
Distributed Architecture for Sensorial Implementation

Jorge Tiago da Rocha Afonso
tiago.afonso@tecnico.ulisboa.pt

Instituto Superior Tecnico, Universidade de Lisboa, Portugal

March 2019

Abstract

This paper proposes a complete system to support the development of advanced navigation and control
algorithms within an indoor laboratory environment. A fully distributed architecture, named ADIS,
is developed allowing for a flexible solution. Techniques for both 2D and 3D real-time marker position
detection are presented based on machine vision techniques. A point tracking algorithm is included
using Kalman filter estimation. The whole system was built using common hardware and sensors
since the overall cost was a limiting factor.
As for vehicles, an AR.Drone 2.0 was used. In this paper, only flying vehicles are explored because
the grounded vehicles were addressed in [1]. Consumer grade quadcopters, more commonly known as
drones, were deeply customized on the software side to integrate seemly with the rest of the system.
By analyzing its onboard operating system and control software, and by using several freely available
open source software and tools, a close integration between system and vehicle was achieved to provide
a user-friendly development platform.
Finally, a performance evaluation was done, with the intent of evaluating the reliability and overall
behavior of the system. This evaluation was more focused on localization system precision and speed
since it is the core functionality of the system.

1 Introduction

There is no doubt that scientific and technological
advances have transformed our world and shaped our
lives and the impact of technology in our world is
undeniable.

Mobility has always been one of the areas of tech-
nology that changed our life the most. The invention
of the automobile and its mass production ended an
era where animal strength was the heart of the trans-
portation industry and started a revolution where
everyone could travel with no effort and transport
goods efficiently. After the automobile, the new rev-
olution on mobility was the airplane. It connected
countries and reduced distances, making trips that
used to last months to last just a few hours. Cur-
rently, the next step in mobility technology could be
autonomous driving and navigation. Most vehicles
still require at least one human driver, which repre-
sents not just an annoyance to the driver, but also a
security risk. A complete autonomous vehicle could
not only improve security and reduce crashes but also
increase efficiency and speed in transportation. Au-
tonomous or self-driving vehicles can also be used in
many industrial applications like herbicide spraying,
harvest cropping, automated package delivery, pri-
vate security or even in fields where human lives are
at risk like firefighting or military applications.

This kind of vehicles relies on multiple types of
navigation and control algorithms to cruise, main-

tain stability and to make decisions. These algo-
rithms need to be able to execute tasks like sense and
avoid obstacles, optimize routes according to multiple
factors such as energy efficiency or traffic, cooperate
with other vehicles to share information like position
and trajectory planning, prioritize tasks and actions
to avoid imminent risks or to guarantee driving com-
fort, among others.

This paper is not going to focus on navigation
and control algorithms but rather on creating tools
and infrastructure, named ADIS, to support their de-
velopment, laboratory implementation and testing.
When the goal is real-world use of navigation, and
control techniques, implementation, validation and
refinement beyond simulation are essential to go fur-
ther than the initial theoretical construct. A con-
trolled laboratory environment becomes then the nat-
ural next step in the development process. However,
this requires specialized equipment or infrastructure
capable of accommodating multiple controller types
to be deployed and its behavior measured. With this
in mind, the emphasis of this thesis is to create a de-
velopment platform, for laboratory implementation
and testing of advanced control algorithms aimed at
grounded and airborne vehicles.

2 System Overview

The ADIS system was made to provide a wide frame-
work and toolset, for development and testing of navi-

1



gation algorithms. The basic requirements set for the
final system were: access to reliable location data, ac-
cess to telemetry vehicle data and easy to use tooling
and interface.

The first requirement dictates the need to know
the controlled vehicle location in space. The location
coordinates are measured in a user-defined inertial
frame, since navigating a vehicle through space is a
prime objective for any navigation controller. De-
pending on the application either a two dimensional
or a three-dimensional inertial frame may be needed.

The second requirement addresses the need to
know the orientation and inertial state of the con-
trolled vehicle. To gather this telemetry data, each
vehicle must be equipped with a wide range of on-
board motion sensors.

Finally, the third requirement is related to the ease
of use of the final system. Because the ultimate goal
of the ADIS system is to be used in the real world
for academic development, it is imperative that it
provides a simple and user-friendly workflow.

Taking these requirements as guidelines, the final-
ized system can be divided into three distinct parts
with three distinct functions: a localization system
to acquire location data, a vehicle integration layer
to accommodate all vehicles and its onboard sensors,
and a communication layer serving as the backbone
for all system components interoperability, handling
all communication needs.

2.1 System Architectures

The various components of the ADIS system can be
interconnected in multiple ways. Multiple system ar-
chitectures can be used, tailoring to the user’s needs
and level of expertise.

The simplest topologies that ADIS has are shown
in figure 1. Only one vehicle is used and is connected
to the control algorithm using a Wi-Fi network. The
same Wi-Fi network is used for the drone to broad-
cast back its telemetry data. Because the main com-
puter resources main not be enough to have the local-
ization software and control algorithm running in the
same machine (figure 1a) it is possible to use an ex-
ternal computer to run the control algorithm, which
receives the location data through a wired Ethernet
connection or through the already mentioned Wi-Fi
network.

If multiple drones are required, it is possible to run
multiple control algorithms in the main computer,
however, it is recommended the use of one or more
external computers like in figure 2a and figure 2b.

1

w
ire

d/
w

ire
le

ss
 c

on
ne

ct
io

n

Wifi connections

(a) All in one machine

1

w
ire

d/
w

ire
le

s 
co

nn
ec

tio
n

W
ifi connections

Wifi connection

(b) More than one machine

1 - ADIS Software Suite
2 - User Controller

Figure 1: ADIS basic architectures

1

w
ire

d/
w

ire
le

s 
co

nn
ec

tio
n

Wifi connection

W
ifi connections

W
ifi

 co
nn

ec
tio

ns

(a) External machine with mul-
tiple vehicles

1

w
ire

d/
w

ire
le

s 
co

nn
ec

tio
n

Wifi connection

W
ifi connections

W
ifi connectionsWifi connection

(b) Multiple external machines
and multiple vehicles

1 - ADIS Software Suite
2 - User Controller

Figure 2: ADIS multi-vehicle architectures

All of the architectures previously described as-
sume that the vehicle’s control algorithm is running
in an external computer. However, if a drone is used,
it is possible to write and compile binaries that run
directly inside the drone’s onboard computer, as de-
scribed in section 5. These compiled binaries offer
a remote visualization and control interface which is
executed in an external computer.

Figures 3a and 3b, describe two different architec-
tures using an onboard controller, without or without
the use of extra computers.

2



1

w
ire

d/
w

ire
le

ss
 c

on
ne

ct
io

n

Wifi connections

2

3

(a) External controller running
inside the drone

Wifi connection

1
w

ire
d/

w
ire

le
s 

co
nn

ec
tio

n

W
ifi connection

2

3

(b) Multiple external machines
and multiple vehicles

1 - ADIS Software Suite
2 - User Controller
3 - Data Visualization

Figure 3: ADIS onboard algorithm architectures
In this architecture, the main computer is merely

receiving and displaying a reduced set of data re-
turned by the vehicle. Some control commands and
flags can be set within this visualization interface, but
the bulk of the control algorithm’s work is relocated
to the drone’s onboard processing unit. Reduces the
load on the main computer freeing resources for more
vehicles and cameras to be added. This topology also
changes the destination of the location coordinates
sent by the localization system from the main com-
puter to the drone.

3 Theoretical Overview

In optical localization technologies, one of the main
tasks is to associate pixel coordinates, measured from
a digital sensor, to real-world coordinates from a vis-
ible scene. This association should be described by
a well defined mathematical model, which allows a
computerized system to interpret the real world and
understanding its surroundings.

3.1 Homogeneous Coordinates
Allow to represent a 2D point as 3D point by using a
“fictitious” coordinate. By convention, from a point
in homogeneous coordinates (x′, y′, z′) is always pos-
sible to recover (x, y) using:

x =
x′

z′
y =

y′

z′
(1)

These coordinates are called homogeneous because
the overall scaling of the coordinates is not important,

because:

x =
x′

z′
=
kx′

kz′
y =

y′

z′
=
ky′

kz′

This means that a representation of a Cartesian point
(x, y) is not unique but independent of scaling.

3.2 Pinhole Model

The pinhole model describes how the three-
dimensional coordinates of a point in space, are math-
ematically related to its projection onto the image
plane of an ideal camera. The image plane corre-
sponds to the plane in the world from which the scene
is viewed, and in the case of a digital camera, it’s the
plane of the photosensitive sensor.

y
x

z

Z
X

Y

c

A

B

D
Eu

v

f

(a) Defining a triangle 4ABC

Figure 4: Pinhole Geometry

Figure 4 shows the pinhole camera geometry. Point
C, marks the hole of the camera: here the light enters
the opaque box, the blue surface corresponds to the
visible area, the green plane is the captured image
plane, distance f is called focal length and point B
is an arbitrary point of interest in the visible area
represented by point D in the acquired image. This
geometry creates two similar triangles 4ABC and
4CDE, which lead to

AB

CB
=
ED

DC
⇔ AB = CB × ED

DC

So if point B is given by (X,Y ) and point D by
(u, v), then

X =
Z × u
f

Y =
Z × v
f

(2)

3



3.3 World to Camera Transformation

To transform points from the inertial frame to the
camera frame, a translation, T , and a rotation, R,
are applied to the inertial frame, B.

Ac = RAB + T (3)
The parameters T and R are called extrinsic pa-

rameters.

3.4 Sensor Plane to Pixel Coordinates
Transformation

To apply the pinhole model, the pixel array return by
a digital camera must be converted to metric units.
Each pixel of the image array is identified with a pair
of indexes that do not correspond to the Cartesian
coordinates measured in the sensor frame. As seen

x

y

u

v

(0,0)

Ox

Oy

(0,0)

Figure 5: Sensor to Pixels
in figure 5, it’s necessary to use offsets to match the
origin point.

u = x+Ox v = y +Oy

To convert from metric units, u and v are divided by
each cell of the sensor.

u =
x

sx
+Ox v =

y

sy
+Oy (4)

3.5 Planar Homography

Using the equations 2, 3 and 4, with homogeneous
coordinates we get: u′

v′

w′

 =

 1
sx

0 Ox

0 1
sy

Oy

0 0 1


 f 0 0 0

0 f 0 0
0 0 1 0

×

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1




U
V
W
1

 (5)

after simplification, yields, p
q
1

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

−1  u′

v′

1

 (6)

Equation 6 is able to convert coordinates from the
camera sensor plane, in pixels, to the coordinates in
the inertial frame.

3.6 Projection of a point onto a plane

Consider the plane defined by a point P0 =
(x0, y0, z0) and a normal vector ~n = (a, b, c). The
projection of an arbitrary point Q not contained in
the plane is given by a point R so that the dot prod-
uct between vectors

−→
RP and

−−→
RQ is equal to zero.

Then R is:
R = (x+ ka , y + kb , z + kc)

making
−→
RP = [−x+ ka+ x0 , −y + kb+ y0 , −z + kc+ z0]
−−→
RQ = [−x+ ka+ x , −y + kb+ y , −z + kc+ z]

= [ka , kb , kc]

applying the dot product 0 =
−→
RP.
−−→
RQ and solving for

k,

k =
−xa− yb− zc+ x0a+ y0b+ z0c

a2 + b2 + c2
(7)

which allows to completely define the projection point
R.

3.7 Singular Value Decomposition
(SVD)

The singular value decomposition is a factorization
of a real or complex matrix, with many applications
in technological areas like in signal processing and
statistics. Formally the singular value decomposition
theorem states that any matrix A ∈ Rm×n, can be
decomposed into two orthogonal matrices U ∈ Rm×m

4



, V ∈ Rn×n and a diagonal matrix
∑
∈ Rm×n, i.e.,

Σ =



σ1 0 · · · 0
. . .

σr
0

. . .
0 · · · 0


for m ≤ n

with diagonal entries
σ1 ≥ . . . ≥ σr > σr+1 = . . . = σmin{m,n} = 0

such that
A = UΣV T

The diagonal entries σi, of Σ are called singular val-
ues of A. The columns of V are called right singular
vectors and the columns of U are called left singular
vectors.

This technique has many applications, one of them
is the ability to solve plane fitting problems as de-
scribed in “Solving Problems in Scientific Comput-
ing using Matlab and Maple”, by W. Gander and J.
Hrebicek[2].

4 Localization System

The localization system as both the option for two-
dimensional or three-dimensional coordinates detec-
tion and tracking.

4.1 2D Localization
The 2D implementation of the localization system
uses image processing to detect and track special-
ized markers, placed on points of interest defined by
the user. The 2D version can be composed by multi-
ple cameras wired directly to the main computer or
by multiple cameras connected to the main computer
wirelessly through Wi-Fi.

The basic operation concept consists of five differ-
ent steps. First, digital cameras and machine vision
detect visible markers. Then each detected marker is
associated with others detected in previous frames.
If no match is found, it’s assumed that a new marker
appeared. After that, the pixel coordinates of each
marker is transformed into inertial frame coordinates
using equation 6. Finally, the outgoing message with
the data resulting from the previous steps is assem-
bled and sent to the navigation controller.

Because equation 6, assumes that all visible points
are on the same plane, it is not possible to use any

w
ire

d 
U

SB
 c

on
ne

ct
io

ns

(a) Wired Architecture

w
ire

le
ss

 W
iF

i c
on

ne
ct

io
ns

wired USB 
connections

(b) Wireless architecture

Figure 6: Localization system architectures

kind of flying vehicle. To go around this restriction,
without using the 3D version of the tracking system,
equation 8 can be used. If the vehicle in use is able to
measure its height, the geometry from figure 7 allows
for the following rationale.

x2x1 x3 x

z

h

H

a

Figure 7: Coordinate correction for flying vehicles
If the drone is at height h, the localization system

perceives its location as x1 instead of x2, then,
x1 − x2 = a

tan θ = a
h

tan θ = x1−x3

H

⇔ x2 = x1 −
(x1 − x3)h

H

the same is valid for the y axis, leading to:

x2 = x1 −
(x1 − x3)h

H
y2 = y1 −

(y1 − y3)h

H
(8)

However, this solution has problems: the camera

5



w
ire

le
ss

 W
iF

i c
on

ne
ct

io
ns

wired USB 
connections

Figure 8: Distributed Architecture for the 3D system

height H and position (x3, y3) needs to be measured
manually, and it requires the localization system to
establish a connection with each drone to access its
height. The first problem obviously forces the user
to measure each camera height which are typically
located in the ceiling and its exact location in the in-
ertial frame. The second problem forces the localiza-
tion system to associate which drone to one marker or
a group of markers, adding more processing load and
increases the overall complexity with more connec-
tions. To circumvent the second problem, equation 8
needs to be implemented on the navigation controller
side. Each controller already has a connection estab-
lished with its corresponding drone, making it pos-
sible to access the drone height directly and correct
the location coordinates.

4.2 3D Localization
The 3D version of the localization system uses mul-
tiple Kinect v1 sensors wired directly to remote pro-
cessing units that send the location results back to
the main computer running the localization system
software.

Although other depth-sensing cameras are com-
mercially available like the Intel RealSense cameras
or the Persee camera from Orbbec, a Kinect v1 sen-
sor from Microsoft was used. The Kinect v1 sensor
shipped with the Xbox 360 gaming console [3], and
comes equipped with two cameras. One that cap-
tures RGB video, and another infrared camera that
captures depth information. The equipped depth sen-
sor, captures the distance from the camera plane, to
the object. Similarly to the 2D version, the 3D lo-
calization system goes through the same operational
phases: marker detection, coordinates transforma-
tion, marker association/tracking, message assembly,
and the sending process. However, there are some
differences during the conversion from pixel coor-
dinates to real-world coordinates, due to the extra
depth data. This time, the planar homography model
given by the equation 6, is not enough to compute the

height of an airborne vehicle.
To compute the correct inertial frame coordinates

taking height into account, first, an estimation of the
ground plane is calculated. This creates a reference
plane from which all height measurements are cal-
culated from, minimizing the errors caused by the
depth sensor itself. If the floor is a perfect plane, it
is geometrically represented by:

Ax+By + Cz +D = 0 (9)
To estimate the ground plane, the iterative Ran-
dom Sample Consensus algorithm, also known as
RANSAC [4], is used. The RANSAC algorithm out-
puts a good estimation for the parameters A, B, C
and D. However, these parameters define a planar
equation using a reference frame with its origin lo-
cated in the center of the Kinect and not in the iner-
tial frame origin.

A good estimation of the floor position allows to
transform the depth information into 3D location co-
ordinates. The geometric construct from figure 9,

x2x1 x3

y

z

h

H

a

x

z

b

c

Zh

ZH

Figure 9: Geometric construct for height calculation

exposes two triangles (in red) that allow to calcu-
late the height of the drone relative to the ground.
Applying triangles similarity to the large and small
triangles 41 ∼ 42,

H

ZH
=

h

Zh
⇔ h =

(b− c)×H
ZH

(10)

were h is the vehicle height, H is the camera height,
c, b, and ZH are distances perpendicular to the cam-
era plane, between the camera plane and the marker,
between the camera plane and the apparent vehicle
location, and from the camera to the ground respec-
tively. These quantities can all be determined using
the ground plane estimation previously estimated.
Equation 10, provides a way to calculate the vehi-
cle’s height directly, without the use of an onboard

6



altimeter. Still, it remains the problem that, due to
its height, the drone is detected as a marker located in
a point further away than it actually is. Equation 8,
corrects these coordinates, however, it requires quan-
tities that need to be measured manually for each
camera. This is not a viable implementation, because
every time the position of any Kinect in the system
changes, new measurements are required. To avoid
this, it’s possible to calculate the pixel coordinates
that the point defined by the marker would have, if it
was sitting on the ground and then repurpose the 2D
version strategy of using one homography matrix per
camera to convert from pixel coordinates to initial
frame coordinates, ending up with the coordinates
corrected for the vehicle’s height. In other words,
we need to find the projection of the point onto the
estimated ground plane and convert it to pixels and
then calculate its coordinates in the initial frame of
reference using homography. Looking at figure 9, the
abscissa of this projected point is represented by x2.
To calculate this, we use the mathematical method
described in section 3.6, using the parameters A, B,
and C generated with the RANSAC algorithm. As-
suming the arbitrary point in the ground plane P0,
as P0 = (0, 0, z0), where z is given by the estimated
ground plane definition,

0 =A× 0 +B × 0 + C × z0 +D

z0 =− D

C
and the normal vector ~n is given by ~n = [A,B,C].
So if the detected marker point is Q = (x, y, z), the
projected point onto the ground plane is

R = (x+ kA, y + kB, z + kC)

with

k =
−xA− yB − zC − D

CC

A2 +B2 + C2

After this correction, the point R is converted back to
pixel coordinates that can be converted into inertial
frame coordinates with homography matrices used by
the 2D version of the localization system.

4.3 Remote Cameras
As mentioned before, the optical sensors used, either
an RGB camera or a Kinect 360, can be connected to
remote processing units. These assemblies, for sim-
plicity, are called remote cameras. They are based
on Micro-ATX boards with integrated x86 CPU’s.
A minimal installation of the Debian operating sys-
tem, version 8, is running on each remote camera
customized to integrate seamlessly with the ADIS

(a) Remote Camera front
view

(b) Remote Camera back view

Figure 10: Remote Camera

system. They boot automatically when plugged to
a power socket, connect to the ADIS Wi-Fi network
during boot and run a custom camera controller soft-
ware with elevated privileges.

The camera control software is written in Python
and leverages the “OpenCV (Open Source Computer
Vision Library)“ compiled with “Intel TBB (Thread-
ing Building Blocks)“ support and its python bind-
ings for all image processing related tasks. To ac-
quire image data from the cameras it uses the stan-
dard drives provided by the Linux kernel, whereas to
acquire image and depth data from the Kinect 360,
a customized driver based on the libfreenect[6] from
the OpenKinect[7] community was used. The cam-
era control software provides a text-based interface
that can be view using a monitor plugged into the
remote camera or remotely using an SSH connection.
In addition to the text-based interface, the remote
camera also starts its own web-server that serves a
simple HTML web-page were a real-time video feed of
the acquired data is visible using any browser. This
video feed is clickable and switches between the an
RGB video feed captured, the image processing re-
sults and, if a Kinect is connected, a colored depth
map view.

4.4 Markers
The localization system relies on color-segmentation
to detect the markers. Natively, the digital cam-
eras and the Kinect provide images encoded in the
RGB (Red, Green, Blue) color space. When the pro-
cessing power is limited, for example, while running
the localization software without remote cameras, the
color-segmentation is done in the RGB color space
too. But when using remote cameras the RGB color
space is converted to HSV (Hue, Saturation, Value).
The HSV color space provides better results with
color segmentation using thresholds. RGB as to use
all three channels to represent color, HSV represents

7



color only in one channel independent of brightness
or saturation.

The markers are circles, five centimeters wide,
made of colored paperboard. Their color was de-
fined by analyzing the laboratory ambient lighting.
From a picture taken with the ADIS system cam-
eras, the least common color detected was pink with
a hue around 300°.

4.5 Overlap Zones
The ADIS system is capable of using multiple cam-
eras to cover a larger area. To do this without blind
spots, either the cameras are perfectly aligned with
each other or there are some areas that are covered
by more than one camera. Inside these overlap zones,
one marker is detected by multiple cameras, meaning
that the system detects more points than it should.
This would not be a problem if the localization sys-
tem was perfect, and one marker spawned multiple
detections with exactly the same coordinates, making
it easy to correct the overlap zones just by coordinate
comparison. However, the system has inherent errors
that make different cameras detect the same marker
in slightly different positions.

To solve this problem, the localization system an-
alyzes the shape “drawn” by the markers instead of
its location. Assuming that this perceived shape does
not completely change with the camera point of view,
it is possible to associate multiple detected points
by analyzing the shape that they form. Procrustes
analysis[8, 9] was used to interpret the aforemen-
tioned shape. This method gives a linear transfor-
mation (translation, reflection, rotation, and scaling)
that best conforms a given set of points into another.

First, the overlap zones are identified by analyzing
the field of view of each camera in the system. Then
if during runtime any point is detected inside these
overlap zones, the Procrustes analysis method is used
to match all multiple detections of the same point.
Finally, the extra points are eliminated, using one
camera as reference, replacing the remaining correct
points by a mean point calculated between all repe-
titions of the detected marker. Using a mean point
smooths the transition inside and out of an overlap
zone, aiding the marker tracking process.

4.6 Tracking
To track multiple markers while the ADIS system
is running, a Kalman filter [10] based tracker was
implemented. The tracker sole purpose is to associate
all detected markers to distinct identities and follow

these markers through time matching their identities
correctly.

Using a simplistic view, a Kalman filter is an it-
erative algorithm that uses a series of measurements
observed over time to estimate future measurements.
These future measurements are used to further cor-
rect the Kalman filter, in order to improve its accu-
racy for the next prediction.

This behavior is used to build a tracker by associ-
ating each marker to its independent Kalman filter.
Each filter predicts the next location of its marker.
When new location data arrives, it is compared to
the Kalman filters data and each detected maker is
matched to its closest filter prediction (within a cer-
tain Euclidian distance). When all detected mark-
ers are matched, its location data is used to cor-
rect its corresponding filter. This process is repeated
through time for all matched filters. When a filter
is not matched with any marker a predefined num-
ber of times, this it’s deleted, and its corresponding
marker is considered as lost. The opposite also hap-
pens, when a new marker appears, a new Kalman fil-
ter is created to follow this marker until it disappears
again, or the localization system stops tracking.

4.7 Calibration
Every time the ADIS system cameras change posi-
tions, a calibration process needs to be executed.
This calibration process estimates the homography
matrices used by the localization system to convert
pixels to inertial frame coordinates. It is a semi-
automated process, that relies on the placement of
a calibration pattern in front of each camera. This
calibration pattern feeds to the system a set o points,
with known coordinates in the inertial frame. These
points are detected by each camera and used to es-
timate each homography matrix using the singular
value decomposition technique. An analysis was done
to find the best location for the calibration pattern.
Two sets of calibration points were defined, one set
was scattered across the camera’s entire field of view,
and another was placed only at the center.

Pattern Position
Error

mean (cm) standard deviation (cm)

Centered 4,1 4,7

Scattered 5,9 7,5

Table 1: Calibration Pattern Location Tests Results
The mean error, when the calibration pattern is

centered, is around 2 centimeters bigger than when

8



the calibration points are scattered. The same is true
for the standard deviation. This increase is most
likely related to lens distortions around the edges.
The SVD estimation fits lens distortions, increasing
the overall error in the final estimation. These differ-
ences are not that large, comparing to the size of the
vehicles in use, but they are big enough to choose a
centered calibration pattern instead.

5 Vehicles

Although the ADIS system supports two types of ve-
hicles, the main focus of this work revolved around
the integration of flying vehicles, more precisely a
quadcopter. The selected quadcopter, or drone, was
an AR.Drone 2.0 from Parrot.

Propeller

Battery

Gear AssemblyCentral Cross Structure

Motherboard

Sonic Sensor

Front Camera
LED

USB Port

Motor

Motor Controller

Exterior Hull
Interior Hull

Figure 11: AR.Drone 2.0 cut-out

This drone comes equipped with an ARM proces-
sor, Video Digital Signal processor, 1GB of RAM, a
Wi-Fi chip compatible with b/g/n Wi-Fi networks, a
forward facing HD camera, a QVGA vertical camera,
a pressure sensor, a USB 2.0 port, a 3 axis gyroscope,
a 3 axis accelerometer, a 3 axis magnetometer, and
an ultrasonic altimeter.

The internal operation of this drone was thor-
oughly analyzed and adapted to integrate the ADIS
system. Using a chroot jail, an external Linux file
system was connected to the USB 2.0 port. This file
system runs a custom startup sequence that connects
the drone to the ADIS Wi-Fi network with a defined
IP address, and prepares it to be controlled by the
user, using the drone’s SDK[11] , or the Matlab’s
Simulink with the AR Drone Simulink Development-
Kit V1.1[12] or even a custom binary package. This
file system is also remotely accessible using a telnet
client.

6 Communications

To send information from one computer to another
the system relies upon two different protocols named
TCP and UDP. Broadly speaking, the TCP protocol
is used to send most of the messages exchanged within
the ADIS system due to its reliability features. UDP
is used only when communication speed is manda-
tory, more specifically, when location data is sent
from the main computer to the navigation control
algorithms and when the remote cameras are trans-
mitting its location data to the localization software.
The messages between the remote cameras and the
localization software are encoded using a custom for-
mat fully documented.

The ADIS system is also capable of detecting all
of its components connected to its network automat-
ically. The detect its components, the ADIS system
scans its entire network relying on the Address Res-
olution Protocol, ARP, defined by the RFC 826[13].
The scan mechanism sends a ping command across
a predetermined interval of IP addresses, filling up
a local ARP cache with detected IP addresses and
the respective MAC addresses. These detected MAC
addresses are then compared against a file where the
MAC addresses of the ADIS system components are
registered. This comparison identifies the available
components on the network. These components can
be vehicles or remote cameras.

The ADIS network has certain IP addresses re-
served for certain components. This was done to
facilitate the network scanning but also to avoid IP
address conflicts between multiple network connected
components.

7 Performance

In this section, a comprehensive set of tests is de-
scribed and its results presented, with the intent of
evaluating the overall system performance. Before
starting the performance analysis a baseline for suc-
cess was set. Every image capture device, either the
USB camera or the Kinect works with a maximum
frame rate of 30 frames per second. 30 Hz is also the
speed at which the drone processes commands. So
ideally the ADIS system should also work at a fre-
quency of 30 Hz. A minimum sample rate of 20 Hz
was set. Below this limit, the system is considered
unfit to control a drone or a grounded vehicle. The
drones dimensions are approximately 38x29x12 cen-
timeters, and from all of the available vehicles, the
smallest dimension is the drone’s height. So empir-
ically was set a maximum absolute position error of

9



12 centimeters for the localization system.
The test setup consisted of one forklift with a re-

mote camera mounted on the tip of its fork. The
fork was raised until the remote camera was 4 me-
ters high. A tripod holding a 5 centimeters diameter
marker was placed below the camera at a fixed height.
A grid of 40x40cm squares was drawn on the ground
occupying the entire field of view of the camera. The
intersection between the grid lines defined the fixed
measuring points to be used during the tests. For
each point, 30 consecutive measures were taken, cor-
responding approximately to 1 second of acquisition.
From these 30 measurements, the mode was assumed
as the measured value. To analyze not just the sys-
tem accuracy but also the data quality, the average
,and the standard deviation were also computed.

7.1 Digital Camera

When using a digital camera the localization system
is only acquiring 2D location data, so just one test
at 0 meters was performed. The results for this test,

0 80 160 240 320 400

17

57

97

137

177

217

257

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

x (cm)

y
(c
m
)

Reference Grid
Measurements

Figure 12: X and Y measured coordinates at 0 meters
are drawn in figures 12. Visually, all measured points
are very close to their nominal values, and the closer
the measurements get to the center of the image, the
lower the accuracy error is. This is to be expected be-
cause no steps were done to correct lens distortions,
unaccounted by the pin-hole model. These distor-
tions are more pronounced in the edges of the lens
and less pronounced close to the center. The accu-
racy error, was defined as the Euclidean Distance be-
tween the reference point, p = (p1, p2, ..., pn), and
coordinates and its measurement q = (q1, q2, ..., qn):

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2

Figure 13 plots the accuracy error for each measured
point, and the standard deviation of the 30 samples
gathered for each point measurement is plotted in
figure 14 both for the x and y coordinates.

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

15

Point Number

A
bs
ol
ut
e
E
rr
or

(c
m
)

Absolute Dist. Error
Average Error = 3.9 cm
Min. Error = 0.6 cm
Max. Error = 8.7 cm

Marker Radius differencent
Figure 13: Absolute distance error for each point at
0 meters

0 5 10 15 20 25 30 35 40 45 50 55
0

5

Point NumberSt
an

da
rd

D
ev
ia
to
n
(c
m
)

Standard Deviation X
Standard Deviation Y

Figure 14: Standard Deviation for each coordinate at
0 meters

The maximum absolute error was 8.7 centimeters
which is under the baseline value for success defined
earlier of 12 centimeters. Furthermore, the average
error is just 3.9 centimeters, meaning that the major-
ity of the individual points were detected inside the
marker. Figure 13 shows clearly the effects of lens dis-
tortion. In the center of the lens, the error dips con-
siderable reaching errors below the 2.5 cm. A large

10



standard deviation reveals noisy measurements. For-
tunately, the standard deviations measured are low,
close to 0.5 centimeters, indicating low noise levels.
Finally, it is important to note that the absolute error
changes evenly along the image length, meaning that
while a marker is being tracked, not abrupt changes
in position occur that could affect the tracking algo-
rithm performance or even change the relative posi-
tions between points across the captured area.

7.2 Kinect

The Kinect performance evaluation was done at four
different heights, 0, 1, 1.5 and 2 meters. The mea-
surements gathered and acquisition procedures were
the same as used for the digital camera evaluation
adding this time the height (z coordinate) measure-
ment.

Because graphs similar figure 13 provide more in-
formation regarding the localization accuracy, graphs
like figure 12 that show the accuracy error for each
individual coordinate, will not be represented.

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

Point Number

A
bs
ol
ut
e
E
rr
or

(c
m
)

Absolute Dist. Error
Average Error = 4.1 cm
Min. Error = 0.7 cm
Max. Error = 9.7 cm

Marker Radius

Figure 15: Absolute distance error for each point at
0 meters

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

Point Number

A
bs
ol
ut
e
E
rr
or

(c
m
)

Absolute Dist. Error
Average Error = 5.1 cm
Min. Error = 1.6 cm
Max. Error = 10.2 cm

Marker Radius

Figure 16: Absolute distance error for each point at
1 meter

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

Point Number

A
bs
ol
ut
e
E
rr
or

(c
m
)

Absolute Dist. Error
Average Error = 4.8 cm
Min. Error = 2.2 cm
Max. Error = 9.4 cm

Marker Radius

Figure 17: Absolute distance error for each point at
1.5 meters

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

Point Number

A
bs
ol
ut
e
E
rr
or

(c
m
)

Absolute Dist. Error
Average Error = 5.7 cm
Min. Error = 3.2 cm
Max. Error = 10.9 cm

Marker Radius

Figure 18: Absolute distance error for each point at
2 meters

11



0 5 10 15 20 25 30 35 40 45 50 55
0

5

Point NumberSt
an

da
rd

D
ev
ia
to
n
(c
m
)

Standard Deviation X
Standard Deviation Y
Standard Deviation Z

Figure 19: Standard Deviation for each coordinate at
0 meters

0 5 10 15 20 25 30 35 40 45 50 55
0

5

Point NumberSt
an

da
rd

D
ev
ia
to
n
(c
m
)

Standard Deviation X
Standard Deviation Y
Standard Deviation Z

Figure 20: Standard Deviation for each coordinate at
1 meter

0 5 10 15 20 25 30 35 40 45 50 55
0

5

Point NumberSt
an

da
rd

D
ev
ia
to
n
(c
m
)

Standard Deviation X
Standard Deviation Y
Standard Deviation Z

Figure 21: Standard Deviation for each coordinate at
1.5 meters

0 5 10 15 20 25 30 35 40 45 50 55
0

5

Point NumberSt
an

da
rd

D
ev
ia
to
n
(c
m
)

Standard Deviation X
Standard Deviation Y
Standard Deviation Z

Figure 22: Standard Deviation for each coordinate at
2 meters

Across these four tests, the accuracy of the mea-
surements stayed stable and consistent, showing that
the ADIS systems behavior is kept through different
height levels. The most dramatic difference is seen on
the minimum error that increases from 0.7 centime-
ters to 3.2 centimeters. It is still just a 2.5 centimeters
increase, that is small when comparing to the overall
drone’s size. However, it is enough to place the de-
tected point outside of 2.5 centimeters radius of the
maker, by 7 millimeters. Again these are small errors
differences, but they need to be taken into account
the user when using the ADIS system.

The average and the maximum errors change less
from test to test. They also increase from the 0 me-
ters test to the 2 meters test, but only by 1.6 centime-
ters and 1.2 centimeters respectively. The maximum
error is consistently around 10 centimeters, the dou-
ble of the average error which hovers around 5 cen-
timeters. This error grows the higher the drone goes,
is mainly caused by the x and y coordinates correc-
tion done by the system. When the marker is on to
the ground, no coordinate correction is needed, so
the system is effectively running similarly to the 2D
mode using digital cameras. In fact, the results from
the test at 0 meters with the Kinect and the test with
the digital camera are extremely similar even though,
they are different sensors. But when the marker is
lifted from the floor, the calculations start to include
the X and Y coordinate correction to account for the
non zero height. This introduces errors, coming from
imprecisions acquired during the calibration process,
that increase the bigger the coordinates correction is.

The influence of the lens distortion is also visi-
ble since the less centered the points are, the higher
the measured error is. This also worsens the results
the higher the marker goes, because the area appre-

12



0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

Sample Number

Fr
am

es
pe

r
se
co
nd

Figure 23: Frames per second test results
hended by the field of view is reduced. This makes
the area below the center of the lens smaller, and
consequently, less and less points can be inside this
area where the lens distortion is minimal.

7.3 Sampling rate
To evaluate the localization system reliability and
availability, frequency of the localization system’s
output was measured, with one Kinect connected to a
remote camera with 5 markers in its field of view dur-
ing 15 minutes. The output frequency was measured
once per second by counting the number of packets
received. Figure 23 shows the results.

The sampling rate rarely dropped below 30 frames
per second and never reached any FPS number be-
low 27. These last results are good and will provide
robust location data to work with. Yet when the
current version of the ADIS system was installed in
the laboratory, occasionally results like the ones in
figure 24 were found.

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

Sample Number

Fr
am

es
pe

r
se
co
nd

Figure 24: Frames per second test with bad connec-
tion results

After some debugging the root cause for this is-

sue was pinpointed to poor router performance and
high Wi-Fi network density, which were causing un-
expected packet drops. This can be solved by replac-
ing the current router with another, more powerful,
model.

7.4 Tracking and Overlap Zones
Two tests were executed to evaluate how the track-
ing algorithm performs. One test consisted of using
three cameras covering a large area and then drive
a car with three markers on top to observe if any
marker were lost or switched. This test evaluated the
performance of the tracking algorithm in a 2D setup.
The second test evaluated the tracking algorithm in a
3D setup. It used one remote camera equipped with a
Kinect to track three markers on top of a drone. Both
tests proved the reliability of the tracking algorithm,
however, they also revealed three problems.

One happens when the car crossed over a thin area
of an overlap zone, where one of the markers was sud-
denly labeled as new to the scene. This was caused
due to the limits of the overlap zones not being as
precise as they should. This problematic marker ap-
peared as two, creating a new marker identification.
because the car was already inside an overlap zone
without the system’s knowledge. Then when the car
finally entered the overlap zone, the original marker
was eliminated leaving the newly created one. The
solution to this problem is to recalibrate the system,
and if the problem persists, reposition the cameras to
enlarge the overlap areas.

The second problem encountered is related to the
Kinect depth performance. Usually, in dark-colored
areas, the Kinect cannot measure depth information.
This could lead to abrupt changes in the marker’s
location that lead the tracking algorithm to assume
that a new marker appeared in the frame. This prob-
lem was solved by feeding into the tracking algorithm
the x an y coordinates still not corrected for the z co-
ordinate. This means that the tracking algorithm is
the same used for 2D tracking and during testing it
displayed the same performance.

The third problem is related to overlap zones with
the Kinect. Unfortunately, these overlap zones can-
not happen when using a Kinect. When two Kinects
are pointing at the same area, their projected pat-
terns interfere with each other. This interference
prevents either Kinect to acquire depth information.
This problem can be solved by synchronizing the
depth capture process in such a way that multi-
ple Kinects project their infrared pattern alternately.
However, this would require a mechanism to rapidly

13



switch the infrared projector on and off, which is
not currently supported by the custom Kinect driver
used.

8 Conclusion

This thesis aimed to create a comprehensive system
for the development of navigation and control algo-
rithms targeted at mobile vehicles. The main idea
was to provide a stable development environment,
capable of accurate and reliable data collection for
educational or research purposes. The vehicles used
were both commercially available drones and radio
controlled cars.

The system had to be able to locate and track more
than one test vehicle in an indoor environment as
well as communicate and control them. This led to
the creation of an indoor localization system, a Wi-Fi
based communication network and the customization
of off-the-shelf drones to integrate the system.

The localization system can be configured to work
in a 2D or 3D mode. After the tests presented in sec-
tion 7, the localization system can be considered ac-
curate enough to locate either a car or a flying drone.
Nevertheless, problems still exist regarding overlap
zones, because two Kinects interfere with each other
when their field of view intercepts.

To follow the test vehicles through time, a track-
ing algorithm was implemented. Kalman filter based
tracking. This tracking technique worked well in the
right conditions. Unfortunately, edge cases caused
by the overlap zones were also a problem. To handle
these overlap zones, a specialized algorithm was inte-
grated that uses the Procrustes method to find and
delete duplicated points, however, this algorithm only
starts when a point is detected as being within an
overlap zone. Due to small inconsistencies between
calibrated cameras, these overlap zones are calculated
with small errors in their boundaries locations, which
can originate duplicated detections and consequently
matching errors.

To send and retrieve information from vehicles to
fulfill any kind of communication with a remote de-
vice, a Wi-Fi based communication network was cre-
ated. The main disadvantage of this approach was in
situations with high network density caused by other
networks. This impact occasionally caused large
amounts of dropped UDP packets, slowing down the
localization system.

Regarding vehicle integration, only flying vehicles
were addressed. The drone model selected was the
AR.Drone 2.0 from Parrot. This was a good choice
because is durable, and it endured testing, and the

official and unofficial community support helped the
overall system integration considerably.

References

[1] M. Nuno. Integration of RC Vehicles in a
Robotic Arena. Master Thesis, November 2016.

[2] W. Gander and J. Hrebicek. Solving Problems in
Scientific Computing using Matlab and Maple.

[3] Xbox 360 release date
”http://gizmodo.com/5563148/microsoft-
xbox-360-kinect-launches-november-4”

[4] M. A. Fischler and R. C. Bolles, “Random sam-
ple consensus: a paradigm for model fitting with
applications to image analysis and automated
cartography,” Communications of the ACM, vol.
24, no. 6, pp. 381–395, 1981.

[5] About OpenCV,
“http://opencv.org/about.html”

[6] Libfreenect GitHub,
“https://github.com/OpenKinect/libfreenect”

[7] OpenKinect community page,
“https://openkinect.org”

[8] Kendall, David G. "A Survey of the Statistical
Theory of Shape." Statistical Science. Vol. 4, No.
2, 1989, pp. 87–99

[9] Bookstein, Fred L. Morphometric Tools for
Landmark Data. Cambridge, UK: Cambridge
University Press, 1991

[10] R. E. Kalman, A New Approach to Linear Fil-
tering and Prediction Problems,1960

[11] Stephane Piskorsk, Nicolas Brulez, Pierre Eline,
Frederic D’Haeyer. AR.Drone Developer Guide.
Version 2.0.

[12] AR Drone Simulink Development-Kit V1.1
,”https://www.mathworks.com/matlabcentral/
fileexchange/43719-ar-drone-
simulink-development-kit-v1-
1?requestedDomain=www.mathworks.com”

[13] David C. Plummer (November 1982). "RFC 826,
An Ethernet Address Resolution Protocol -- or
-- Converting Network Protocol Addresses to
48.bit Ethernet Address for Transmission on
Ethernet Hardware". Internet Engineering Task
Force, Network Working Group.

14


