(λk)

−K2λQ
−1(λk−1) I − ∆tT−1 0

−K3λQ
−1(λk−1) 0 I

][
λ̃

b̃ω1

b̃ω2

]
k

+

[
−∆tQ(λk) 0 0

0 I 0

0 0 I

]
ωk +

[
Q(λk)(I −K1λ) −Q(λk−1)

−K2λ

−K3λ

]
Θλk

(11)
By definition, the filter (11) is UAS if its origin is UAS in
the absence of state and measurement noises, see Jazwinski
(1970). Nonetheless, the state and measurement noises are
explicit in the proof for convenience. The system (10) can
be rewritten in a compact state space formulation:

Xk+1 = FXk +Gnk, yXk = HXk + Θk (12)

where X, nk, yXk, F and G are the vectors and matrices
found in (10). It is straightforward to show that the
observability and controllability matrices of system (10)
are full rank, hence the close-loop system

X̃k+1 = (F −KH) X̃k +Gnk −KΘk (13)

where K =
[
K
′
1λ K

′
2λ K

′
3λ

]T
, is UAS (see Anderson and

Moore (1979)). Define the Lyapunov transformation of
variables: λ̃X

b̃ω1X

b̃ω2X


k

= Tk

 X̃λ

X̃bω1

X̃bω2


k

, Tk =

[
Q(λk−1) 0 0

0 I 0
0 0 I

]
(14)

which according to Rugh (1996) is well defined with the
assumption that θ is bounded. Applying the Lyapunov
transformation Tk to (13) yields[

λ̃X

b̃ω1X

b̃ω2X

]
k+1

=

[
Q(λk)(I −K1λ)Q−1(λk−1) −∆tQ(λk) −∆tQ(λk)

−K2λQ
−1(λk−1) I − ∆tT−1 0

−K3λQ
−1(λk−1) 0 I

][
λ̃X

b̃ω1X

b̃ω2X

]
k

+[
−∆tQ(λk) 0 0

0 I 0

0 0 I

]
ωk +

[
−Q(λk)K1λ

−K2λ

−K3λ

]
vλk

(15)

The origin of (13) is UAS and, by the Lyapunov trans-
formation properties, the origin of (15) as well. Therefore,
the origin of (11) is uniformly asymptotically stable.

Considering slow maneuvers, the performance of the pro-
posed attitude filter with the steady state Kalman gains
of the system (10) is identical to that of a Kalman filter
designed for the time-varying system (8).

Proposition 2. Let the state and observation disturbances
in the attitude kinematics (8) be characterized by the
zero-mean Gaussian white noises narw, nbi, nrrw and
vk, respectively, and assume that pitch and roll angles are
constant. Then the complementary filter (9) is the ”steady
state” Kalman filter for the system (8) in the sense that
the Kalman feedback gain Koptk converges asymptotically
as follows:

lim
k→∞

∥∥∥∥∥Kopt k −
[
Q(λk)(K1λ − I) +Q(λk−1)

K2λ

K3λ

]∥∥∥∥∥ = 0

(16)

Proof. An analogous proof can be found in theorem 2 of
Vasconcelos et al. (2011).

This holds for small variations in pitch and roll. For ag-
gressive maneuvers with a time-varying pitch and roll the
filter’s performance can be compared offline by computing
the estimation error covariances of the filters as in Ap-
pendix A of Vasconcelos et al. (2011).

2.2 Position Filter with Velocity Bias

The proposed position filter is based on the complemen-
tary attitude filter proposed by Vasconcelos et al. (2011),
where the Euler angles become the UAV inertial position
p, and the input, instead of being the angular velocity will
be the UAV body frame’s velocity Bv.

The continuous-time position kinematics are given by:

ṗ = v (17)

where p and v are the position and velocity in the chosen
inertial frame coordinates. LetRI be the rotational matrix
from body frame {B} to inertial frame {I}. The discrete-
time equivalent subject to a sample-and-hold becomes:

pk+1 = pk + ∆tRI
k
Bvk (18)

The OF from bottom the camera measures the velocity
relative to the ground on UAV body frame giving:

Bvk = Bv̄k + bv k + nbk (19)

where Bv̄k denote the true body velocity, bv k the velocity
bias and nbk a zero-mean white-noise.

The position kinematics (18), using the OF’s measure-
ments, are described in state-space form by:[
p
bv

]
k+1

=
[
I −∆tRI

k
0 I

] [
p
bv

]
k
+
[

∆tRI
k

0

]
Bvk +

[
−∆tRI

k 0
0 I

] [
np
nb

]
k

(20)

where npk is a zero-mean Gaussian white noise that
accounts for disturbance in the position. The position
observer, depicted in Fig. 1, is given by the following
nonlinear feedback system:



K2λ z−1

ωrk

∆tQ(λk) z−1

λk

Q−1(λk−1)

b̂ω1k+1 b̂ω1k λ̂k+1 λ̂k

λ̃k

Q(λk)(K1λ − I) +Q(λk−1)

I − ∆tT−1

K3λ z−1
b̂ω2k+1

b̂ω2k

−

− +

−
+− +

K2λ z−1

Bvk

∆tRI
k z−1

pk

RI T
k−1

b̂vk+1 b̂vk p̂k+1 p̂k

p̃k

RI
k(K1p − I) + RI

k−1

− +

−
+− +

z−1 −∆tRI T
k+1R

I
k z−1 ∆tRI

k z−1

yp k

K1p

RI T
k+1R

I
k

K2vR
I T
k+1

K3vR
I T
k+1

K3pR
I T
k+1

K2pR
I T
k+1

yv k

RI
k K1v

−∆t2

2 RI
k

∆tRI T
k+1R

I
k

Bak

RI T
k

∆t2

2 RI
k

b̂ak+1
Bv̂

k p̂k −

−

I ḡk −

Fig. 1. Attitude (top left), position with velocity bias (top right) and position with acceleration bias (bottom) filter
block diagrams.

[
p̂

b̂v

]
k+1

=

[
I −∆tRI

k
0 I

] [
p̂

b̂v

]
k

+

[
∆tRI

k
0

]
Bvk+[

RI
k(K1p − I) +RI

k−1
K2bv

]
RI T
k−1(pk − p̂k)

(21)

It is proved by Vasconcelos et al. (2011) that if K1p

and K2bv are the Kalman gains for the system (20)
with RI

k = I, with the small difference that here pitch
does not have to be bounded, then the filter (21) is
uniformly asymptotically stable (UAS). Another extended
proof can be deduced from Vasconcelos et al. (2011) is
that assuming zero-mean Gaussian noise for the state and
observation disturbances, without the need of having roll
and pitch constant, the complementary filter (21) is the
“steady state” Kalman filter for the system (20) in the
sense that the Kalman feedback gain Kopt k converges
asymptotically as follows:

lim
k→∞

∥∥∥∥Kopt k −
[
RI
k(K1p − I) +RI

k−1
K2b

]∥∥∥∥ = 0 (22)

2.3 Position Filter with acceleration bias

The proposed position filter goes further than the previous
subsection by considering the acceleration in the dynamic
model. Position, velocity and acceleration bias are consid-
ered as state variables.

The continuous-time position and velocity kinematics are
given by: {

v̇ = a

ṗ = v
(23)

where p, v and a are the position, velocity and linear accel-
eration in a chosen inertial frame coordinates, respectively.
Let RI be the rotational matrix from body frame {B} to

inertial frame {I}. The discrete-time equivalent subject
to a sample-and-hold can be given by (Vasconcelos et al.
(2011)):

pk+1 = pk + ∆tRI
k
Bv

k
+

∆t2

2
RI
k
Bak

Bv
k+1

= RI T
k+1R

I
k
Bv

k
+ ∆tRI T

k+1R
I
k
Bak

vk = RI
k
Bv

k

ak = RI
k
Bak

(24)

where Bv
k

and Bāk are the velocity and acceleration in
the body frame, respectively.

The accelerometer measures the specific force, which is
the difference between the inertial and the gravitational
acceleration of the rigid body, and is modelled in the body
frame {B} as:

Ba
k

= Bāk − B ḡk + bak + nak (25)

where Bāk denote the true body acceleration, B ḡk the true
gravitational acceleration, nak a zero-mean white-noise
and bak a fast driving bias term that accounts for non-
modeled behavior, e.g. centripetal acceleration, modeled
as:

bak+1 = RI T
k+1R

I
k (bak + nbak) (26)

where nba is a zero-mean white-noise.

The position kinematics (24), using the accelerometer
model (25-26), are described in state-space form by:



[
p
Bv
ba

]
k+1

=

I ∆tRI
k −∆t2

2
RI

k
0 RI T

k+1R
I
k −∆tRI T

k+1R
I
k

0 0 RI T
k+1R

I
k

[ pBv
ba

]
k

+

[
∆t2

2
RI

k
∆tRI T

k+1R
I
k

0

](
Bak −RI T

k
I ḡk

)
+I −∆t2

2
RI

k 0

0 −∆tRI T
k+1R

I
k 0

0 0 RI T
k+1R

I
k

[ npna
nba

]
k

ypk =

[
I 0 0
0 I 0

][ p
Bv
ba

]
k

+ Θk

(27)

where npk is a zero-mean Gaussian white noise that
accounts for disturbance in the position. The proposed
position observer with acceleration bias, depicted in Fig.
1, is given by the following nonlinear feedback system:[
p̂
B v̂

b̂a

]
k+1

=

I ∆tRI
k −∆t2

2
RI

k
0 RI T

k+1R
I
k −∆tRI T

k+1R
I
k

0 0 RI T
k+1R

I
k

[ p̂B v̂
b̂a

]
k

+

[
∆t2

2
RI

k
∆tRI T

k+1R
I
k

0

](
Bak −RI T

k
I ḡk

)
+[

K1p K1v

K2pRI T
k+1 K2vRI T

k+1

K3pRI T
k+1 K3vRI T

k+1

][
pk − p̂k + Θ1 k

RI
k

(
Bvk − B v̂k

)
+ Θ2 k

]
︸ ︷︷ ︸

yk

(28)

where the hat is used to denote an estimate, pk and Bv
k

are the observed position and velocity corrupted by a
Gaussian zero-mean white-noise Θk, and Kip and Kiv ∈
M(3,3) are feedback gain matrices. The position observa-
tion pk can be obtained by vision-based algorithms.

Rewriting the position kinematics (24) consideringRI = I
and without input results in the following linear time
invariant system:[
Xp
XBv
Xba

]
k+1

=

[
I ∆tI −∆t2

2
I

0 I −∆tI
0 0 I

][
Xp
XBv
Xba

]
k

+

[
I −∆t2

2
I 0

0 −∆tI 0
0 0 I

][
np
na
nba

]
k

(29)

Theorem 3. Consider the discrete-time system (27). Let
Kip and Kiv be the steady-state Kalman gains for the
system (29). Then the position complementary filter (28)
is uniformly asymptotically stable (UAS).

Proof. The proof is omitted due to its extension. �

Proposition 4. Let the state and observation disturbances
in the position kinematics (27) be characterized by the
zero-mean Gaussian white noises np, na, nba and Θk,
respectively. Then the complementary filter (28) is the
”steady state” Kalman filter for the system (27) in the
sense that the Kalman feedback gain Koptk converges
asymptotically as follows:

lim
k→∞

∥∥∥∥∥∥Kopt k −

 K1p K1v

K2pR
I T
k+1 K2vR

I T
k+1

K3pR
I T
k+1 K3vR

I T
k+1

∥∥∥∥∥∥ = 0 (30)

Proof. An analogous proof can be found in theorem 4 of
Vasconcelos et al. (2011).

3. NAVIGATION SYSTEM IMPLEMENTATION

This section presents the overall navigation system archi-
tectures designed by the combination of the attitude filter
(2.1) with the two position filters proposed in Section 2 and
described by (21) and (28). All the measurement vectors
are discussed including the employed vision algorithms for
pose measurements and sampling rates exploited.

3.1 Observations

Camera tracking system. The measurement of the
position filters (21) and (28) are given by a landmark
localization system consisting of 6 markers. The landmarks
are dispersed in a coplanar way. A YCbCr color segmen-
tation via Mahalanobis distance was used to segment the
markers from the background. The choice of such distance
is due to its scale-invariant property and since it takes into
account not only the mean but also the covariance between
color data, it does not ignore uncertainties. According to
Gonzalez and Woods (2002), the Mahalanobis distance is
given by:

D(z,µ) =
√

(z − µ)TC−1(z − µ) (31)

whereC is the estimated covariance matrix of the marker’s
Cb and Cr color components, µ is the estimate average and
z represents the observed vector values of Cb and Cr.

By applying this method it is possible to segment some
specific color from an image in an efficient and effective
way by performing the following statistical test:

D(z,µ)2 ≤ γ (32)

where gamma is the threshold that represents the correct
associations allowed to be acceptable.

After segmenting the markers their centroid is computed
and the PnP problem arises. The RPnP solution, from Li
et al. (2012), was chosen since it is faster and less prone
to noise than the traditional Direct Linear Transform
(DLT) solution for the number of used points (Zheng et al.
(2013)). The solution provides the position and orientation
of the camera relative to the landmarks plane. Only the
position in X, Y-axis and the yaw angle was used as a
measurement.

With the interest of optimizing the tracking of the marker
different algorithms were proposed. The most important
was adding recursion to the system such that every time
the reprojection error of the previous step is less than
the desired threshold the image point position (u,v) is
sent to the next step, making the tracking more accurate
by increasing the threshold γ in these areas. Another
advantage is that there is no need of computing the
Mahalanobis distance (31) in the whole image for each
step.

Unlike the DevKit platform, the Target platform, has
access to the full image resolution with no additional delay.
So an higher resolution image can be used to track the
markers whenever the recursive algorithm found them and
the total pixel area to be tracked does not exceed the
maximum allowed processing power.

The overall camera algorithm flowchart is shown in Fig. 2.
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Euler angles. The attitude observation λk in Euler
angles is determined by the Earth’s gravitational field
and by the camera tracking system. The pitch and roll
angles are obtained from the compensated accelerometer
measurements by the centripetal acceleration or by the
estimated acceleration bias from the second position filter.
Depending on the architecture used the acceleration is
estimated as:

Architecture 1 : ĝ = ac − ω × (Bv − b̂v) (33a)

Architecture 2 : ĝ = ac − (ac −RI T
k g − b̂a)

= RI T
k g + b̂a

(33b)

For the architecture 1, a low pass filter with a cut
off frequency of 10Hz is applied to cut high frequency
dynamics before computing roll and pitch as follows:

φ = −atan2 (ĝy,−ĝz)
θ = −atan2

(
−ĝx,

√
ĝ2
y + ĝ2

z

) (34)

For the architecture 2, the lowpass is not employed since
the high frequency dynamics, linear and centripetal ac-
celerations, are estimated from the position filter and
removed from the accelerometer raw.

The yaw observation ψ can be given by the camera
tracking algorithm or by the magnetometer vector. For the
Target platform both measurements are used and filtered
before entering in the attitude filter with a simple KF. The
yaw angle ψ from the calibrated magnetometer vector is
retrieved as:

ψmag = −atan2 (mcycφ −mczsφ,mcxcθ +mcysφsθ +mczcφsθ)
(35)

3.2 Filter coupling

The global filter architectures is depicted in Fig. (3). The
proposed navigation systems are composed by coupling the

attitude with one of the two position filters proposed. For
both architectures, the attitude terms RI

k and Q(λk) are
obtained using the last available estimate of the attitude
filter λ̂, since it is the best estimation available. The
yaw angle measurement given by the camera algorithm
has a frequency of 20Hz. If the magnetometer is not
used, since the attitude filter works at 100Hz, whenever a
measurement is not available the yaw estimate will depend
on gyroscope only. To workaround the optimality of a
multi-rate system see Bittanti et al. (1991). In case of ψmag
being available, a pre-filter estimates ψ and a bias bψ by
considering the yaw measurements ψcam and ψmag, where
ψmag is assumed to have a time-varying bias.

Architecture 1 The compensated body linear and an-
gular velocities are used to estimate the centripetal accel-
eration, making it possible to remove angular acceleration
from the accelerometer measurements.

Architecture 2 The body acceleration bias ba to com-
pensate the accelerometer for linear and centripetal accel-
erations. The position filter (28) adopted a new attitude

update kinematic term RI T
k+1R

I
k ≈ e

∆t(ωrk−b̂ωk)× , which
is obtained using the compensated angular velocities. (a)×
denotes the skew matrix of the vector a ∈ R3.

The theoretical stability and performance properties of
the filters derived and explained in Section ?? cannot be
fulfilled for the entire architecture 1 due to filter coupling
and the use of pendular measurements in the attitude
observation filter. If the roll and pitch measurements
from the vision-based observation were used it could be
guaranteed. To get those measurements, an higher rate
and resolution is required in the segmentation algorithm
to get faster and less noisy attitude observations at the cost
of higher computational cost. Another solution would be
to use more markers. In architecture 2, the accelerometer
is compensated for the linear and centripetal accelerations.
It follows that architecture 2 will not suffer from pendular
measurements issues as in architecture 1. However, the
coupling issues are still present.

4. EXPERIMENTAL RESULTS

4.1 Ar Drone 2.0 UAV

The data acquisition and telemetry processes were carried
out in the Parrot AR.Drone 2.0 shown in Fig. (4). This
UAV is a low-cost quadcopter available in the commer-
cial market. Parrot has also released a Software Devel-
oping Kit (SDK), to enable developers to produce their
own application. This work exploits two different built-
in Simulink platforms available online to communicate
with the vehicle, the AR.Drone Simulink Development-
Kit V1.1 (DevKit) from Sanabria (2014) and AR.Drone
2.0 Quadcopter Embedded Coder from Sanabria (2014).

The DevKit platform was modified to be able to access
sensor data at 100Hz. The inner control loop processes
used are the factory ones and it runs onboard. The outer
loop is controlled via Wi-Fi and has limitations in terms
of given references. This platform allows the use of the
factory OF’s velocity as an input in the first position filter
(21), as a measurement in the second position filter.
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Fig. 3. Global filter architectures, 1 at left and 2 at right.

To get access to the front camera in the DevKit Simulink
platform, a C++ open source project, CV Drone from
Shinpuku (2017), was used to decode the factory video
stream with the help of OpenCV and then to send it via
UDP host to Simulink in JPEG format. The observed
delay is similar to the one experienced by the DevKit
platform, around 250ms, so there were not any additional
problems. The yaw pre-filter has not been used here due to
problems on the access to the magnetometer in the DevKit
platform.

All of the implementations were ran on the host computer
that is connected to the drone via Wi-Fi. The UAV
receives input controls of roll and pitch angles, yaw rate
and vertical velocities and retrieves a packet with all
data sensors and estimations of horizontal velocities, Euler
angles and height.

All the code was tested and ran in real time onboard of the
UAV using the second platform, which is a Target solution
that provides full access to the hardware, allowing for the
replacement of the inner control processes and for the full
software to run on the UAV processor. Due to the unavail-
ability of an optic flow algorithm on this platform external
cameras were used to estimate horizontal velocities.

Thus, since the DevKit merely relies on onboard sensors,
the presented results here were achieved through this plat-
form. For this experiment, the only data used from the De-
vKit received packet was the gyroscope raw, accelerometer
raw, OF velocities and front camera video stream.

4.2 Parameter Design

The complementary frequency response of the closed loop
by considering I in place of Q(λk) and RI

k = I was used
for filter design, using the systems (9), (21) and (27). As
discussed in Subsection 2.1, the proposed position filters
are identified with the steady-state Kalman filter and the
attitude filter for constant pitch and roll angles.

All the following results were captured in real time using
the architecture 2 to control the vehicle with the parame-
ters of Table 1. To compare the estimates with the results
of architecture 1, offline computation, with flight data,
were performed using architecture 1 with the parameters
shown in Table 1 as well and its RMSE values computed
for comparison, see Table 3.

A constant sampling rate of 20Hz was used for both front
camera and position filter systems with a resolution of
320×180 pixels. The attitude filter worked at 100Hz. The

adopted weights, respective gains and gyroscope correla-
tion times T are detailed in Table 1. The attitude process
noise matrix was designed based on the AV noise covari-
ance from the gyroscope as explained in Section 2.1 and
on the gyroscope variance when the fans were active. The
attitude observation weights were designed in order for the
filter to react well in both low dynamics and not to drift
too much when high dynamics are demand.

The position process noise matrix was adjusted based on
the maximum variations that the state variables change
with time. A value close to zero means that the state
only slight varies with time. The position observation noise
matrix was modeled based on the measurement variance
and reliability.

As shown in Fig. 5, the low-frequency region of the
observation angles and camera position measurement are
blended with the high-frequency contents of the open-loop
integration of the inertial measurements and OF velocity.

4.3 Analysis

The experiments were made indoor and in order to assess
the estimates, a precision set of cameras (Qualisys Mo-
tion Tracking) was used as ground truth validation. The
characteristics of the tracking system are listed in Table 2.
Only the X and Y axis of position is analyzed.

Cameras Qualisys Pro Reflex 1000

Frequency < 200Hz

Markers 19mm markers

Precision <1mm and <0.2° after calibration

Table 2. Qualisys Tracking System properties.

All data is compared against the ground truth (Qualisys)
in the landmarks inertial frame. Every time the UAV could
not segment the six markers properly, the position filter
relies only on the OF and the attitude filter relies only on
the Z-axis gyro to estimate yaw. Those times are depicted
with green circles in the results. Areas with a large portion
of no observation are depicted with a gray background.

The position results are coherent with the ground truth,
as evidenced in Fig. 6. The best estimation is in X-axis
(perpendicular to the landmark’s plane) due to the slightly
less noisy position observation, Fig. 6(a-b) see histograms.
The maximum error in X and Y, while measurements were
available, were no more than 7 and 10cm, respectively,
except between [80-110]sec where the camera tracking
system failed especially in Y, due to high yaw values (see
Fig. 9-yaw), and high distance from the target (around
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Qλ = diag(8, 5, 8) Ra1
λ

= diag(5, 5, 5) × 102

Qbω1
= diag(1.6, 2.9, 0.5) × 10−6 Ra2

λ
= diag(12.5, 25, 250) × 102

Attitude

(100Hz)
Qbω2

= diag(25, 25, 0.5) × 10−10
Model Parameters:

T = diag
(

1
10

, 1
15

, 1
100

)
Qp = diag(0.1, 0.1)Position

A1 (20Hz) Qbv = diag(1, 1) × 10−5
Rp = diag(0.05, 0.1, 0.05)

Qp = diag(5, 5, 5) × 10−4

Qv = diag(1, 1, 1)
Position

A2 (20Hz)
Qba = diag(1, 1, 1) × 10−3

Rp = diag(0.1, 0.1, 0.00001)

Rv = diag(0.05, 0.05, 0.05)

Table 1. Complementary Filters Parameters.
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3m), producing a noisy and biased observation. The root-
mean-square-error (RMSE) of the position, considering
that observations are available, is detailed in Table 3.

The heavy drift [140-150]sec was caused due to high ac-
celerations while no observation was available. These high
dynamics caused poor OF velocity estimates (see Fig. 7),
that were integrated and not compensated. Nevertheless,
the filter rapidly converged right after the observation was
available, see position error in Fig. 6(a-b).

The linear velocity estimates versus the ground-truth are
shown in Fig. 7. The proposed filter estimates the linear
velocity explicitly. The error shown goes above 0.4m/s
which is not entirely true. Due to the fact that imperfect
estimate and ground truth alignment at the time of error is
being computed, a misleading error result occurs for high
signals variations. The overall velocity RMSE is shown in
Table 3.

The acceleration bias and the body gravitational vector
estimates are depicted in Fig. 8. It is clear to see the
resemblance between the ground truth and the estimates.
The attitude estimation results are consistent with the
ground truth. The yaw estimate error was no more than 4
degrees, with a RMSE of 1.24 degrees, while observation
was available (see Fig. 9(b)). The maximum error, 4.8
degrees, occurred at 147sec due to lack of observation
and drift from the gyroscope. The yaw estimate can
be seen slowly converging to the observation right after
measurement becomes available.

Compared with the ground truth, the pitch and roll angles
followed well the ground truth resulting in a maximum
error no more than 2 degrees, respectively, depicted in
Fig. 9(a-b). The RMSE of attitude, considering that ob-
servations are available, is detailed in Table 3. A statistical
representation of the errors in the UAV orientation can be
seen in Fig. 9(c-d-e).

The angular velocity estimation is shown in Fig. 10. The
proposed filter does not estimate the angular velocity
explicitly, but it compensates with two bias terms. This
estimate is given by the gyroscope raw and by the bias
estimate which is depicted in Fig. 10.

The experimental results obtained onboard the Ar Drone
2.0 validate the proposed INS. The adopted design pa-
rameters yield the desired sensor fusion in the frequency
domain accomplishing good attitude and position estima-
tion. The attitude and position estimates were consistent
with the given trajectory, and the INS endured landmark
outage for small dynamics, which shows that the proposed
complementary filter based architecture is suitable for
GPS denied applications.

5. CONCLUSION

In this work, two INSs based on complementary filters that
rely on inertial and vision sensors were presented. The
existence of a varying gyroscope bias based on AV was
considered and its value estimated by the observer. The
vision algorithm was shown to be computationally efficient
and able to run in real time onboard of the vehicle with
the implemented filters and controllers. Two different INS
were implemented, the first with the attitude filter and the
position filter with velocity bias, and the second with the
same attitude filter but with a position filter that estimates
linear acceleration bias. The second architecture proved to
achieve similar results of position and better of attitude
when compared with architecture 1.
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ĝ
y
/
‖ĝ
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