
GNSS-based Attitude Estimation using Single Baseline
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Abstract

The problem of attitude estimation using Global Navigation Satellite Systems (GNSS) has been tackled
over the last decades and still draws attention from the navigation community. This work presents the design
and preliminary validation of a GNSS-based attitude estimation algorithm suitable for navigation applications,
where the performance of said algorithm using a single baseline is highlighted. The proposed solution
combines an Extended Kalman Filter (EKF) fed by gyroscope measurements with a state of the art ambiguity
determination method. This work’s contributions also include an observability analysis of the linearized
system’s model, where the single baseline case is highlighted. The results obtained for experimental validation
of the algorithm are presented, including key conclusions regarding the integer ambiguity determination success,
attitude estimation accuracy and further insights on the single baseline observability.
Keywords: Attitude estimation, GNSS, Ambiguity resolution, Filtering, Sensor fusion

1. Introduction

The pros and cons of using GNSS observations for at-
titude estimation are well known. While the accuracy
of a GNSS-based attitude system by itself may not be
comparable to other modern solutions, this system is
driftless, very low maintenance and considerably less
expensive . Global coverage is always available and the
reliability of the satellites is guaranteed by ground sta-
tions.

Most solutions focus on using at least three GNSS
antennas in order to estimate the complete orientation
of the body. Using only two antennas, it is generally
not possible to do so, unless other sensors such as gy-
roscopes, accelerometers and magnetometers are used.

In a general way, the GNSS-based attitude estimation
methods can be divided into two categories: baseline
estimation methods, where the attitude is computed
from estimates of the baseline coordinates in the iner-
tial frame, or attitude model-based methods, in which
the body attitude is estimated directly from the GNSS
observations.

Concerning the first group, a widely used epoch-by-
epoch method is detailed in [8], where the baseline co-
ordinates are obtained from a linear least-squares (LS)
adjustment. On the other hand, in [7] an Extended
Kalman Filter (EKF) is designed in order to estimate
the baselines using the GNSS measurements collected
over time, such that the baselines are estimated recur-
sively. After obtaining the baseline coordinates in the
reference frame, methods such as Davenport’s q-method
or singular value decomposition-based methods can be
used to estimate the rotation that best fits the baselines

[6, 1].

As for the second category, the GNSS-based attitude
model is typically the starting point [9]. Variants of
this model using a quaternion parametrization of the
attitude are also used, in which the estimates are ob-
tained using an iterative LS adjustment or an EKF in-
corporating a kinematic model [1]. Furthermore, the LS
approach introduced by Teunissen in [9] is highlighted,
since the present work is based on the same decompo-
sition of the residual squared norm proposed here.

All the enumerated solutions require that the inte-
ger ambiguities in the observations model be correctly
determined. The methods in the literature usually in-
volve a search algorithm, with some exceptions such
as the rounding of the float ambiguities proposed in
[1]. Efficient and highly successful integer ambiguity
determination (IAD) algorithms were proposed by Te-
unissen, including the LAMBDA [8], C-LAMBDA [5]
and MC-LAMBDA [3] methods. Compared to the first,
the other two algorithms introduce constrains regard-
ing known baseline lengths and configuration in order
to increase the success rate.

In the present work, a solution based on the novel
Multivariate Constrained LAMBDA (MC-LAMBDA)
method [3] is proposed, along with a kinematic model
integrating rate-gyro measurements. The motivation
behind this solution lies with studying how integration
of a kinematic model allows full attitude determination
using a single baseline in certain scenarios, as well as
how it impacts the accuracy of the solution.
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2. Problem Definition
Consider a platform where a 3-axis gyroscope and n+1
antennas are mounted. There are static with respect to
the body frame coordinate system. Antenna i is desig-
nated as the reference antenna. The origin of the body
frame coincides with the phase center of the reference
antenna.

Let the rotation matrix R denote the relative ori-
entation between the body frame and the local-level
East-North-Up (ENU) frame centered also at the phase
center of the reference frame and tangent to the WGS84
ellipsoid. According to the adopted convention, the
transformation of vector coordinates between both
frames is written as rl = Rrb, where the subscripts
l and b denote the local and body frames, respectively.

Following the Hamilton convention, the same ro-
tation is written using the unit quaternion as rl =
q ◦ rb ◦ q∗, where q = [qw, q

>
v ]>, the symbol ◦ de-

notes the quaternion product and q∗ is the quaternion
conjugate q∗ = [qw − q>v ]>.

Considering that the body frame rotates with respect
to the reference frame with angular velocity ω(t) =

[p(t) q(t) r(t)]
> ∈ R3, measured in the body frame, the

time derivative of the unit quaternion is written as in
(1). This relation defines the attitude variation between
the two frames.

q̇(t) =
1

2

[
0
ω(t)

]
◦ q(t) =

1

2
Ω(ω(t))q(t), (1)

Ω(ω(t)) =

[
0 −ω(t)>

ω(t) −[ω(t)×]

]
The GNSS observables providing a measure of the an-
tenna to satellite distance are the pseudorange, or code
measurements, and the carrier phase measurements.
These quantities are influenced by clock offsets, atmo-
spheric errors and other effects. Some of these errors
are mitigated by performing double differences (DD)
between measurements of different receivers and satel-
lites. Considering also the short baseline assumption
leads to the typical DD observations model (2).{
P kl
ij = (uk − ul)bij + Ekl

P,ij

Φkl
ij = (uk − ul)bij + λnklij + Ekl

Φ,ij

(2)

In this equation, P kl
ij and Φkl

ij denote the DD code and
carrier phase measurements, respectively, for receivers
i, j and satellites k, l. To build the DD vector, k is set as
the reference satellite. The Line of Sight (LOS) vectors
uk and ul point to the respective satellites, and bij
defines the baseline vector between the two antennas.
Lastly, λ is the signal carrier’s wavelength and nkl

ij the
unknown DD integer ambiguities.

Extending this formulation to the m+1 satellites and
n+ 1 receivers, the multiple baseline model is obtained
(3), where the DD observations are compacted in matrix
Y , and N contains the respective DD ambiguities. The
baseline coordinates in the reference frame are written

in B = [bi1, . . . , bin]. Matrices S and U are defined in
(4).{
Y = SN +UB + Ξ ; Y ∈ R2m×n

Var(vec(Y )) = QY Y .
(3)

S =

[
0mn

λImn

]
, U =

[
Υ
Υ

]
, Υ =

u
k − u1

...
uk − um

 (4)

The vec(·) operator stacks the columns of the
measurements matrix and allows characterizing
its uncertainty. Defining the covariance matri-
ces of the code and carrier phase measurements
Var([P k

i , . . . , P
m+1
i , P k

1 , . . . , P
m+1
1 , . . . ]>) = QP and

the corresponding QΦ as diagonal matrices, an ex-
pression for QY Y is found. It is written in (5), where
D = [1m×1, Im] and P n = 1

2 (1n×n + In). Note that
1m×1 is a m× 1 matrix of ones and Im is the identity
matrix of dimension m.

QY Y =

[
P n ⊗ 2DQPD

> 0
0 P n ⊗ 2DQΦD

>

]
(5)

As such, the multiple baseline model is fully defined.
The algorithm proposed in this article takes advan-
tage of the GNSS-based attitude model mentioned in
the Introduction. As such, the matrix of baseline co-
ordinates is replaced in (3) as B = RF , where F
contains the known baseline coordinates in the body
frame F = [li1, li2, . . . , lin]. Minimizing the residual
squared norm of the resulting model, a Constrained In-
teger Least Squares (C-ILS) problem is obtained (6).
The proposed solution for this minimization problem is
detailed next.

〈Ň , Ř〉 = arg min
N∈Zm×n,R∈SO(3)

‖Y − SN −URF ‖2QY Y

(6)

3. Constrained Integer Least Squares Decompo-
sition for Attitude Estimation

This section describes the key expressions of the pro-
posed solution of the minimization problem. The algo-
rithm is based on the same orthogonal decomposition of
the squared norm proposed by Teunissen [9]. Applying
the vec(·) operator so that the Frobenius norm becomes
the simpler Euclidean norm, the decomposition is writ-
ten as

min
N∈Zm×n,R∈SO(3)

‖vec(Y − SN −URF )‖2QY Y
=

min ‖vec(Y − SN̂ −UR̂F )‖2QY Y
+ (7)

min
N∈Zm×n

(
‖vec(N̂ −N)‖2QN̂N̂

+

min
R∈SO(3)

‖vec(R̂(N)−R)‖2QR̂(N)R̂(N)

)
,
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where N̂ and R̂ are the float solutions, defined as the
solution of the minimization problem in which the in-
teger and nonlinear constraints are dropped (8).

〈N̂ , R̂〉 = arg min
N∈Rm×n,R∈R3×3

‖vec(Y − SN −URF )‖2QY Y

(8)

The conditional rotation matrix R̂(N) is the solution
of the minimization problem in (9) where the integer
ambiguities matrix N is known. Lastly, matrices QN̂N̂
and QR̂(N)R̂(N) are the respective covariance matrices

of N̂ and R̂(N).

R̂(N) = arg min
R∈R3×3

‖vec(Y − SN −URF )‖2QY Y
(9)

Having N̂ and R̂, the decomposition in (7) allows
writing the solution of (6) as

Ň = arg min
N∈Zm×n

(
‖vec(N̂ −N)‖2QN̂N̂

+ (10)

‖vec(R̂(N)− R̆(N))‖2QR̂(N)R̂(N)

)
,

with R̆(N) the solution of

R̆(N) = arg min
R∈SO(3)

‖vec(R̂(N)−R)‖2QR̂(N)R̂(N)
. (11)

The proposed approach uses a recursive filter to ob-
tain the float solution and employs the MC-LAMBDA
algorithm in order to find the integer ambiguities, so-
lution of the minimization problem (10). These are de-
tailed next.

3.1. Nominal System Model
The solution of the minimization problem in (8) is given
by an EKF fed by the GNSS observations and employ-
ing a kinematic model of the body attitude.

First, the nominal system model is defined. The
attitude is parametrized using the unit quaternion,
and since the gyroscope measurements are discrete
in nature, the kinematic model (1) must be written
in discrete-time. The considered rate-gyro stochastic
model is written in (12), where ωmk+1

denotes the 3-
axes angular velocity measurements at time tk+1, ωk+1

is the true angular velocity and bk+1 denotes the gyro
bias. The variables wvk+1

and wuk+1
correspond to

white noise processes.{
ωmk+1

= ωk+1 + bk+1 +wvk+1

bk+1 = bk +wuk+1

(12)

Then, based on the derivation in [10] and replacing
the angular velocity for the gyro model expression,
the quaternion kinematics in discrete-time are approx-
imated by qk+1 = Ψ̄k+1,k qk, with Ψ̄k+1,k written as

Ψ̄k+1,k = (13)(
cos
‖δϑ̄k+1,k‖

2
I4 +

2

‖δϑ̄k+1,k‖
sin
‖δϑ̄k+1,k‖

2
Θ̄k+1,k

)

with δϑ̄k+1,k and Θ̄k+1,k defined in (14).

δϑ̄k+1,k =
∆t

2

[
(ωmk

− b̄k,k−1 −wvk) + (14)

(ωmk+1
− b̄k+1,k −wvk+1

)
]
,

Θ̄k+1,k =
1

2

[
0 −δϑ̄ >k+1,k

δϑ̄k+1,k −[δϑ̄k+1,k×]

]
Defining the state vector of the nominal model as

xk =
[
q>k , b

>
k , n

>
k

]>
, where nk is the vector of double

differenced integer ambiguities defined as nk ≡ vec(N),
the corresponding discrete-time kinematics according to
(13) and (12) are written as

xk+1 =

qk+1

bk+1

nk+1

 =

 Ψ̄k+1,k qk
bk +wuk+1

nk

 = f(xk,wvk+1
,wuk+1

)

(15)

To relate the GNSS observations with the state vec-
tor, the rotation in (6) is written using the quater-
nion product, leading to (16), where the output vector
zk ≡ vec(Y ) and the measurement noise vk ≡ Ξ.

zk = Snk + g(qk) + vk = h(xk) + vk, (16)

g(qk) =

12 ⊗

Υ qk ◦ li1 ◦ qk∗
...

Υ qk ◦ lin ◦ qk∗




3.2. EKF Float Solution
The usual EKF expressions easily follow from the de-
scribed system. Regarding the propagation step, the
predicted state estimate x̂k|k−1 and estimation error
covariance matrix P k|k−1 are computed as

x̂k|k−1 = f(x̂k−1|k−1) (17)

P k|k−1 = F kP k−1|k−1F
>
k +Qk,

where the nonlinear function f(x̂k−1|k−1) is written as
in (18). Matrix Ψ∗(x̂k−1|k−1) follows from the kinemat-
ics (13) evaluated at the previous a posteriori estimate
x̂k−1|k−1 and omitting the zero-mean noises.

f(x̂k−1|k−1) =

Ψ∗(x̂k−1|k−1)q̂k−1|k−1

b̂k−1|k−1

n̂k−1|k−1

 (18)

Matrix F k results from the Jacobian of the nominal
system model with regards to the state vector. The
model is only nonlinear with respect to the gyro bias
and the respective derivative is given by

∂f̄(qk, bk,wvk+1
)

∂bk
= L(qk, bk) =

∆t sin
‖δϑ̄k+1,k‖

2

2‖δϑ̄k+1,k‖[
qkδϑ̄

>
k+1,k − 2Γ(qk)

]
− ∆t

2‖δϑ̄k+1,k‖2
[

cos
‖δϑ̄k+1,k‖

2
−

2

‖δϑ̄k+1,k‖
sin
‖δϑ̄k+1,k‖

2

]
Γ(qk)δϑ̄k+1,kδϑ̄

>
k+1,k, (19)
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which leads to the matrix F k defined in (20).

F k =

Ψ∗(xk) L(xk) 0
0 I 0
0 0 I

∣∣∣∣∣∣
xk=x̂k−1|k−1

(20)

Note that ∆t = tk+1 − tk. Assuming a small sampling
interval, Qk is approximated as Qk = GkQG

>
k ∆t,

where Gk is the noise scaling matrix of the continuous-
time model (21) and Q is the covariance matrix of
the multivariate random vector of white noise processes

η(t) =
[
ηv(t)>, ηw(t)>

]>
.

ẋ(t) =

 1
2Ω(wm(t)− b(t)) 0 0

0 0 0
0 0 0

x(t) +G(t)η(t),

G(t) =

− 1
2Γ(q(t)) 0

0 I
0 0

 ,Γ(q) =


−qx −qy −qz
qw −qz qy
qz qw −qx
−qy qx qw


(21)

The update step is defined by the expressions in (22),
used to compute the a posteriori estimates of the state
vector x̂k|k and the estimation error covariance matrix
P k|k.

Kk = H>k
(
HkP k|k−1H

>
k +Rk

)−1
(22)

x̂k|k = x̂k|k−1 +Kk

(
zk − h(x̂k|k−1)

)
P k|k = (I −KkHk)P k|k−1

The predicted measurements h(x̂k|k−1) are computed
using the nonlinear output equation (16) evaluated at
x̂k|k−1. This model is nonlinear with respect to the
quaternion. The derivative of the nonlinear term is
written in (23), which along with the output equation
(16) leads to the Hk matrix in (24).

d

dq
g(q) =

12 ⊗

ΥJq(q, li1)
...

ΥJq(q, lin)


 = G′(q), (23)

Jq(q, l)

2
=
[
qwl− [l×]qv,−qw[l×] + q>v lI + qvl

> − lq>v
]

Hk =
[
G′(xk) 0 S

]∣∣
xk=x̂k|k−1

(24)

Lastly, the measurements noise covariance matrix Rk

is equivalent to QY Y .

3.3. Observability Analysis for Single vs Multiple Base-
line

Since the system model is nonlinear, rigorous analysis
of its observability properties requires using tools such
as the observability rank condition [4]. Doing so for this
system which is used to estimate both the attitude, gyro
bias and integer ambiguities is not trivial. Therefore, a
simplified analysis using a linearized model is done.

Let x̃k =
[
q̃>k , b̃

>
k , ñ

>
k

]>
be the state vector corre-

sponding to an operation point of the considered sys-
tem. Then, the trajectory of the system along this
operation point obeys the state vector dynamics writ-
ten in (15). A deviation from the operation point,
∆xk+1 = xk+1− x̃k+1, can be locally approximated by
∆xk+1 ≈ Φ∆xk, where Φ coincides with the Jacobian
matrix in (20) evaluated at xk = x̃k.

Similarly, the perturbation of the measurements can
be written as ∆zk = H∆xk, where H is the output
equation’s Jacobian in (24) also evaluated at xk = x̃k.

A simple criteria for analyzing the observability of an
LTI system is given in [2] and consists of computing the
rank of the observability matrix O defined as

O =


H
HΦ

...
HΦn−1

 , (25)

where n is the dimension of the system’s state vector.
If O is full rank, that is, rank O = n, then the linear
system is observable. It is known that if the matrix is
full rank, then the kernel of O must have dimension
0. That is, the only solution of the system Ox must
be x = 0. Replacing the expressions for Φ and H,
derived from (20) and (24), allows writing the system
of equations as

G′ 0 S
G′Ψ∗ G′L 0

...
...

...
G′(Ψ∗)n−1 G′

(
(Ψ∗)n−2 + ...+ I

)
L 0

x = 0

(26)

where x =
[
x>1 ,x

>
2 ,x

>
3

]>
according to the three col-

umn blocks. From this point on, the single and multiple
baseline cases can be discriminated.

3.3.1 Single Baseline

Considering a single baseline l12, G′ is written as

G′ =
[
12 ⊗

[
ΥJq(qk, l12)

]]∣∣
xk=x̃k

. (27)

Replacing the expressions for G′ and S, the first line of
equations from system (26) reads[

ΥJq(q̃k, l12)x1 + 0mx3

ΥJq(q̃k, l12)x1 + λImx3

]
=

[
0
0

]
= ∆zk. (28)

Naturally, this system corresponds to finding the points
where the observations of the linearized system are
equal to 0. For convenience, define x1 ≡ ∆qk and
x3 ≡ ∆nk. It follows from (28) that x3 = 0. The goal
is then to find the admissible perturbations from the
operation point ∆qk that make the measurements vari-
ation null. Consider that there is a clear line of sight
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to at least four non-planar satellites, so that Υ is full
rank. Also note that in a local sense, the LOS vectors
vary very slowly and can be considered approximately
constant. Taking into account the physical meaning of
the observations, it is simple to realize that if the vari-
ation in attitude from q̃k to qk (∆qk) corresponds to a
rotation around an axis collinear to the baseline l12, the
coordinates of the baseline do not change, which implies
∆zk = 0. As such, the solution of (28) is written as{
x1 = ∆qk = q̃k ◦ q{αl12} − q̃k, ∀α ∈ R
x3 = ∆nk = 0

(29)

where q{αl12} denotes a rotation around the axis de-
fined by l12 of magnitude α‖l12‖.

Then, the second line of equations reads

G′Ψ∗x1 +G′Lx2 = 0. (30)

The product

Ψ∗x1 = Ψ∗∆qk = Ψ∗ (q̃k ◦ q{αl12} − q̃k) (31)

can be recognized as the quaternion kinematics equa-
tion applied to both q̃k ◦ q{αl12} and q̃k. The at-
titude given by these quaternions is changed accord-
ing to the angular velocity of the body used to com-
pute Ψ∗. Considering that the linearization is done
around a trajectory where the body is rotating around
l12, or is static, then ∆q′ = Ψ∗∆qk still corresponds
to a difference in rotation around l12. In this case,
G′Ψ∗x1 = 0. The same reasoning applies to successive
rotations G′ (Ψ∗)

k
∆qk, for k > 1, giving the conclu-

sion of non-observability for the attitude. Then, to solve
for x2 in (30), the particular case where the body is
static is analyzed, simplifying the equation G′Lx2 = 0
to

− ∆t

2
ΥJq(q̃k, l12)Γ(q̃k)x2 = 0, (32)

with Γ defined in (19). Further manipulation of this
expression leads to

ΥR (q̃k) [l12×]x2 = 0, (33)

where R (q̃k) denotes the quaternion parametrization
of the rotation matrix. Since Υ is full rank, the only
solution to Υr = 0 is r = 0. Therefore, the trivial
solution x2 = c1l12, ∀c1 ∈ R naturally follows.

It is inferred from the linearized model that, in a
single baseline scenario, if the body is rotating around
the axis defined by the baseline or is static, the attitude
is not observable, having one degree of freedom. If, in
particular, it is static, the bias is also not observable.
A more general conclusion is left for future work.

3.3.2 Multiple Baseline

The following analysis, done for two baselines l12 and
l13, is easily extended for three or more. In this case,

G′ is written as

G′ =

[
12 ⊗

[
ΥJq(qk, l12)
ΥJq(qk, l13)

]]∣∣∣∣
xk=x̃k

. (34)

Replacing this expression, the first line of system (26)
becomes

ΥJq(q̃k, l12)∆qk + 0m∆nk

ΥJq(q̃k, l12)∆qk + λIm∆nk

ΥJq(q̃k, l13)∆qk + 0m∆nk

ΥJq(q̃k, l13)∆qk + λIm∆nk

 =


0
0
0
0

 , (35)

where again it was defined x1 ≡ ∆qk and x3 ≡ ∆nk.
The first two lines refer to the variation in observations
∆z12

k , related to l12, while the last two refer to ∆z13
k .

The same rationale as before is applied. If ∆qk corre-
sponds to a rotation around l12, then ∆z12

k = 0. How-
ever, if l12 and l13 are not collinear, then this ∆qk
entails ∆z13

k 6= 0, since the coordinates of the base-
line l13 in the reference frame will change. The in-
verse applies if ∆qk is defined as a rotation around l13.
Therefore, for non-collinear baselines, the only solution
is ∆qk = x1 = 0.

To solve for x2, the second line of equations in (26) is
analysed. Since x1 = 0, and again studying the static
scenario, the same simplifications as in the single base-
line case apply. The system to solve becomes[

ΥR (q̃k) [l12×]x2 = 0
ΥR (q̃k) [l13×]x2 = 0

]
=

[
0
0

]
. (36)

Assuming that Υ is full rank, if l12 and l13 are not
collinear, the only solution is clearly x2 = 0.

In the multiple baseline case, it is concluded that,
without imposing any restrictions on the trajectory of
the linearization, the attitude is observable. If the body
is static, it is found that the gyro bias is also observ-
able. Intuitively, this should remain true under any
other condition, although the analytical proof is left for
future work.

3.4. Integer Ambiguity Determination
Due to the decomposition of the error squared norm
in (7), the integer ambiguity determination problem
consists of solving the minimization problem defined
in (10). The MC-LAMBDA is an efficient search algo-
rithm which solves this problem. In the following, only
the decisions made which are particular to this work are
described. For the full description of the method, refer
to [3].

First, consider the cost function to minimize, written
from (10) as

C(N) = ‖vec(N̂ −N)‖2QN̂N̂
+ (37)

‖vec(R̂(N)− R̆(N))‖2QR̂(N)R̂(N)
,

where R̆(N) the solution of (11). Being a minimization
problem with integer constraints, the solution is found
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by performing a search on the ambiguities’ search space
defined in (38).

ΩC(χ2) = {N ∈ Zm×n | C(N) ≤ χ2} (38)

The computational cost of the algorithm is related to
the choice of χ2, which defines the volume of the search
space. For each candidate in ΩC(χ2), the cost func-
tion C(N) must be evaluated, which entailes solving
the nonlinear minimization problem (11). To improve
the efficiency of the search, easier to evaluate bounding
functions are proposed, such that C1(N) ≤ C(N) ≤
C2(N). In this work, the cost function C1(N) in (39) is
used, where λm is the smallest eigenvalue ofQ−1

R̂(N)R̂(N)

and r̂i(N) are the column vectors of R̂(N).

C1(N) = ‖vec(N̂ −N)‖2QN̂N̂
+ λm

3∑
i=1

(‖r̂i(N)‖ − 1)2

(39)

Based on this bounding cost function, the Expansion
approach, detailed in [3], is used. Note that the effi-
ciency of the search algorithm depends on the tightness
of C1(N) in relation to C(N). If the eigenvalues of
Q−1

R̂(N)R̂(N)
range across several orders of magnitude,

a different bound should be used.
Having enumerated these decisions, some issues re-

main to be tackled. The expressions for the condi-
tional solution R̂(N) and its respective covariance ma-
trix QR̂(N)R̂(N) derived in [3] are obtained assuming
that LS adjustment is used to compute the float solu-
tion. In this work, the float solution is given by an EKF.
Furthermore, to allow using this method in a single
baseline scenario, the solution of (9) must be linked to
the EKF float solution. Therefore, new expressions for
these matrices are derived. This problem is addressed
in the following.

3.4.1 Obtaining the conditional solution

To describe how the EKF estimates lead to R̂(N) and
QR̂(N)R̂(N), consider the float and conditional solution
minimization problems formulated using a quaternion
parametrization of the attitude, written in (40) and
(41), respectively. Note that, for simplicity, y ≡ vec(Y )
and n ≡ vec(N).

〈n̂, q̂〉 = arg min
n∈Rmn,q∈R4

‖y − Sn− g(q)‖2QY Y
(40)

q̂(n) = arg min
q∈R4

‖y − Sn− g(q)‖2QY Y
(41)

Then, both nonlinear models are linearized and the
minimization problems are solved using the Gauss-
Newton method. Considering that the first guess of the
quaternion is the same in both problems, and that it is

a good estimate of the solution, it is possible to write a
conditional solution q(N) and its respective covariance
matrix Qq(N)q(N) as a function of the float solution.
These expressions are written in (42) and (43).

q(N) = q̂ −Qq̂N̂Q
−1

N̂N̂

(
vec(N̂ −N)

)
(42)

Qq(N)q(N) = Qq̂q̂ −Qq̂N̂Q
−1

N̂N̂
QN̂q̂ (43)

Then, it is assumed that the solution of (40) can be
replaced by the designed EKF. As such, the covariance
matrices of the float solution in (42) and (43) are ex-
tracted from P k|k, and q̂, N̂ are the EKF estimates.
Afterwards, R(N) and the respective covariance ma-
trix are computed from q(N) and Qq(N)q(N) using the
quaternion parametrization of the rotation matrix and
the covariance propagation law.

3.5. Solution Fixing
The MC-LAMBDA algorithm outputs a set of integer
ambiguities Ň , solution of (10), and the corresponding
conditional solution q(Ň). At this point of develop-
ment, no validation is done regarding q(Ň). Therefore,
before fixing a set of ambiguities, there is a time pe-
riod where the sets output by the MC-LAMBDA are
collected and stored. Afterwards, the set that occurred
most often (the most “popular”) is chosen.

The fixing is done using a second EKF update step,
where Ň and q(Ň) are fed as pseudo-measurements.
The expressions used during this step are written as

K′k = H ′>
(
H ′P k|kH

′> +R′
)−1

(44)

x̂′k|k = x̂k|k +K′k
(
z′k −H ′x̂k|k

)
P ′k|k = (I −K′kH ′)P k|k,

where the residual z′k −H ′x̂k|k is computed as

z′k −H ′x̂k|k = (45)

=

[
q(Ň)
Ň

]
−
[
I4 0 0
0 0 Imn

]q̂k|kb̂k|k
n̂k|k

 .
Matrix R′ is tuned manually so as to obtain the best
compromise between improving the accuracy of the
float solution, while allowing the next step of the EKF
to change the state estimates, if needed, which becomes
harder as the entries of R′ are lower.

As described, this 2nd update step builds on the EKF
float solution x̂k|k. The fixed solution at time tk, x̂′k|k,
is then used in the propagation step of the next time
step tk+1, closing the loop, and the process is repeated.

4. Simulation Results
A simple simulation environment was developed, al-
lowing evaluation of the proposed solution, since the
true attitude and integer ambiguities are known a pri-
ori. This environment generates code and carrier phase
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Baseline length [m] 1 5 10

Code noise σk
P,i [cm] 50 40 30 50 40 30 50 40 30

# Satellites

5 83.96 94.75 97.30 96.85 97.23 96.81 95.41 98.37 98.29

6 93.08 98.92 98.56 98.31 98.15 97.97 98.40 97.87 99.06

7 95.05 97.34 98.77 98.18 98.97 98.55 98.42 98.53 97.67

Table 1: Integer Ambiguity Determination success rates of the developed framework under different scenarios.

Figure 1: Dynamic trial, single baseline attitude estimates, including intermediate solutions.

measurements, as well as gyroscope measurements, ac-
cording to models (2) and (12). The GNSS measure-
ments errors are assumed white noise processes, whose
variance is given by the stochastic model based on satel-
lite elevation angle (46). The code and carrier phase

variances
(
σk
P,i

)2
and

(
σk

Ψ,i

)2
are the diagonal elements

of QP and QΨ in (5).


(
σk
P,i

)2
= 1002

(
c21 +

(
c2

sin elk

)2
)

(
σk

Ψ,i

)2
= c21 +

(
c2

sin elk

)2
(46)

Note that navigation data collected experimentally is
used to compute the satellite positions at a given epoch.

In the following, simulated data is used to evalu-
ate the performance of integer ambiguity determina-
tion, under the proposed framework. Then, attitude
estimation results corresponding to a dynamic trial are
presented.

4.1. Integer Ambiguity Determination Success Rate

The MC-LAMBDA method is evaluated by comput-
ing success rates, which are the percentage of epochs
in which the set of determined ambiguities are correct.
The success rates in different scenarios are obtained by
performing Monte Carlo simulations. In all scenarios, a
single baseline li1 = ‖lik‖ [1, 0, 0]

>
is simulated and the

body is static. The length ‖lik‖, the simulated code
measurements noise and number of GPS satellites in
view are varied in each scenario, as shown in Table 1.

There is a clear increase in the success rates of the
ambiguity determination as the measurements noise de-
creases or the number of tracked satellites is higher,
which can be seen in the simulation results correspond-
ing to a unitary baseline length. It is natural that hav-
ing less noisy observations leads to a more accurate float
solution, which is the starting point of the search pro-
cess done in the MC-LAMBDA algorithm, increasing
its success rate. Note that a code noise of 50 cm is
quite high when compared to a baseline length of 1 m,
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Figure 2: Dynamic trial, single baseline EKF without fixing and fixed solutions’ bias estimates.

and even in this case, a high success rate of 83.96% is
achieved.

As more satellites are available, more information is
fed to the filter, improving the attitude estimates along
with the accuracy of the integer ambiguity candidates.
As for the baseline length, shorter baselines hinder cor-
rect integer ambiguity determination, since the observa-
tion model used in the EKF is highly nonlinear for very
short baselines. As seen in Table 1, the overall suc-
cess rate when simulating a baseline of 5 m is higher,
compared to 1 m.

Given these results, it is very likely that the integer
ambiguity set chosen for the fixing is the correct one,
since it only needs to occur at least 50% of the time
during the ambiguity storing period.

4.2. Single Baseline Dynamic Trial

In this Section, the attitude estimation results of a sim-
ulated dynamic trial are presented. As before, a sin-
gle baseline li1 = [1.3, 0, 0]

>
[m] is simulated. There-

fore, the results provide experimental validation of the
observability properties studied before. The simulated
angular kinematics of the body are presented in Figure
3.

The initial attitude of the body, in terms of Euler
angles, is (ϕ, θ, ψ) = (10,−25, 40) [deg], where ϕ, θ, ψ
are the roll, pitch and yaw angles. The initial esti-
mate of the EKF is set at (ϕ0, θ0, ψ0) = (0, 0, 0) [deg].
Then, the fixed solution as well as intermediate solu-
tion’s attitude estimates are shown in Figure 1. The
EKF Standalone solution is the EKF output without
determining the integer ambiguities. Then, EKF+MC-

Figure 3: Simulated angular velocity measurements.

LAMBDA (w/o Fix) is the MC-LAMBDA conditional
solution in time, without fixing the solution. Finally,
EKF+MC-LAMBDA Fixed denotes the fixed solution.
It is seen from Figure 1 that the full attitude is esti-
mated using a single baseline, which is possible due to
dynamic motion of the body and using a kinematics
model in the EKF. The fixed solution is actually the
less precise, since it reacts more slowly to the quick at-
titude variation. Even so, the standard deviation of the
fixed solution error for the roll, pitch and yaw is 0.40 ◦,
0.34 ◦ and 0.10 ◦, respectively.

The float and fixed bias estimates are represented in
Figure 2. The Y and Z-axis fixed solution correctly
estimates the bias, while the X-axis estimate does not
follow the reference. The fixing process lowers the co-
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Figure 4: Trajectory and key points describing the experimental dynamic trial.

variance matrix entries of the filter, since it consists of
a 2nd Update Step. As such, the filter becomes less
sensitive to the angular velocity measurements.

Overall, it is clearly seen that in a dynamic sce-
nario where the body has non-null angular acceleration
around the Z-axis, it is possible to estimate the full at-
titude and gyro bias using a single baseline.

5. Experimental Results

Apart from using simulated data, the proposed algo-
rithm was also validated experimentally. Due to hard-
ware purchase restrictions, owning to the Covid-19 pan-
demic, only two antennas are available, and a smart-
phone’s IMU sensor is used to measure the angular
velocity. The setup used during the dynamic trial is
shown in Figure 5. Two GPS antennas, the AT575-
75 by AeroAntenna Technology and the 53G15A by
Antcom Corporation, are used, attached to Reach Mod-
ule GNSS receivers. The baseline length is 1.95 m.

Figure 5: Experimental setup used in the dynamic trial.

In the following, the dynamic trial performed us-
ing this setup, along with the attitude estimation re-
sults obtained by processing the collected data, are pre-
sented.

5.1. Dynamic Trial

A representation of the trajectory followed by the plat-
form on which the antennas are mounted is given in
Figure 4. Since a vehicle is used, the roll and pitch an-
gles are constricted by the terrain. In order to further
excite the relative orientation of the antennas, slight
nudges are manually given at certain points along the
trajectory, represented with a star in the figure. The
start and end points are denoted by the red and yellow
squares, respectively.

The fixed solution corresponding to the attitude es-
timate of the body along this trajectory is shown in
Figure (6). The vertical dashed lines coincide with the
periods in which the baseline is manually excited, or
the stars in Figure (4). After around t = 100 s, the fil-
ter’s estimate starts converging to the correct attitude,
as the yaw angle estimate approaches −60 ◦. After con-
vergence, each turn and roundabout done during the
trajectory of the vehicle is clearly seen in the 90 ◦ and
180 ◦ variations of the estimated heading. Concerning
the pitch estimate, it is close to 0 ◦, as expected, since
the terrain’s inclination is very low. Comparing the re-
sults with the trajectory, the pitch and yaw are clearly
correctly estimated. In regards to the roll angle, which
coincides with the non-observable axis if the body were
static, it is seen that the angular motion keeps the roll
angle estimate close to 0 ◦. As expected, after around
t = 530 s, when the vehicle stops, the roll angle starts to
diverge. As such, the observability properties studied
analytically are confirmed experimentally.

6. Conclusions

Throughout this work, a novel solution for GNSS-based
attitude estimation was detailed, where an EKF fed by
angular velocity and carrier phase measurements is in-
tegrated with the MC-LAMDBA method.

A preliminary study of the observability of the filter
was done by analyzing the observability properties of
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Figure 6: Fixed solutions’ estimated Euler angles during the dynamic experiment.

a linearized system model. It was concluded that in
a static, single baseline scenario, the full attitude and
3-axes gyro bias are not observable. In the multiple
baseline case, under the static assumption, the state is
found to be observable. Further validations are done
experimentally.

The developed framework implies IAD success rates
of at least 83.96%, even in the most demanding case,
where the code noise is comparable to the baseline
length. The integration of the gyroscope measurements
in the kinematics model underlying the EKF allowed
a precise estimation of the attitude. Sub degree pre-
cisions were achieved in the demanding single baseline
scenario, using single-frequency receivers.

In the future, a complete analysis of the observabil-
ity properties of the system in a dynamic scenario must
be done. Techniques suitable for analyzing nonlinear
systems can be employed. Further experimental valida-
tion, using more GNSS antennas and receivers, as well
as a better gyroscope, would allow a finer evaluation of
this solution. Finally, validation of the MC-LAMBDA
integer ambiguities solution would enhance the frame-
work, as the time period where sets of ambiguities are
stored, prior to fixing, would no longer be required.
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