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Lúıs Carlos Cunha Martins

luis.cunha.martins@tecnico.ulisboa.pt
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Abstract: This dissertation presents full control solutions for a quadrotor using linear and
nonlinear methods. The dynamical model of the quadrotor is derived. Whereas the nonlinear
controllers are designed considering this model, a linearization of the dynamics is required
to synthesize the linear controllers. Linear Quadratic Regulator and Feedback Linearization
were the techniques applied to tackle the control problem. Two control structures were devised
using the linear approach and three different architectures, exploring the concepts of static
and dynamic feedback, were developed for the nonlinear method. The capacity of trajectory
tracking, in the presence of measurements noise, and the robustness to significant deviations of
the mass and inertia values were evaluated in simulation. Thereby, the most promising linear
and nonlinear solutions were selected for implementation in the actual quadrotor. The selected
linear approach consists of an inner-outer loop control structure, where the innermost loop is
responsible for the attitude control and the outermost solves the positioning control. In both
loops, integrative action is incorporated. The second solution comprises a nonlinear inner loop
that results from the application of static feedback linearization to the attitude and altitude
dynamics. Linear quadratic controllers with integrative action are implemented not only to the
resulting inner-loop chain of integrators, but also to the outer-loop, that controls the horizontal
movement and, consequently, stabilizes the zero-dynamics. The required full state-feedback relies
on measurements from motion sensors and on on-flight estimates provided by Kalman filters
and an attitude filter. The selected control systems are implemented in a commercially available
drone, equipped with an Inertial Measurement Unit, a compass and an altimeter. A motion
capture system gives the inertial position of the drone. The results obtained allow the validation
of the modeling and control system architectures.

Keywords: Control, Linear Quadratic Regulator, Feedback Linearization, Integrative Action,
Trajectory Tracking

1. INTRODUCTION

In recent years, the popularity of drones has in-
creased immensely as the embedded technology advanced.
This growth translated into an intensive study of these
Unmanned Aerial Vehicles. Its maneuverability, hovering
capabilities, reduced price and small size not only enable
the quadrotors to be equated in a wide range of applica-
tions, such as infrastructure inspection or area monitoring,
but also constitute them as an excellent alternative for
the experimentation of control and navigation techniques.
At the core of the development of these applications, a
robust control structure and an in-flight state-estimation
is required.

The study of the control of quadrotors is vast and
includes diverse linear and nonlinear techniques. Concern-
ing the linear approaches, the majority of the bibliogra-
phy reports the application of classical PIDs control and
modern LQR controllers. In Bouabdallah et al. (2004) a
comparison between the performances of the classical and
the modern controllers referred, in simulation and in flight,
for attitude control is established. This work evidences
that the non-inclusion of an integrative action in LQR
control for attitude originates a steady-state error. Bauer

and Bokor (2008) implemented an LQ servo controller with
a double integrator for trajectory tracking in simulation.
Lastly, an inner and outer control loop with LQR control
with integration action is proposed by Raja (2017). This
control structure, designed for a model of a quadrotor
obtained through Jacobian linearization, is successfully
implemented in a UAV and enables a more effective at-
titude response.

Notwithstanding that various works attest the suc-
cess of tackling the control problem with linear techniques,
applying nonlinear control methods that consider a more
comprehensive model of vehicle dynamics can lead to bet-
ter performance. In the literature, it is possible to find
a variety of nonlinear approaches applied to quadrotors.
Within these methods, Feedback Linearization has at-
tracted research interest throughout the years. Das et al.
(2008) discussed a two-loop approach where, in the in-
ner loop, responsible for altitude and attitude control,
feedback linearization was applied and, in the outermost,
proportional derivative controllers were used to control the
horizontal movement. Additionally, in both loops, Sliding
Mode control is included in order to deal more effectively



with disturbances. The simulation results validated the
approach. Freddi et al. (2011) used feedback lineariza-
tion to design a double loop control structure capable of
performing not only trajectory tracking but also roll and
pitch control in the event of a rotor failure. The simulation
tests highlight this capacity of the fault tolerant controller
proposed. A distinct two-loop architecture using feedback
linearization is proposed by Wang et al. (2011). In this
work, the attitude of the quadcopter only implicitly ap-
pears in the transformation matrix and is not a controlled
state. The aerial vehicle proved to fly with good accuracy
since the control errors obtained in hovering tests are
within 3 cm for all Cartesian coordinates.

In this extended abstract, the linear and nonlin-
ear control structures that attained better results in the
simulation tests are presented. These control solutions
were experimentally validated resorting to an off-the-shelf
quadcopter. It is important to stress that three additional
control schemes that are not addressed in this document
were implemented and validated in simulation and are
reported in the dissertation. A linearized model of the
quadcopter is derived for the hover condition in order to
enable the implementation of the linear controllers. The
reconstruction of the state-variables that are not directly
available through sensors, namely the velocity and the
Euler angles, is performed resorting to Kalman Filters and
an attitude filter, respectively. For the attitude filter, in the
first proposed solution, the filter developed by Madgwick
et al. (2011) is applied, whereas, in the second, the one
devised by Madeiras et al. (2019) is used. Both control
solutions possess an inner-outer loop structure, where the
innermost loop is responsible for the attitude control, and
the outermost solves the positioning control. In both loops
an integrative action is present. The Linear Quadratic Reg-
ulator and Feedback Linearization methods are considered
to tackle the control problem.

The main contributions of the work developed
throughout the thesis are the derivation of a simplified
dynamical model for quadrotors with X configuration, the
subsequent linearization for a trim position, the applica-
tion of model-based LQR control with integrative action
considering two different structures, the study of three
distinct control architectures that rely on the nonlinear
technique Feedback Linearization and the experimental
validation of a linear and a nonlinear control approaches.

This extended abstract is organized as follow: the
physical model and the subsequent linearization are de-
tailed in section 2; in section 3, the state-estimation is
addressed; the theoretical basis of the control techniques
considered are presented in section 4; the simulation re-
sults obtained with the simplified nonlinear model and the
control structures, which are designed in section 5, are dis-
cussed in section 6; the quadcopter model and its sensors
are detailed, and the implementation of the controllers is
described in section 7; experimental results are presented
and analyzed in section 8; finally, some concluding remarks
are drawn.

2. PHYSICAL MODEL

2.1 Nonlinear Model

In this section, the nonlinear model of the UAV based
on the Newton-Euler formalism is presented. The non-

linear dynamics are described in the body-fixed {B} and
in the inertial {I} frames, depicted in Fig. 1. The unit
vectors along the axis of the body-fixed frame are denoted

by { #»

b 1,
#»

b 2,
#»

b 3} and the unit vector along the inertial
frame {I} axis are denoted by { #»a 1,

#»a 2,
#»a 3}. It is assumed

that the origin of the body-fixed frame {B} is coincident
with the center of mass of the quadrotor.

XI

YI

ZI

XB

YB

ZB

Fig. 1. Reference frames in which the nonlinear dynamics
are described.
Let p = [x y z]T denote the position vector of the

center of mass of the UAV in the inertial frame. Let
η = [ϕ θ ψ]T describe the orientation vector, in terms of
Euler angles, of the body-fixed frame with respect to the
inertial frame, where ϕ, θ and ψ are the roll, pitch and yaw
angles, respectively. Let ω = [p q r]T represent the angular
velocity described in the reference frame {B}. The rigid
body equations of motion of the quadcopter according to
Mahony et al. (2012) are given by:

mp̈ = −mg #»a 3 + IRBF (1)

Iω̇ = −ω × Iω + τ (2)

where I corresponds to the 3 × 3 constant inertia matrix
described in the body fixed-frame, m is the total mass
of the quadrotor, g denotes the gravity acceleration, F
and τ denote, respectively, the principal nonconservative
forces and moments applied to the UAV airframe by the
aerodynamics of the rotors, both described in the reference
frame {B}, and IRB is the rotation matrix from the body-
fixed to the inertial frame. The Euler angles follow the
sequence of rotation Z-Y-X that is described in Oriolo et al.
(2010). The resultant rotation matrix is given by:

IRB =

[
cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ − cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

]
(3)

where c and s are the shorthand forms for cos () and sin (),
respectively.

The angle rates η̇ = [ϕ̇ θ̇ ψ̇]T are obtained from
the body rotational rates using the following system of
equations:[

ϕ̇

θ̇

ψ̇

]
= T (η)ω =

[
1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) sec(θ) cos(ϕ) sec(θ)

][
p
q
r

]
(4)

According to Leishman (2000), the steady-state
thrust Ti and yaw moment τψi

generated by a rotor in
free air can be modeled as follow:

Ti = cTi
Ω2
i (5)

τψi
= cτiΩ

2
i (6)

where cTi
and cτi are coefficients possible to determine

experimentally that are dependent on the area of the disk,



the radius of the rotor, the density of air, the geometry and
the profile of the rotor, and the effect of drag by the rotor
flow, and Ωi is the rotation speed of the rotor i. Therefore,
the relation between the generated yaw moment τψi by
a rotor and its generated thrust Ti is described by the
following expression:

τψi
=
cτi
cTi

Ti = ciTi (7)

The roll and pitch moments, τϕ and τθ, result from
the generated thrust of the rotor and its arrangement
relative to the center of mass of the quadcopter. Hence, the
resultant total thrust T and moments τϕ, τθ and τψ, for a
quadrotor with a X-configuration, are computed through:Tτϕτθ

τψ

 =

 1 1 1 1
L −L −L L
−L −L L L
c1 −c2 c3 −c4


T1T2T3
T4

 (8)

where L denotes the perpendicular distance of the rotor
to the x or y axis of the body-fixed frame, as the case may
be.

There are various aerodynamic and gyroscopic ef-
fects associated with the rotors craft that increase the
complexity of the model. However, a model with such
level of precision is not required, not only because the
control can overcome these secondary effects according
to Mahony et al. (2012), but also due to the fact that
is widely shown in the literature that the control can
achieve high performance with the simplified model of
the rotor. Consequently, high order effects such as blade
flapping, aerodynamic drag, translational lift and vortex
states caused by axial motion are neglected. Furthermore,
it is assumed that the total thrust generated T is oriented

along the
#»

b 3 direction, i.e., parallel to the axis of the rotor,
and the coefficients of the rotor are constant (static thrust
and moments).

Moreover, the quadrotor is assumed to be exactly
symmetrical, which implies that the inertia matrix is
diagonal, and the rotor gyroscopic effects are neglected.
Additionally, since the UAV flies at a height higher than
0, 50m, except when the take-off or the landing occurs, the
ground effect is ignored.

Considering the equations previously defined and the
approximations and assumptions described, let

x = [x y z ϕ θ ψ ẋ ẏ ż p q r]
T

(9)

denote the vector of state-variables and let
u = [T τϕ τθ τψ]

T
(10)

represent the input vector, the quadcopter dynamics can
be written in the compact form

ẋ =



ṗ
T (η)ω
−g #»a 3

Iy − Iz
Ix

qr

Iz − Ix
Iy

pr

Ix − Iy
Iz

pq


+

 06×1 06×3
1

m
IRBi3 03×3

03×1 I−1

u (11)

with i = 1, 2, 3.

2.2 Linearized Model

The point of equilibrium for which the linearization

will be deduced is the hover condition (p = [x y z]
T
, η =

[0 0 0]
T

), where the yaw angle ψ is additionally considered
zero. Note that the linearization could be performed for
other conditions, however, this one was chosen given its
simplicity. By resorting to the Taylor series till the first
order term enables to approximate the cosine of the Euler
angles to 1 and the sine and tangent of the referred angles
to the angle itself.

For the height subsystem, the differential equation
simplifies into:

z̈ ' 1

m
(T −mg) (12)

Defining the following state variables and modified
input of the subsystem,

xz = [z ż]T , uz = T −mg (13)

leads to the state-space representation described below:

ẋz =

[
0 1
0 0

]
xz +

[
0
1

m

]
uz (14)

yz = [1 0] xz (15)

The variation of the position of the UAV along the
x and y directions of the inertial frame is a direct result
of the variation of pitch and roll angles, respectively. The
linearization of the second derivative of the pitch angle
yields:

θ̈ ' τθ
Iy

(16)

Defining the consequent state variables and modified
input of the subsystem,

xθ = [θ θ̇]T , uθ = τθ (17)

results in the state-space representation described below:

ẋθ =

[
0 1
0 0

]
xθ +

 0
1

Iy

uθ (18)

yθ = [1 0] xθ (19)

The linearization of the second derivative of the roll
angle results in:

ϕ̈ ' τϕ
Ix

(20)

Letting the following equations define the state vari-
ables and modified input of the subsystem

xϕ = [ϕ ϕ̇]T , uϕ = τϕ (21)

the obtained state-space representation is described by

ẋϕ =

[
0 1
0 0

]
xϕ +

[
0
1

Ix

]
uϕ (22)

yϕ = [1 0] xϕ (23)

The acceleration in the body-fixed frame vector, Ba,
is given by

Ba =
F

m
− BRIg

−→a3 − ω × Bv (24)

where Bv denotes the velocities in the body-fixed frame
and the term ω × Bv corresponds to the centripetal
acceleration. The accelerations along the x axis, Bax, and
along the y axis, Bay, of the body-fixed frame, after being
linearized and assuming that the yaw angle ψ is kept at
zero and that the movement along the body fixed-frame



x and y directions occurs with negligible variations along
the z direction, are equal to

Bax = θg (25)
Bay = −ϕg (26)

Noticing that the forward velocity of the UAV in the
body-fixed frame, u, is the integral of Bax, and the sideway
velocity, v, is the integral of Bay, equations (25) and (26)
can be rewritten as

u̇ = θg (27)

v̇ = −ϕg (28)

With the establishment of the next state-variables
and modified input of the subsystem:

xx = [BxI u]T , ux = θ (29)

where BxI denotes the x coordinate of the inertial posi-
tion described according to the orientation of the body-
fixed frame, the following state-space representation, that
relates the BxI coordinate of the position with the pitch
angle, θ, is obtained

ẋx =

[
0 1
0 0

]
xx +

[
0
g

]
ux (30)

yx = [1 0] xx (31)

By defining the following state-variables and modi-
fied input of the subsystem:

xy = [ByI v]T , uy = ϕ (32)

where ByI denotes the y coordinate of the inertial position
described according to the orientation of the body-fixed,
the following state-space representation, that relates this
coordinate of the position with the roll angle, ϕ, is ob-
tained

ẋy =

[
0 1
0 0

]
xy +

[
0
−g

]
uy (33)

yy = [1 0] xy (34)

The linearization of the second derivative of the yaw
angle yields:

ψ̈ ' τψ
Iz

(35)

Letting the state-variables and entry of the subsys-
tem be described by

xψ = [ψ ψ̇]T , uψ = τψ (36)

enables the following state-space representation

ẋψ =

[
0 1
0 0

]
xψ +

[
0
1

Iz

]
uψ (37)

yψ = [1 0] xψ (38)

3. STATE-ESTIMATION

3.1 Attitude Filter

Magdwick Attitude Filter The Kalman filter is widely
used for sensor fusion to estimate the attitude, however,
for practical reasons, the orientation filter developed by
Madgwick et al. (2011) was opted and applied in the
first solution. The computation is performed using the
quaternion representation and fuses the measurements of
the gyroscope, accelerometer and magnetometer through
an optimized gradient-descent algorithm.

Nonlinear Attitude Filter The attitude filter consid-
ered in the second solution, developed by João Madeiras
Madeiras et al. (2019), is a nonlinear filter that fuses
the accelerometer and gyroscope measurements. The gains
of this attitude complementary filter can be computed
considering a linear system that is obtained resorting to
a Lyapunov transformation. Furthermore, this filter is
proved to be uniformly asymptotically stable assuming a
bounded pitch angle (|θ| < π/2).

3.2 Kalman Filter

This filter, with a statistical basis, constitutes a so-
lution to optimal stochastic estimation for linear systems
and aims the minimization of the estimation mean squared
error, under the assumptions of zero-mean Gaussian pro-
cess and sensor noises, ϑ and ν, respectively, as proposed
by Kalman (1960). For the estimation of the velocities the
following observable subsystem with noise disturbances
was considered:

ẋ =

[
0 1
0 0

]
x + ϑ (39)

y = [1 0] x + ν (40)

where the first state-variable is one of the inertial coordi-
nates (x, y, z), whose measurements are available through
sensors, and the second state-variable is the respective
inertial velocity (ẋ, ẏ, ż). The estimates for the body-fixed
velocities u and v are obtained by applying the following
rotation:[

û
v̂

]
= BRIij

ˆ̇x
ˆ̇y
ˆ̇z

 , i ∈ {1, 2}, j ∈ {1, 2, 3} (41)

4. CONTROL THEORY

4.1 Linear Quadratic Regulator with Integrative Action

The Linear Quadratic Regulator is an optimal con-
troller that uses full state-feedback and is derived as a
solution to an optimization process where the systems
dynamics imposes the restrictions. For a system described
by the state-space representation

ẋ = Ax + Bu (42)

ẏ = Cx + Du (43)

the optimal regulator problem determines the gain matrix
K, constituent of the optimal control vector

u(t) = −Kx(t) (44)

that ensures the minimization of the performance index

J =

∫ ∞
0

(xTQx + uTRu)dt (45)

where the first quadratic form includes the real symmetric
state weighting matrix Q and the second quadratic term
comprises the real symmetric control weighting matrix R.

The computation of the optimal gains is performed
through:

K = R−1BTP (46)

where the positive-definite matrix P results from the
steady-state Riccati equation:

ATP + PA−PBR−1BTP + Q = 0 (47)
As a way of dealing with the effect of perturbations

and with the steady-state error, an integrator was em-
bedded in the control structure. This inclusion leads to



additional robustness of the control system and eliminates
the steady-state errors due to constant disturbances. Let
the reference signal be represented by r and the difference
between the output of the system, y, and the reference,
r, be the time derivative of the state-space variable that
results from adding the referred integrator, ξ. The matrices
of the resulting regulator are given by

Ā =

[
A 0
−C 0

]
, B̄ =

[
B
0

]
(48)

The optimal gains are computed by directly apply-
ing the LQR gain computation presented formerly. The
optimal gain matrix obtained

K̄ = [K −k1] (49)

is constituted by the vector of gains for the state-variables,
K, and by the gain for the integrative action, k1.

4.2 Feedback Linearization

Feedback Linearization consists in a nonlinear con-
trol approach that aims to algebraically transform non-
linear dynamics of systems, through nonlinear change of
coordinates and nonlinear state feedback, into a model
that is linear in the new set of coordinates. The linear
model produced is an exact representation of the original
nonlinear model over a large set of operating points (Hen-
son and Seborg (1997)).

Given a nonlinear system of the form:

x = f (x) + g (x) u (50)

y = h (x) (51)

where f(x) and h(x) are, respectively, n and m-dimensional
vectors of sufficiently smooth nonlinear functions and g(x)
is an (n×m)-dimensional matrix of sufficiently smooth
nonlinear functions. According to Vepa (2017), if the sum
of the relative degrees rj of each output yj equals the
number of state-variables, the system can be modified into
a fully linear and decoupled controllable system through
the application of the following transformation for each
output yj :

ξj,1 = yj (52)

...

ξj,rj = ξ̇j,rj−1 = Lrj−1
f hj(x) (53)

ξ̇j,rj = Lrj
f hj(x) +

m∑
i=1

LgiL
rj−1
f hj(x)ui (54)

where L represents the Lie Derivative, and of the next
nonlinear static state feedback control law

u = −Λ−1(x) b(x) + Λ−1(x) v (55)

where v is the transformed input variables vector, the
decoupling matrix Λ(x) is defined as

Λ(x) =

 Lg1L
r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

...
. . .

...
Lg1L

rm−1
f hm(x) · · · LgmL

rm−1
f hm(x)

 (56)

and b(x) is given by

b(x) =

 L
r1
f h1(x)

...
Lrm
f hm(x)

 (57)

It is clear that the decoupling matrix is required to be
nonsingular.

After applying the input-output feedback lineariza-
tion, the input-output model is linear in the new set of
coordinates and is formed by a set of m chains of rj
integrators. Therefore, once each system is in linear and
controllable form, is possible to stabilize these systems by
means of linear controllers.

5. CONTROL DESIGN

5.1 Linear Quadratic Regulator with Integrative Action

The LQR with integrative action is applied for each
subsystem present in the outer (position control) and in
the inner (attitude control) loops. The control structure
is schematized in Fig. 2, from which it is noted that the
references for the pitch θ and roll ϕ angles result from the
position control.

Position 
Control

Attitude
Control

UAV
Dynamics

p, [ , , ]û  v ̂  ż ̂ 

T

τφ

τθ

τψ
ψref

φref

θref

,η ̂  η̇

xref

yref

zref

Fig. 2. Scheme of the inner-outer loop control structure
implemented.

5.2 Feedback Linearization

The approach using feedback linearization control
consists in applying it to the inner loop dynamics, formed
by the attitude and altitude equations, and in stabilizing
the outer loop with linear controllers. The zero-dynamics
in this case will correspond to the horizontal movement

dynamics. Let yin = [z ϕ θ ψ]
T

define the output vector
of the inner loop, xin denote the vector of state-variables
of the inner dynamics

xin = [z ż ϕ θ ψ p q r]
T

(58)

and uin describe the vector of inputs of the system

uin = [T τϕ τθ τψ]
T

(59)

Since the altitude and attitude dynamics combined have
a total of 8 state-variables and

∑4
j=1 rj = 8, the feedback

linearization can be performed through a static state feed-
back law. The decoupling matrix Λ(xin) of the nonlinear
static state-feedback control law is defined by

Λ(xin) =



cθ cϕ
m

0 0 0

0
1

Ix

tθ sϕ
Iy

cϕ tθ
Iz

0 0
cϕ
Iy

−sϕ
Iz

0 0
sϕ
Iy cθ

cϕ
Iz cθ


(60)

where t is shorthand form for tangent. The determinant of
the preceding matrix is

det (Λ(xin)) =
cos (ϕ)

Ix Iy Izm
(61)

Thus, the decoupling matrix Λ(xin) is invertible at any
point defined by |ϕ| < π

2 . Additionally, it is required



that |θ| < π
2 . The vector b(xin) is directly obtained by

extracting the terms that are independent of the input
from the second derivatives of each output yinj . Applying
the transformation described from (52) to (54) for each
output yj yields the vector of transformed state-variables:

ξin =
[
z ż ϕ ϕ̇ θ θ̇ ψ ψ̇

]T
(62)

As a result of the static state feedback control law
and of the change of coordinates, the inner dynamics are
now linearized and decoupled. These dynamics are trans-
lated into four single-input single-output chains of two
integrators. Given the linear, decoupled and controllable
form of the inner-loop dynamics, the Linear Quadratic
Regulator control technique can be employed to each se-
quence. In each chain, an additional integrator was em-
bedded into the feedback control to obtain additional
robustness.

In fact, the zero dynamics are unstable. Therefore,
an outer position control loop is necessary. The control
strategy for this loop relies on LQR controllers with inte-
grative action identical to the ones considered in the linear
approach. The nonlinear control strategy is schematized in
Fig. 3.

Inner Loop 
Linear 
Control 

Outer Loop 
Linear 
Control 

Static State 
Feedback 

Control 
Quadrotor 
Dynamics 

xref

yref

p, [ , ]Û  V ̂ 

zref

ψref

φref

θref

xin

xin

vin uin y

Fig. 3. Scheme of the static feedback linearization with
zero-dynamics stabilization implemented.

6. SIMULATION

Concerning the design parameters, it is intended to
control the position of the UAV while focusing in obtain
responses with a settling time inferior to 6 seconds, with
a maximum overshoot and oscillation inferior to 2 % and
without static error. Regarding the rotational responses,
since they are responsible for the stabilization of the quad-
copter, a faster response, in furtherance of coping with the
references that result from the translational control in the
x and y directions of the inertial frame, is required. There-
fore, the pitch and roll subsystems must necessarily present
step responses with a settling time inferior to 1 second and
fulfill the formerly defined overshoot, oscillation and error
requirements. Considering the yaw subsystem, once it does
not present such an important role in the stabilization
of the drone as the other Euler angles, its response is
not required to have this settling time. Therefore, for this
Euler angle, the aim is a settling time inferior to 3 seconds
and the already defined null static-error and overshoot and
oscillation inferior to 2%. The control gains were obtained
by analyzing the characteristics of the resulting step-
responses. The Q and R matrices used in the linear and in

the nonlinear control solutions are detailed, respectively,
in Table. 1 and Table. 2.

Table 1. Q and R matrices used in the optimal
gains computation for each subsystem of the

linear control approach.

Subsystem Q R

Roll diag(25, 1, 1500) 200
Pitch diag(25, 1, 1500) 200
Yaw diag(7, 1, 15) 1

Height diag(5, 1, 3) 3
X Position diag(15, 1, 10) 1000
Y Position diag(15, 1, 10) 1000

Table 2. Q and R matrices used in the optimal
gains computation for each subsystem of the

nonlinear control approach.

Subsystem Q R

Roll diag(6 × 104, 7.5 × 102, 2 × 106) 1
Pitch diag(6 × 104, 7.5 × 102, 2 × 106) 1
Yaw diag(7.5 × 103, 20, 2 × 105) 1

Height diag(15, 1, 15) 1
X Inertial diag(5, 1, 30) 2 × 103

Y Inertial diag(5, 1, 30) 2 × 103

To ascertain the robustness of the proposed con-
trollers and its model dependency, the impact of consid-
ering inaccurate values of the mass and the inertia of the
quadcopter is studied. To this end, variations of 50% in
the mass combined with decreases of 75% and increases
of 300% in the inertia were studied. The references for
the position are steps with an amplitude of 3 m and the
reference for the yaw angle is a ramp with a slope of
0.1 rad · s−1.
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Fig. 4. Responses obtained with the linear approach in the
robustness test. From left to right, top to bottom: (a)
X Inertial; (b) Y Inertial; (c) Height; (d) Yaw.

The responses obtained with the model parameters
variation with the linear approach are displayed in Fig. 4.
It is visible that the step responses of the inertial coor-
dinates x and y altered slightly. On the other hand, the
height and yaw responses present an oscillatory behavior,
characteristic of a marginally stable system, when a de-
crease of 75% is considered for the inertia matrix values.
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Fig. 5. Responses obtained with the nonlinear approach in
the robustness test. From left to right, top to bottom:
(a) X Inertial; (b) Y Inertial; (c) Height; (d) Yaw.

The position and yaw angle responses obtained in
the model parameters variation test with the nonlinear
control architecture are depicted in Fig. 5. These are very
promising and important results since the performance did
not deteriorate significantly even tough significant changes
in the model parameters were consider and the amplitude
of the steps required very aggressive responses. Compared
to the results obtained for the same variations with the
linear control, the static feedback linearization applied
to the altitude and attitude dynamics achieved better
results. Not only the responses remained stable, but also
the control performance presented a higher consistency
throughout the tests, which is reflected in the fact that
all responses respected the design criteria.

To evaluate the performances of the proposed control
architectures, a trajectory was created and given as a
reference. Additionally, noise disturbances, modeled as
zero-mean Gaussian white noise, were included to study
the impact of the noise of the sensors. This trajectory
is defined with a constant yaw angle equal to zero and,
excluding the take-off, is formed by rectilinear sections,
with a constant velocity of 0.05 m · s−1, and semicircular
sections, with a constant angular velocity of 0.05πrad·s−1.

From the observation of the Fig. 6, it can be con-
cluded that the control structures implemented allow a
good following of the trajectory. The time responses have
a steady-state error for references with constant velocity,
which was predictable since the integrator included in the
control structure only has the capacity to eliminate the
steady-state error for constant references. Notwithstand-
ing, once the ramp references are followed up by constant
references, the responses converge without error to the
desired coordinate. Concerning the time response of the
yaw angle, it is noticeable that the objective was achieved
with both control solutions.

7. IMPLEMENTATION

The Parrot AR. Drone 2.0 was selected as the un-
manned aerial vehicle used for testing the proposed control
system solution. This commercially available quadcopter
possesses an inboard Inertial Measurement Unit and a
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Fig. 6. Responses obtained during trajectory tracking in
simulation with the two control approaches devel-
oped. From left to right, top to bottom: (a) Trajectory
Tracking in 3D space; (b) X Inertial; (c) Y Inertial;
(d) Height and (e) Yaw.

sonar board. The IMU is constituted by a 3-axis ac-
celerometer, a 3-axis gyroscope and a barometric pressure
sensor. The sonar board is equipped with two ultrasonic
transducers and a 3-axis Compass. These sensors provide
measurements of the acceleration, of the angular velocities,
of the UAVs height and of the magnetic field. The inertial
position of the vehicle is provided by a motion capture
system.

In order to implement the control structure in the
quadrotor, the ”AR Drone 2.0 Quadcopter Embedded
Coder” developed by Lee (2016) was used. This Simulink
project enables direct access to the sensors and the actu-
ators of the quadcopter.

The Pulse Width Modulation Commands for the
actuators are computed from the Thrust and Moments,
that result from the control law, through experimentally
determined relations. The relevant physical quantities of
this quadcopter are detailed in Table. 3

Table 3. Important physical quantities of the
AR Drone 2.0.

L (m) m (kg) Ix (kg · m2) Iy (kg · m2) Iz (kg · m2)

0.127 0.460 2.24 × 10−3 2.90 × 10−3 5.30 × 10−3

8. EXPERIMENTAL RESULTS

8.1 Linear Solution

The experimental results obtained with the linear
control scheme are depicted in Fig. 7. The trajectory tested
is equal to the simulated one and it is possible to verify a



good tracking by the quadrotor. It is important to stress
that: the take-off is present in the results depicted, the
altimeter does not measure heights inferior to 30 cm and
that a heavier battery was used leading to higher values
of thrust. Nonetheless, despite this change in the total
mass of the UAV, the results did not deteriorate since the
integral action was included. For attitude estimation, the
attitude filter proposed by Madgwick et al. (2011) was
implemented in this approach.The controllers had to be
adjusted when implemented in the UAV. The matrices Q
and R used in this adjustment are detailed in Table. 4.

Table 4. Q and R matrices used in the ad-
justment of the controllers of the linear control

approach implemented in the UAV.

Subsystem Q R

Yaw diag(18, 2, 2) 30
X Position diag(3, 1, 2) 300
Y Position diag(3, 1, 2) 500

Height diag(3, 1, 1) 1

By comparing the UAV results with the simulation
responses, the similarities between them are clear, which
indicates that the nonlinear model considered possesses
a satisfactory degree of proximity. The histograms of
the absolute error for the inertial coordinates and the
yaw angle during the tracking of the trajectory (initiates
at 20 seconds) are presented in Fig. 8. Even though
the deviations are larger in the real system, they are
still considered reduced. The local maxima visible in
the position histograms are a consequence of the static
error in the following of ramp inputs. Nevertheless, the
maximum instances of error for all of these coordinates
correspond approximately to zero, which is symptomatic
of the capacity of the control system to maintain these
coordinates at a constant value. The inertial coordinate x
presented the higher deviations, which was expected since
that was the subsystem more solicited. The values of the
yaw angle obtained demonstrate that the goal defined for
this Euler angle was achieved.

Table 5. Root-mean-square error obtained in
simulation and in the experimental test with

the selected linear control approach.

x (m) y (m) z (m) ψ (◦)

Simulation 0.0865 0.0714 0.0556 0.0295
Experimental 0.1010 0.0781 0.0570 0.2244

The root-mean-square error for the trajectory track-
ing in simulation an in the real system is detailed in
Table. 5. The height response obtained with the quadrotor
has almost the same error obtained in simulation, whereas
the other subsystems showed a forecastable increase in
the real system due to the discarding of the higher order
dynamics effects. In general, the errors were kept under
reasonable values with the transition to the drone.

8.2 Nonlinear Solution

Implementing the static feedback linearization with
zero-dynamics stabilization led to the experimental re-
sults depicted in Fig. 9. It is possible to note that this
approach achieved a successful tracking of the predefined
trajectory. Similar to the linear control results, the take-
off is displayed as well, the previously referred saturation
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Fig. 7. Responses and actuations obtained with the UAV
during trajectory tracking with the proposed linear
control approach. From left to right, top to bottom:
(a) Trajectory Tracking in 3D space; (b) X Inertial;
(c) Y Inertial; (d) Height (e) Yaw; (f) Yaw Moment;
(g) Pitch; (h) Pitch Moment; (i) Roll; (j) Roll Moment
and (k) Thrust.

of the altimeter measurements is also evident and similar-
ities between the experimental and the simulation results
are noticeable, demonstrating once more the proximity
between the nonlinear model developed and the actual



Fig. 8. Absolute error histograms obtained with the pro-
posed linear control approach in the experimental
test. Left to right, top to bottom: (a) X Inertial; (b)
Y Inertial; (c) Height and (d) Yaw.

system. For attitude estimation, the nonlinear attitude
filter proposed by Madeiras et al. (2019) was used in this
approach. Identically to the former implementation, the
controllers had to be adjusted when transitioning to the
actual quadrotor. The matrices Q and R used in this
adjustment are detailed in Table. 6.

Table 6. Q and R matrices used in the adjust-
ment of the controllers of the selected nonlinear

control approach implemented in the UAV.

Subsystem Q R

Roll diag(7.5 × 103, 20, 2 × 105) 1
Pitch diag(7.5 × 103, 20, 2 × 105) 1
Yaw diag(7.5 × 103, 50, 1 × 105) 1

X Position diag(5, 1 × 10−3, 40) 2 × 103

Y Position diag(5, 1 × 10−3, 40) 2 × 103

The root-mean-square error for the trajectory track-
ing in simulation an in the real system obtained with
the nonlinear control approach is detailed in Table. 7.
Compared to the linear control implemented, it is notice-
able that the error decreased with the application of the
static feedback linearization technique to the altitude and
attitude dynamics. Furthermore, this nonlinear method
enabled achieving experimental results more proximate to
the simulation. The improvement achieved with the non-
linear control is partly due to the faster position responses,
which has as a consequence lower steady-state error in the
following of ramp inputs.

Table 7. Root-mean-square error obtained in
simulation and in the experimental test with

the selected nonlinear control approach.

x (m) y (m) z (m) ψ (◦)

Simulation 0.0632 0.0482 0.0385 0.0223
Experimental 0.0666 0.0518 0.0394 0.1715

By analyzing the histograms of the absolute error
for the inertial coordinates and the yaw angle during the
tracking trajectory (initiates at 20 seconds) displayed in
Fig. 10, it is noted that a higher number of approximately
zero absolute error instances was obtained with the second
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Fig. 9. Responses and actuations obtained with the UAV
during trajectory tracking with the proposed non-
linear control approach. From left to right, top to
bottom: (a) Trajectory Tracking in 3D space; (b) X
Inertial; (c) Y Inertial; (d) Height (e) Yaw; (f) Yaw
Moment; (g) Pitch; (h) Pitch Moment; (i) Roll; (j)
Roll Moment and (k) Thrust.

control approach implemented. Moreover, as a result of
presenting faster responses, this approach has the local
maxima of the histograms closer to zero than the previous
control structure considered. Analogously to the inner-



Fig. 10. Absolute error histograms obtained with the pro-
posed nonlinear control approach in the experimental
test. Left to right, top to bottom: (a) X Inertial; (b)
Y Inertial; (c) Height and (d) Yaw.

outer control using LQR with integrative action, the re-
sponse with more deviations is the inertial coordinate x
and the one with less is the height, which is the affected at
the smallest scale by unmodelled high-order effects. Over-
all, the implementation of the static feedback linearization
in the inner-loop improved the tracking performance of the
control structure by not only attaining the objectives but
also leading to better results.

9. CONCLUSION

The work developed throughout this thesis aimed to
provide solutions to fully control a quadcopter. Linear and
nonlinear techniques were applied to tackle this problem,
with different architectures being studied and devised
for each technique. The developed strategies were all
tested in simulation, which allowed to determine the
most promising. The selected approaches were successfully
validated in a commercially available quadcopter.

The control schemes devised demonstrated the ca-
pacity to seamlessly follow a predefined trajectory in the
presence of measurement noises in simulation. Further-
more, in the robustness test to model parameters variation,
the first architecture was able to meet the performance
criteria when simultaneous variations of 50% in the mass
and an increase of 300% in the inertia values were consid-
ered, which constitutes an interesting level of robustness
for a linear approach. The nonlinear solution was capable
of handling variations of 50% in the mass together with
inertia values four times lower and four times higher than
the value considered in the model without considerably
affecting its responses.

Both control solutions were successfully implemented
on an off-the-shelf quadrotor. The results obtained in
trajectory tracking validated the proposed strategies and,
given the manifest similarities between the attained re-
sponses with the actual aerial vehicle and in simulation,
evidenced that the dynamical model considered, obtained
resorting to the Newton-Euler formalism, is accurate and
sufficient, even though higher order effects were neglected.
The integrative action present in both architectures led
to null steady-state position error, even when a heavier

battery was used. The small angle approximation con-
sidered in the linearization of the dynamics was verified,
which contributed to achieving good overall performance
with the linear controller. Notwithstanding, the applica-
tion of the static feedback linearization to the attitude
and altitude dynamics improved the performance since
the obtained position and yaw angle error was inferior
compared with the obtained with the first solution. The
highest root-mean-square error obtained with the linear
approach was 0.1010 m, for the x inertial coordinate, and,
with the nonlinear control scheme, was 0.0666 m, verified
for the same coordinate. Moreover, the second control
scheme originated an actuation with less variation than
the first solution.

In summary, two different control solutions, using
linear and nonlinear methods, capable of following a prede-
fined trajectory and presenting null steady-state position
error and a reasonable level of robustness to model im-
precision, uncertainty and disturbances, were successfully
devised, tested in simulation and validated in experimental
tests resorting to a commercially available quadcopter.
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