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Abstract

There is a recent growth on the interest for nanosatellite technology. A key particularity of space
projects is the difficulty to test the technologies in a realistic environment before the mission is
deployed. The main goal of this work is to help the NANOSTAR project to overcome this difficulty
by designing a prototype to test the ADCS and provide grounded studies on the attitude control and
determination algorithms that can be employed in the missions. To this end, a low-cost ADCS is
designed, having momentum wheels and magnetorquers as actuators. Attitude estimation is based on
vector measurements provided by a magnetometer, rate gyroscope and accelerometer. Two optimal
control strategies are used for Nadir pointing using the momentum wheels, namely, an LQR controller
and an LQR controller with integral action. Detumbling and momentum dumping are accomplished
through the use of magnetorquers. Three estimation filters are considered, two based on Kalman
filtering, one of them formulated on Euler angles and the other on quaternion. The third filter is based
on the SLERP technique. The control and estimation algorithms are tested in a software simulator that
describes the space environment realistically. Then, a test bench and a CubeSat prototype are designed
and built, allowing to test the algorithms on ground. Results for the ADCS system performance are
presented both from the simulation and the experimental environments.
Keywords: Nanosatellites, Optimal Control, Complementary Filters, Ground-testing

1. Introduction

A particularly relevant type of small satellite is the
CubeSat, developed by California Polytechnic State
University and Stanford University in 1999 with
educational purposes [5]. The ADCS is a critical
subsystem in a nanosatellite [2]. In fact, only 20%
of pico and nanosatellites are left tumbling free in
space and about 15% of pico and nanosatellites are
equipped with control to point an instrument.

To test the technologies before the mission is de-
ployed, ADCS are tested in a computer simulation
against realistic models of the conditions it will be
subject to in orbit. Nevertheless, ADCS develop-
ment and hardware in the loop verification of mo-
mentum exchange devices can largely benefit from
ground testing [8]. Since the beginning of the space
race, air bearing based platforms have been used for
simulating the torque-free conditions in space.

Attitude determination of a spacecraft means de-
termining its orientation in space with respect to
a given reference frame. There are static and re-
cursive methods. The first are memory-less, mean-
ing that each time the attitude is determined is in-
dependent from the others. The most used static

methods are, by chronological order [7]: the TRIAD
algorithm; Davenport’s solution to the Wahba’s
problem; the QUEST algorithm. Recursive meth-
ods take advantage from past measurements to pro-
vide more accurate solutions. The most popular
recursive algorithm is the Kalman Filter [6].

Spacecraft attitude stabilization methods can be
divided into two types. Passive techniques such
as Gravity Gradient stabilization, Passive Mag-
netic Stabilization, and Aerodynamic stabilization
in Low Earth Orbit take advantage of the geomet-
ric and magnetic design of a satellite and the orbit
properties to passively provide attitude stabiliza-
tion and rough pointing. More capable on-board
computers allow for more demanding pointing re-
quirements, by means of active control, namely
three-axis stabilization. For CubeSats, magnetor-
quers [16] are often the primary actuator for atti-
tude control due to their simplicity and low cost.
Designs adopting reaction / momentum wheels as
primary actuators and magnetotorquers for mo-
mentum dumping provide better pointing accuracy.

Air bearing based platforms can be divided into
3 types. Planar platforms provide two translational
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degrees of freedom and oftentimes also one rota-
tional (vertical spin) [12]. These platforms provide
almost frictionless planar sliding motion on a flat
surface. Vertical spin motion can be added using
a reaction wheel or compressed air thrusters. Ro-
tational systems, aim at providing a frictionless ro-
tational movement with three degrees of freedom.
Depending on the geometry of the platform, the
pitch, yaw or roll rotations may be limited. Table-
top and Umbrella systems guarantee full freedom
yaw rotation and limited pitch and roll rotations.
Dumbbell systems guarantee full freedom yaw and
roll rotations and limited pitch rotation. The last
type are combinational systems that often provide
5 to 6 DOF. The testbed presented in this work is
a rotational system, even though it does not fit in
any of the 3 presented categories.

Although primarily designed for educational pur-
poses, the proposed testbed application reaches be-
yond it to any payload onboard a nanosatellite re-
quiring attitude control. The testbed allows any
ADCS containable withing the 1U standard to go
through testing prior to launch.

2. Background
2.1. Reference Frames
The Body-Fixed frame is centered at the center of
mass of the spacecraft. The Zb axis is aligned with
the main scientific payload. The Xb axis is aligned
with the normal to the bottom plate of the space-
craft. The Yb axis follows the right hand rule.

The origin of the Earth-Centered Inerital (ECI)
frame is the center of the Earth. The XI is the di-
rection from the Earth center to the vernal equinox.
The ZI axis is the Earth rotational axis. The YI

follows the right-hand rule.
The origin of the Local Vertical Local Horizontal

(LVLH) frame is the center of mass of the space-
craft. The Xlvlh direction is the same as the space-
craft velocity. The Zlvlh is Nadir pointing. The
Ylvlh follows the right-hand rule.

2.2. Attitude Kinematics and Dynamics
In the present work, the unit quaternion is used to
represent the rotation from the ECI or LVLH to the
Body frame. Denoting the quaternion by q̄ and the
angular velocity of the Body frame relative to the
reference frame by w, the kinematics is [16]:

dq̄

dt
= q̄(t)⊗ (0 +

1

2
w(t)). (1)

For a Nadir Pointing spacecraft, the attitude of
the spacecraft is represented by the rotation of the
spacecraft body frame relative to the LVLH frame.
The quaternion and body rate are measured with
respect to the LVLH frame. Denoting the angular
momentum of the momentum wheels system in the
body frame by hw = [h1, h2, h3]T , the LVLH frame

rate with respect to the inertial frame represented
in the Body frame by wb

lvlh, the body rate with
respect to the LVLH frame represented in the body
frame by w, the control torque by u and the torque
perturbation by td, the Nadir Pointing Momentum
Biased Spacecraft dynamics can be expressed by the
following equation [16]:

Jẇ = f(w,wb
lvlh,hw) + td + u. (2)

f(w,wb
lvlh,hw) =J(w×wb

lvlh)−w× (Jw)

−w× (Jwb
lvlh)−wb

lvlh × (Jw)

−wb
lvlh × (Jwb

lvlh)−w× hw

−wb
lvlh × hw.

For small angles, the gravity gradient torque can
be approximated as in [13] so that linearization
around the nominal momentum wheel system angu-
lar momentum hnw = [hn1 , h

n
2 , h

n
3 ]T , zero body rate

w = [0, 0, 0]T and q̄ = [1, 0, 0, 0]T , yields

[
ẇ
q̇

]
=

[
J−1A1 J−1A2

1
2I3 03

] [
w
q

]
+

[
J−1

03

]
u, (3)

where A1 and A1 are given by

A1 =

 0 −hn3 a1 + hn2
hn3 0 −hn1

−a1 − hn2 hn1 0

 , (4)

A2 =

a2 + 2hn2w0 0 0
−2hn1w0 a3 −2hn3w0

0 0 a4 + 2hn2w0

 , (5)

where a1 = (J11−J22+J33)w0, a2 = 8w2
0(J33−J22),

a3 = 6w2
0(J33 − J11), a4 = 2w2

0(J11 − J22).

3. Attitude Control
3.1. Nominal Mode
The nominal model corresponds to Nadir Pointing,
i.e. aligning the Body and LVLH frames. For the
previously described Nadir pointing momentum bi-
ased spacecraft model, this corresponds to regulat-
ing the state [w,q]. A Linear Quadratic Regulator
with Integral Action solution will be studied and
compared against the LQR without Integral Action.
Consider the discrete-time LTI system:

xk+1 = Axk + Buk

yk = Cxk,
(6)

where the subscript k identifies the sample at time
kT, where T is the sampling period and k is an
integer number. The state is xk = [wk,qk]T and
the matrices A and B are obtained applying the
forward Euler method to equation 3
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[
wk+1

qk+1

]
=

[
I3 + TJ−1A1 TJ−1A2

T
2 I3 I3

] [
wk

qk

]
+

[
TJ−1

03

]
uk.

(7)

A thorough description of the LQR problem can
be found on [3]. The minimization of the LQR per-
formance index leads to the linear state feedback

uk = −KLxk. (8)

The gain KL can be obtained by the command
dlqr from MATLAB.

A steady-state error may arise from unmodeled
dynamics or disturbances. This drawback can be
overcome by augmenting the state space with the
integral of the attitude q. The concept of integral
feedback is described in detail in [15]. The regula-
tion error can be defined as zk = r−Cxk, where r
is a constant reference. The reformulated dynamic
model is given by

[
zk+1

∆xk+1

]
=

[
I −CA
0 A

] [
zk

∆xk

]
+

[
−CB

B

]
∆uk,

(9)
where ∆uk = uk − uk−1 and ∆xk = xk − xk−1.
The sampling time is omitted for simplicity, mean-
ing that kT is replaced by k. Applying the regu-
lator problem, the constant gain KL = [Kz,Kx] is
obtained.

3.2. Momentum Dumping

Magnetic torquers are commonly used in low-Earth
orbiting spacecraft for momentum dumping. The
torque generated by magnetic torquers is given by

T = m×Bm, (10)

where m [Am2] is the commanded magnetic dipole
moment generated by the torquers and Bm [T] is
the local geomagnetic field expressed in body-frame
coordinates. A common approach to design a mag-
netorquer control law for momentum dumping is to
command a magnetic dipole moment [7]:

m =
kmd
|Bm|

∆hw × b, (11)

where ∆hw is the momentum wheel system angular
momentum tracking error, b = Bm/|Bm| and kmd
is a positive scalar gain. Let’s denote the resulting
torque by Tmd. The use of this torque in addition
to the LQR feedback, Tc, results in an excess of
torque in the spacecraft. To counteract this, a de-
spin torque is imposed on each wheel:Twmd = Tmd.

3.3. Detumbling Mode
The proposed controller for detumbling consists
on commanding the following magnetic dipole mo-
ment:

m =
kdet
|Bm|

wI × b, (12)

where wI is the spacecraft’s angular rate relative to
the ECI frame, b = Bm/|Bm| and kdet is a positive
scalar gain. The theory behind this control law can
be found on [1]. In [7], stability of the present con-
trol law is proven if J is diagonal, resorting to Lya-
punov Stability theory. Asymptotic stability is not
guaranteed. According to [1], this is not a concern
in practice, though. Reference [1] provides an ex-
pression for kdet based on analyzing the closed-loop
dynamics of the component of wI perpendicular to
Bm:

kdet =
4π

p
(1 + sin(im))Jmin, (13)

where p is the orbit period, im is its inclination and
Jmin is the minimum principal moment of inertia.

4. Attitude Determination
4.1. Euler-Based Complementary Filter
The description of the filter presented in this section
is based on the work of [4].

Let λ = [φ θ ψ]T be the vector containing the
Euler angles roll, pitch and yaw respectively. The
kinematics is given by λ̇ = Q(λ)w, where w =
[wxwywz]

T and

Q(λ) =

1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)sec(θ) cos(φ)sec(θ)

 . (14)

The discrete-time equivalent is obtained apply-
ing the Euler method (also called forward Euler
method):

λk+1 = λk + ∆tQ(λk)wk. (15)

The observer proposed in [4] is

 λ̂

b̂w1

b̂w2


k+1

=

I −∆tQ(λk) −∆tQ(λk)

0 I−∆tT−1 0
0 0 I

 λ̂

b̂w1

b̂w2


k

+

∆tQ(λk)
0
0

wsk

+

Q(λk)(K1λ − I) + Q(λk−1)
K2λ

K3λ

 (yλk − ŷλk)

,

(16)
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where ŷλk
= Q−1(λk−1)λ̂k, yλk = Q−1(λk−1)λk +

Θk and yλk is the measured Euler angles trans-
formed to the space of the angular rate and cor-
rupted by zero-mean white Gaussian-noise Θ. The
attitude observation λ̂ can be obtained by measur-
ing the Earth’s gravitational and magnetic fields
by an IMU. The observer gains are equal to the
Kalman gain, K = [K1λ,K2λ,K3λ]T , from the aux-
iliary LTI system presented in [4], where the asymp-
totic stability of the observer 16 is proved if the
pitch is bounded |θ| < θmax <

π
2 .

4.2. Quaternion-Based Complementary Filter
This filter was inspired by the work of [10]. Firstly,
the quaternion from Earth’s gravity and magnetic
fields observations is computed.

In the prediction step, the angular velocity vec-
tor from the rate gyros is used to compute an es-
timation of the orientation in quaternion form by
applying the Euler method to equation 1.

In the update step, the SLERP technique (see
[14]) is used to find an intermediate quaternion be-
tween the one from the prediction step and the one
that comes from the Earth’s gravity and magnetic
fields observations.

4.3. Quaternion-Based Kalman Filter
The kinematics of the quaternion is given by equa-
tion 1 that can be rewritten, for simplification, as
q̇ = F(q)w. The discrete-time equivalent is:

qk+1 = qk + ∆tF(q)w. (17)

The rate gyro measurement, is modeled as being
affected by noise and rate random-walk (RRW). In-
corporating the quaternion kinematics and the gyro
noise model into a state-space model:

[
qk+1

bk+1

]
=

[
I −∆tF(q)
0 I

] [
qk
bk

]
+

[
∆tF(q)

0

]
wrk

+

[
−∆tF(q) 0

0 I

] [
wwrk

wbk

]
,

(18)

where wwr
is zero-mean white Gaussian-noise; bw

is the gyro bias; wb is the white Gaussian noise
that affects the sensor bias. Linearizing the model
18 around q̄ = [1, 0, 0, 0]T and ω = [0, 0, 0]T yields

[
qk+1

bk+1

]
=

[
I −∆t

2 I
0 I

] [
qk
bk

]
+

[
∆t
2 I
0

]
wrk

+

[
−∆t

2 I 0
0 I

] [
wwrk

wbk

]
.

(19)

The Kalman gains K1 and K2 for this LTI system
can be obtained resorting to function kalman from
MATLAB resulting in the observer

[
q̂k+1

b̂k+1

]
=

[
I −∆t

2 I
0 I

] [
q̂k
b̂k

]
+

[
∆t
2 I
0

]
wrk+[

K1 0
0 K2

]
(qk − q̂k).

(20)

5. Air-Bearing-Based Attitude Simulator
The test bench provides an inexpensive platform
for ground-based testing while imitating the torque-
free conditions of a satellite in space. This simulator
is composed of 2 main parts: a rotor and a stator.
The stator is composed of a small chamber and a
plate with a hole. The rotor is a hollow sphere
made of plastic that sits on top of the rotor. An
air compressor is connected to the small chamber,
forcing air through the hole of the plate. This keeps
the rotor suspended on a cushion of air and allows
the simulator to rotate 360º in roll, pitch and yaw.
The main advantage of this setup is the low friction
between the plate and the sphere.

Let’s consider the gap coordinates (x,y, φ) par-
allel and perpendicular to the curved surface and
related to the spherical coordinates (r, θ, φ) as x =
Rθ, y = R + h − r, where h is the width of the
gap between the rotor and the stator, as depicted
in Fig. 1.

Figure 1: Sphere coordinates (r, θ, φ) and auxiliary
gap coordinates (x, y, φ).

The levitation force is provided by the gauge pres-
sure P (θ)− PAtm inside the fuid layer:

Fup =

∫ ∫
[P (θ)− PAtm] cos(θ)dA, (21)

where dA represents the submerged surface. The
pressure field follows from the mass and momentum
balance within the fluid. Neglecting the compress-
ibility of the fluid and noting that in steady state
the fluid rapidly orients itself on the θ-direction,
u = uθ(r, θ)eθ, the mass balance in steady state is
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∂uθ
∂θ

sin(θ) + vθcos(θ) = 0. (22)

5.1. Creeping Flow Approximation
The momentum balance is expressed by the Navier-
Stokes equation. For constant density ρ and viscos-
ity µ and neglecting the gravitational effect and the
term ρ(u.∇u), it reduces to the known ”creeping
flow”. The velocity profile can be reduced to the
well-known planar Poiseuille velocity profile for (ir-
rotational) flow between parallel plates:

uθ(y, θ) =
1

2

6Q

πRh3sin(θ)
y(h− y). (23)

where Q is the total flux per unit of time, R is the
rotor radius and h is fluid film thickness.

The gauge pressure can be computed by

P (θ)− Patm =
6µQ

πh3
ln

[
(1− cos(θmax))sin(θ)

(1− cos(θ))sin(θmax)

]
.

(24)
By replacing equation 24 in 21, the levitation

force is obtained:

Fup =
6µQR2

h3
(1− cos(θmax)). (25)

Now, by equating the levitation force to the
weight of the rotor, Fg = mr.g, the thickness of
the fluid layer is obtained:

h =

(
6µQR2

mrg

)1/3 (
1− cos(θmax)

)1/3
. (26)

The values for the developed test bench are: µ =
1.81 × 10−5Kg/(m.s), R = 0.1m, g = 9.81m/s2,
mr = 1.33Kg, Q = 0.00023m3/s, θmax = 0.6rad,
ρ = 1.225Kg/m3, orifice radius of 1mm. These
values can be used to compute the thickness of the
fluid layer, obtaining h = 0.15mm.

5.2. Damping of Rotations
The only source of drag is the viscous drag that
causes the angular speed to slow down exponen-
tially as w(t) = w(0)e−t/trel , where trel is the re-
laxation time. The relaxation time can be approxi-
mately found by:

trel ∼
ρrotorRh

µ
. (27)

Replacing the values for the developed test bench,
one obtains trel = 4.4 minutes.

6. Prototype
Most of the components of the satellite functional
prototype are Commercial Off-The Shelf (COTS),
except for the outer structure and the supports,

which were 3D printed. A Raspberry Pi is con-
nected to an LSM9DS1 IMU, 3 hall-effect sensors
and 2 DRV8835 motor drivers. As actuators, the
satellite will be provided with 3 momentum wheels
aligned with the 3 body axis.

To characterize the IMU noise, data cor-
responding to 1.5 hours was collected. Its
biases are [−0.11475, 0.10982,−0.044702]o/s
and [0.1096,−0.11303,−0.20123]m/s2. Its vari-
ances are [0.0029346; 0.0052722; 0.0013492](o/s)2,
[7.1815e − 05, 0.0001305, 0.0001102](m/s2)2 and
[0.15055, 0.15971, 0.37153](µT )2. The magnetome-
ter is corrected for soft and hard iron.

Regarding the testbed, the rotor was bought off-
the-shelf, the stator was manufactured in bronze
and the supports for the 1U CubeSat were 3D
printed. The drawings can be found on [11]. As
it is evident in Fig. 2, the rotating parts also in-
clude the rotor and the supports. The moment of
inertia of the rotating parts is

JTotal =

 3.58 −0.0297 0.0298
−0.0297 3.54 0.0122
0.0298 0.0122 3.35

× 10−3Kg.m2.

(28)

(a) 3D Model (b) Picture

Figure 2: 3D model (Left) and Picture (Right) of
the Satellite Prototype Sitting on the Test Bench.

7. Simulation Results
The proposed algorithms for the ADCS system
were tested against the realistic environment cre-
ated within the MATLAB/Simulink platform, com-
posed of an orbit propagator, an environment sim-
ulator and the spacecraft, sensors and actuators
models. The considered orbit is the same as the
ISS. The parameters used for the control algorithms
are resumed in Tab. 7. The parameters used for the
Euler-based complementary filter (F1), quaternion-
based complementary filter (F2) and quaternion-
based kalman filter (F3) are resumed in Tab. 7.

To test the estimation algorithms, the simula-
tion is initialized with the body and LVLH frames
aligned and no angular velocity between these two
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frames. No control is applied during one orbit pe-
riod. The results are depicted on Fig. 3 and 4.

Parameters
LQR T = 0.1s; QL = 0.5.I6;

RL=1e06.I3

LQRI T = 0.1s; QLw
= 50I3;

QLq
= 0.5I3; RL=1e06.I3;

QI=0.01I3

Detumbling kdet = 1.35× 10−5

Mom. Dumping kmd = −1

Table 1: Control parameters.

Parameters

F1
∆t=0.1s; T = diag([153.6, 256, 153.6]);
R = diag([10, 25, 5]); Q = 10−3.
diag(8000, 8000, 8000, 5, 16, 16, 5, 25, 25);

F2 ∆t=0.1s; t=0.2;

F3
∆t=0.1s; R = diag([10,25,5]);
Q = diag([8,8,8,2e-04,2e-04,2e-04]);

Table 2: Filters parameters.

(a) Euler-based Complementary Filter(Zoom).

(b) Quaternion-based Kalman filter.

Figure 3: Bias estimation.

To test the nominal mode, the Euler angles are
set to 10º and the body rate to zero. The controller
is fed with the real state values. The results are
shown on Fig. 5, 6, 7, 8, 9 and 10.

The designed controller was applied to the space-
craft described with a Monte Carlo perturbation
model: the off diagonal elements of the inertia
matrix are randomly selected between 0 and 1 ×
10−4Kg.m2; the initial Euler angles between 0º and
90º; the initial angular rates between 0 and 1 º/s. A
first order model of the Earth’s magnetic field was

Figure 4: Estimation error.

Figure 5: Pointing error for the LQR.

Figure 6: Pointing error for the LQRI.

Figure 7: Angular rate for the LQR.

Figure 8: Angular rate for the LQRI.

considered along with the ideal case of Tc = −ḣw
and only the magnetic and gravity gradient distur-
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Figure 9: ∆hw for the LQR.

Figure 10: ∆hw for the LQRI.

bances were taken into account. 300 Monte Carlo
Simulation runs are conducted (see Fig. 11).

Figure 11: Monte Carlo Simulation for the nominal
mode .

Next, detumbling from an initial angular rate of
[30, 30, 30] º/s is tested (Fig. 12 and 13).

Figure 12: Detumbling with wheels not spinning.

The detumbling is applied to the spacecraft de-
scribed similarly to the Monte Carlo model from
Fig. 11, differing in the initial Euler angles that
were selected between 0º and 360º and the initial
angular rates between 0 and 30º/s. The wheels are
not spinning. The results are plotted in Fig. 14.

Next, the controllers are fed with the estimators.

Figure 13: Detumbling with wheels spinning.

Figure 14: Monte Carlo Simulation for the Detum-
bling Mode.

This results in 6 simulation cases resumed in Tab.
7. The Euler angles are set to 10º and there is no
initial body frame rate.

LQR LQRI
Euler comp. filter Case 1 Case 2
Quaternion comp. filter Case 3 Case 4
Quaternion kalman filter Case 5 Case 6

Table 3: Simulation cases.

Figure 15: Estimation error for the LQR.

Figure 16: Estimation error for the LQRI.
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(a) Case 1. (b) Case 2.

(c) Case 5. (d) Case 6.

Figure 17: Bias estimation for cases 1, 2, 5 and 6.

Figure 18: Pointing error for the LQR..

Figure 19: Pointing error for the LQRI.

7.1. Discussion
Regarding the Euler-based complementary filter
(see Fig. 4), it is evident that there are peaks in
the estimation error. Naturally, these are accom-
panied by disturbances in the rate gyros bias esti-
mation (see Fig. 3). The estimation is originally
done based on the Euler angles formulation. Be-
ing the Euler angle domain restricted, each time
one of the limits is crossed and there is a discon-
tinuity on the estimation, the filter will deviate
from the nominal estimation. However, the nom-
inal performance of this filter is comparable to the
quaternion-based complementary filter. Further-
more, the Euler-based complementary filter is able

to estimate the gyroscope biases. The quaternion-
based kalman filter performance is slightly better
than the one from the other filters. The bias estima-
tion, however, is much worse than the one from the
Euler-based complementary filter. This is explain-
able by the fact that the kalman filter was based on
a linearization of the kinematics equation around a
zero pointing error and body frame rate. When no
control is applied, the system deviates significantly
from this point. When compared to the other two
filters, the SLERP-based filter has the disadvantage
of not being able to estimate the gyroscope biases.

Regarding the LQR (see Fig. 5, 7 and 9), it is evi-
dent that it is sufficient to stabilize the system. The
pointing error, however, is not regulated to zero,
even though it remains below 4º. Regarding the
adding of the integral action (see Fig. 6, 8 and 10),
the pointing error is now regulated to zero. Also,
it uses a slightly smaller portion of the range of ac-
tuation of the reaction wheels. The Monte Carlo
simulation for the nominal mode of the spacecraft
(Fig. 11) showed that the controller is robust to
different initial conditions.

The results from magnetic detumbling depend
whether the momentum wheels are spinning or not,
since they provide a resistance to the spacecraft ro-
tation. If the wheels are not rotating, the spacecraft
is considered detumbled after three orbits. Other-
wise, it takes only one orbit period. In Fig. 14, it is
evident that the detumbling is effective for various
initial angular rates. Even though stability could
only be proven for a diagonal inertia matrix, the
results from the Monte Carlo simulation show that
the controller is robust to parameter uncertainty in
the inertia matrix.

Simulation cases 1, 3 and 5 regard the LQR con-
troller. The pointing accuracy stays bellow 4.5 de-
grees for cases 1 and 5. For case 3, a pointing ac-
curacy of only roughly 7 degrees was attained (see
Fig. 18) due to the fact that the Quaternion-based
complementary filter is not able to compensate for
the gyroscope bias. Simulation cases 2, 4 and 6
regard the LQR with integrative action controller
(Fig. 19). In all 3 cases, the controller is able to
align the body frame with the LVLH frame with
a pointing accuracy of less than 2.5 degrees. The
unavailability of bias estimation in case 4 is com-
pensated, resulting in a similar pointing accuracy.

Regarding the bias estimation (Fig. 17) both
the Euler-based complementary filter and the
quaternion-based kalman filter are capable of pro-
viding an adequate estimation, as opposite to the
results without control action. This is due to the
fact that the system does not deviate significantly
from the linearization point. The estimation error
is below 2.5 degrees for all cases (Fig. 15 and 16).
The bias estimation is less noisy for cases 5 and 6.
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8. Experimental Results
The results from this section regard the control of
the developed prototype in 1 direction. With that
in mind, the upper part of the rotor sphere was
removed and a weight was added at the bottom
of the CubeSat, forming a pendulum, so that the
pitch and roll errors were compensated by gravity.
The inertia on the z axis remains approximately the
same and the satellite is not controlled on the x and
y body axis.

First, the prototype is set to rotation and the
angular velocity decay is measured so as to study
the damping of rotations.

(a) Clockwise rotation decay. (b) Counter-clockwise rota-
tion decay.

Figure 20: Angular velocity decay without actua-
tion when the prototype is set to rotate clockwise
(Left) and counter-clockwise (Right).

Next, the 6 cases previously studied are tested in
the ground-testing facility, for the yaw-axis only.

Figure 21: LQR experimental results in the Phase
Plane.

8.1. Discussion
As depicted in section 5, the viscous drag causes
the angular speed to slow down exponentially. This
means that the external torque is proportional to
the angular velocity Texternal = −kω. Denot-
ing the differential equation of the angular veloc-
ity as ω̇ = −λω, the decay constant, λ, is related
to the external torque by the following relation
λ = k/I, where I is the rotating part moment of

Figure 22: LQR with integral action experimental
results in the Phase Plane.

inertia. Using the function fit from the Curve Fit-
ting Toolbox of MATLAB, the angular velocity de-
cay for the clockwise rotation was best identified
by the expression 5.506exp(−0.004196.t) + 0.687.
The counter-clockwise rotation was best identified
by −6.891exp(−0.004301.t) + 0.4926. This means
that the rotations decay more rapidly for counter-
clockwise rotations. This goes along with obser-
vation, since it was evident that the rotor had a
deterministic tendency to rotate clockwise, settling
at a given positive yaw rate. So, it is not only the
viscous drag that affects the testbed.

The testbed was required to have disturbance
torques at most of the same order of magnitude
of those present in space (10−6N.m). Approxi-
mating the decay constant for the viscous drag
by the average of the two previous decay con-
stants: 0.004285s−1. Note that λ ∼ 4 × 10−3s−1,
I ∼ 3 × 10−3Kg.m2, meaning that k ∼ 1.2 ×
10−5Kg.m2s−1. Taking into account that w ∼
0.1rad/s, the external torque due to the viscous
drag is T ∼ 10−6N.m, meaning that it is of the
same order of magnitude of those present in space.

For the LQR controller (cases 1, 3 and 5), it is
evident that the yaw angle is not regulated to zero.
The pointing accuracies are 6, 40 and 12 degrees re-
spectively. This lack of accuracy in case 3 was not
predicted by the simulations results. In fact, the gy-
roscope bias used in simulation was identified with
the motors turned off. When the motors are turned
on, the biases increase significantly. Since this filter
is not able to estimate the biases, its use produces
the worst results. For the LQR with integrative ac-
tion, the steady state error is smaller. The pointing
accuracies for cases 2, 4 and 6 are 5 degrees, 15
degrees and 6 degrees respectively.

As a final remark on the validity of the obtained
results, note that the testbed is affected by an ex-
ternal torque different from the viscous drag. This
is evident by the results from Fig. 20. The gravity
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torque due to the displacement between the cen-
ter of mass and the center of rotation could not be
completely compensated and contributes to some
wobbling of the platform. Other than that, it is
inevitable that de viscous drag would deviate the
results from the ones on a drag-free environment.

9. Conclusions
Regarding the testbed, theory shows that it is pos-
sible to create a full 360º pitch, roll and yaw sim-
ulator, even though many other attempts to create
such a platform were unsuccessful. The contribu-
tion of this work for the effort of creating such a
platform is two-folded. Firstly, a review of previous
efforts and existent platforms was undertaken. The
physics of air-bearing platforms was detailed, after
which a platform aiming at full 3 DOF was built.
However, only 360º of freedom on the yaw axis was
achieved. Further work is required to eliminate the
unpredicted aerodynamic torque, the gravity torque
due to the displacement between the center of rota-
tion and center of mass, and the disturbance caused
by the rib in the junction of the 2 rotor half-spheres.

Regarding the ADCS system, detumbling with
magnetic torques is achieved in less than one orbit
period if the wheels are spinning at their nominal
rate. Regarding the pointing capability, simulation
shows that in nominal conditions a pointing accu-
racy of less than 2.5 degrees is achievable when us-
ing the LQR controller with Integral action (LQRI).
Coupling with the Quaternion-based Kalman filter
showed to be the best choice for cases when the
satellite deviates from its nominal position. As a
result, coupling of the LQRI controller with the
Quaternion-based Kalman filter is suggested for a
real application.
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