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Resumo

Esta tese aborda o problema de projecto de estimadores a serem utilizados como sistemas

de navegacção e de seguimento de alvos para véıculos autónomos. A śıntese e a análise são

suportadas numa metodologia capaz de descrever problemas de optimização convexa - as De-

sigualdades Matriciais Lineares (DMLs). As soluções são obtidas recorrendo a ferramentas de

optimização existentes comercialmente, baseadas em métodos eficientes de ponto interior.

Para formalizar e resolver todos os problemas abordados ao longo deste trabalho recorreu-se

aos filtros complementares devido às suas propriedades, nomeadamente no que diz respeito à

interpretação no domı́nio da frequência, a qual é de grande valor durante o projecto dos filtros.

São apresentados novos resultados para o cálculo da norma H2 de sistemas discretos com

dinâmica periódica, baseados num conjunto de LMIs, bem como uma nova metodologia de pro-

jecto de estimadores que estende as propriedades dos filtros complementares a esta classe de

sistemas. O mesmo exerćıcio é efectuado para sistemas variantes no tempo descritos através

de inclusões diferenciais lineares. A estabilidade e o desempenho dos sistemas de navegação

obtidos em ambos os casos considerados são estudados. Introduz-se ainda uma nova metodolo-

gia de análise, baseada em técnicas de optimização convexa, que possibilita uma interpretação

semelhante à análise em frequência clássica.

Finalmente, projectam-se dois seguidores de alvos não lineares que fornecem estimativas da

posição e velocidade de um Véıculo Submarino Autónomo (VSA) em relação a uma Embarcação

Autónoma de Superf́ıcie (EAS), basedo em dois conjuntos de sensores alternativos a instalar

a bordo. Para esse fim, dois estimadores não lineares são propostos e estudados em detalhe,

recorrendo a sistemas lineares com variações temporais paramétricas (LPVs). Garante-se ainda

a estabilidade e o desempenho numa região apropriada para os seguidores de alvos resultantes

e verificam-se as propriedades habituais dos filtros complementares.

Palavras Chave: Sistemas de Navegação, Seguidores de Alvos Não Lineares, Filtros Com-

plementares, Sistemas Periódicos, Véıculos Autónomos, LMIs.
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Abstract

This thesis addresses the problem of estimator design to be used as navigation and target

tracker systems in autonomous vehicles. Both synthesis and analysis steps are supported by

Linear Matrix Inequalities (LMIs), a framework able of describing convex optimization problems.

Solutions are found resorting to efficient commercially available interior-point optimization tools.

Complementary filters where chosen as the structure to formulate all problems addressed and

solved along this work due to their key properties. Namely, the frequency domain interpretation

provides valuable insight into the filtering design process.

New results on the H2 norm computation of discrete-time periodic time-varying systems are

deduced, based on a set of LMIs written along the systems period and a new methodology for

estimator design is introduced, which extends the complementary filters properties to this class

of systems. Complementary filter properties are also extended to the time-varying setting by

resorting to the theory of linear differential inclusions. The stability and performance properties

of the navigation systems obtained are studied in both cases. A new methodology for system

analysis using efficient numerical analysis tools that borrow from convex optimization techniques

is introduced, allowing for assessment of the ”frequency-like” performance of the filters obtained.

Finally, to provide estimates on the position and velocity of an Autonomous Underwater

Vehicle (AUV) relative to an Autonomous Surface Craft (ASC), two non-linear target trackers

are designed, based on two alternative sensor suites. To that purpose, two non-linear estima-

tors are proposed and studied in detail, resorting to linear parametrically time-varying (LPV)

systems. Stability and regional performance of the resulting target trackers are guaranteed and

the complementary filters properties are verified.

Keywords: Navigation Systems, Non-linear Target Trackers, Complementary Filters, Peri-

odic Systems, Autonomous Vehicles, LMIs.
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I ẏu

I żu]
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Chapter 1

Introduction

There has been considerable interest recently in the development of navigation systems to

provide robotic vehicles with the capability to perform complex missions in an autonomous mode.

See [7, 15, 41, 44, 50, 72] and the references therein for in-depth presentations of navigation

systems for aircraft and [27, 38, 75, 80] for an overview of similar systems and related research

issues in the ocean robotics area.

Central to the development of advanced navigation systems is the availability of powerful

theoretical tools for system analysis and synthesis. Among these, Linear Matrix Inequalities

(LMIs) [14, 48, 68] - have become the tool par excellence to deal with seemingly unwieldy

design problems. Interestingly, a series of classic systems and control problems as well as new

and more complex problems can be formulated and solved using this framework. Moreover, the

recent development of efficient interior-point methods [54] has endowed the scientific community

with tools capable of solving multi-criteria convex optimization problems. These interesting

features support the choice of LMIs as the synthesis and analysis tool for addressing the problems

presented in this work and motivate its introduction in the next chapter. Classic structures for

estimator design will also be introduced using LMIs, both in the continuous and in the discrete-

time settings, and the solutions obtained will be discussed in detail.

Traditionally, navigation system design is done in a stochastic setting using Kalman-Bucy

filtering theory [17]. In the case of non-linear systems, design solutions are usually sought

by resorting to Extended Kalman filtering techniques [17]. The stochastic setting requires a

complete characterization of process and observation noises, a task that may be difficult, costly,

1



2 CHAPTER 1. INTRODUCTION

or not suited to the problem at hand. This issue is argued at length in [18], where the author

points out that in a great number of practical applications the filter design process is entirely

dominated by constraints that are naturally imposed by the sensor bandwidths. In this case, a

design method that explicitly addresses the problem of merging information provided by a given

sensor suite over distinct, yet complementary frequency regions is warranted. Complementary

filters have been developed to address this issue explicitly and will be presented in chapter 3,

supported by both Wiener filtering theory and motivating examples.

In the case where the sensors required in the design of a navigation system are all installed

on board and can be sampled at the same period, as in the case of attitude estimation, the cor-

responding filter operators are linear and time-invariant. This leads to a fruitful interpretation

of the filters in the frequency domain. In the case of linear position and velocity estimation,

however, the characteristics of the sound channel imply that the position measurements (ob-

tained, for instance, from a Long BaseLine system) are available at a rate that is lower than

that of the remaining sensors. To deal with this problem, this thesis proposes a new approach

to navigation system design that relies on multi-rate complementary Kalman filtering theory.

Design methodologies for such types of multi-rate systems are discussed in chapter 4, and the

properties normally associated with single rate complementary filters are shown to be preserved.

In chapter 5 some analysis tools are introduced and it is shown that multi-rate filters can be

viewed as input-output operators exhibiting “frequency-like” properties that are the natural

generalization of those obtained for the single rate case. Performance of the resulting navigation

system is assessed from the results obtained with an autonomous catamaran during sea trials.

Chapter 6 further extends complementary filter design and analysis techniques to a time-

varying setting, and offers a solution to the problem of estimating the linear position and velocity

of a vehicle using time-varying complementary filters. Time-dependence is imposed by the fact

that some of the sensors provide measurements in inertial coordinates, while other measurements

are naturally expressed in body axis. To merge the information from both types of sensors - while

compensating for sensor biases - requires that the rotation matrix from inertial to body axis be

explicitly included in the navigation filters. The resulting filters are bilinear and time-varying,

but the time-dependence is well structured. By exploiting this structure, the problem of filter

design and analysis can be converted into that of determining the feasibility of a set of Linear

Matrix Inequalities (LMIs) [14, 68] supported by the theory of linear differential inclusions [8, 14].
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As a consequence, the stability of the resulting filters as well as their frequency-like performance

can be assessed using efficient numerical analysis tools that borrow from convex optimization

techniques [14, 48]. The performance of the resulting navigation system is assessed in simulation.

In recent years there has also been an increasing interest in the use of a fleet of autonomous

vehicles to perform complex missions. Military [70] and civil [4] applications are becoming more

complex and demanding in terms of joint (formation) performance. Air, land, and sea examples

of such cooperative missions can be found in [70] and in the references therein. As an example

in oceanography, the main thrust of the ASIMOV project [3] is the development and integration

of advanced technological systems to achieve coordinated operation of an Autonomous Surface

Craft (ASC) and an Autonomous Underwater Vehicle (AUV) while ensuring a fast communica-

tion link between the two vehicles. The ASC / AUV ensemble is being used to study the extent

of shallow water hydro-thermalism and to determine patterns of community diversity at vents

in the D. João de Castro bank in the Azores. To that purpose, on-board sensors such as a video

camera and a sonar are envisioned to be carried by the AUV Infante to collect scientific data in

a pre-specified survey area.

In order to have access to higher bandwidth acoustic communications, the vertical channel

must be used [3]. This constraint motivates the design of joint cooperative missions where the

ASC Delfim will be positioned in a vicinity of the vertical position of the AUV Infante with

minimal or no exchange of navigation data between the two platforms. These requirements lead

naturally to the need for a target tracker on-board the ASC to provide access to estimates on

the relative position and velocity of both platforms. The sensor suite to be installed on board

will be discussed and alternatives, such as the AUV depth or the distance between the two

vehicles that can be provided by a depth cell or by an acoustic ranging sensor, respectively, will

be discussed in detail in chapter 7. Stability and performance of the proposed structure will be

studied and the resulting architecture will be assessed with realistic simulations.

1.1 Main contributions

The main purpose of this work is to address estimation problems using new and powerful

synthesis and analysis tools. It is relevant to outline the following contributions present in this

thesis:
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• In chapter 4 new results on the H2 norm computation of discrete-time, linear, periodic

time-varying systems using LMIs are introduced. The resulting LMIs are a natural ex-

tension of the classic discrete-time invariant setup and pave the way for common design

methodologies for the synthesis and analysis of these two classes of systems. The results

obtained are also promising as a design framework for periodic feedback control, periodic

output feedback, and periodic filter synthesis.

The synthesis of (periodic) estimators is extended to the class of periodic time-varying

systems, resorting to a set of LMIs describing the constraints along the system period,

and the properties of the resulting solution are established. The methodology proposed,

resorting to convex optimization procedures, is based on the minimization of the H2 or

H∞ norms from auxiliary inputs to auxiliary outputs, constrained by the norms of other

input/output signals in a generalized plant.

• A new methodology for the analysis of periodic systems is introduced in chapter 5 where it

is shown that the multi-rate complementary filters can be viewed as input-output operators

exhibiting frequency-like properties that are the natural generalization of those obtained

for the single rate case. The main advantages of the proposed method is its close relation

to classical frequency-response analysis (the Bode plot) and the broad class of systems

that can be analyzed using the proposed methodology.

• The design of navigation systems for autonomous vehicles using simple time-varying kine-

matic relationships is addressed in chapter 6. The problem is solved by resorting to special

bilinear time-varying filters that are the natural generalization of linear time-invariant com-

plementary filters. Sufficient conditions for stability and guaranteed break frequency are

introduced.

The analysis tool introduced for discrete-time, periodic systems is further extended to

time-varying systems resorting to differential inclusions (polytopic systems). A design

example, incorporating directly constraints described by the aforementioned analysis tool,

is discussed in detail. The extension to other structures of the results obtained is also

taken into consideration.

• In chapter 7 two non-linear target trackers are proposed to provide estimates of the position
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and velocity of an Autonomous Underwater Vehicle (AUV) relative to an Autonomous

Surface Craft (ASC), based on two alternative sensor suites. To that purpose, two non-

linear estimators are designed and studied resorting to linear parametrically time-varying

(LPV) systems. Stability and regional performance of the resulting target trackers are

guaranteed and the complementary filters properties are verified.
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Chapter 2

Linear Matrix Inequalities

2.1 Introduction

In systems and control theory there are many problems that can be written using Linear

Matrix Inequalities (LMIs). In preparation for the applications that will be presented in the

course of this thesis some classical problems in systems theory will be revisited and written in

this framework. Some supporting tools that help manipulate LMIs will also be presented with

an emphasis on the convex characteristics of the resulting constraints. Convex optimization

problems can be formulated using LMIs, and numerical solutions can be found by resorting

to recently developed efficient interior-point methods [54]. For the sake of completeness, the

book [14] must be mentioned, as it provides a fruitful description of many interesting problems

where the constraints are set as LMIs and methodologies to find the numerical solutions are

summarized.

The structure of this chapter is as follows: section 2.2 introduces the concept of dissipativity

for non-linear and linear continuous-time driven systems, and section 2.3 describes the concept

of stability as introduced by Alekxandr Lyapunov more than one century ago. In both cases

the emphasis is on the description of the concepts under study resorting to the use of LMIs.

Section 2.4 describes in detail the structure and properties of linear matrix inequalities. The

H∞, H2, and the generalized H2 norms for continuous-time driven, finite-dimensional, linear,

time-invariant systems are presented in section 2.5. Section 2.6 describes how constraints on

the eigenvalues of linear systems can be formulated as LMIs. That task builds on the definition

7
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of convex constraints for the minimization problems at hand. Section 2.7 presents two general

setups for estimator synthesis. Moreover, the computation of the norms introduced previously

are presented for the structures under study. Section 2.8 revisits the subjects described for

continuous-time systems in the framework of discrete-time systems. Finally, section 2.9 presents

some conclusions.

2.2 Dissipative systems

The notion of dissipativity is of utmost importance in systems theory, both from a theoretical

point of view and as a practical concept. A dissipative system can not supply as much energy to

the environment as it receives, due to the fact that part of it is absorbed and transformed into

heat, entropy increase or other energy losses. In the following it will be shown that linear matrix

inequalities (LMIs) occur in the study of dissipative systems. The solutions of these LMIs can

be interpreted as storage functions playing a key role in understanding stability, robustness, and

other system design requirements.

The pioneering work of Alekxandr Lyapunov near the end of the XIX century [47], where he

studied the stability of autonomous differential equations of the form

ẋ(t) = a(x(t)), (2.2.1)

where a : Rn → Rn is some analytic function and x(t) is a vector of position and velocities in

Rn along the time t ∈ R, has been an inspiring guideline ever since.

Consider a finite-dimensional, time-invariant dynamical system S described by

0 = f(ẋ(t),x(t),u(t)),

y(t) = g(x(t),u(t)),
(2.2.2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, and y(t) is the output vector

which assumes its values in Rp, with the initial state x(t0) = x0. This system generates outputs

y, according to the inputs u, given the initial conditions considered. Let s : [uTyT ]T → R be a

mapping, referred to as supply rate function or supply function, and assume for all instants t ∈ R

and for all input-output pairs satisfying (2.2.2) the composite function s(t) := s(u(t),y(t)) is

locally absolutely integrable, i.e.,
∫ t1

t0

|s(t)|dt <∞.
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Definition 2.2.1 Dissipativity [77] The system S : u→ y with supply rate s(t) is said to be

strictly dissipative if there exists a non-negative function V : x→ R such that

V (x(t0)) +

∫ t1

t0

s(u(t),y(t))dt > V (x(t1)), (2.2.3)

for all t0 < t1 and for all trajectories (u(t),x(t),y(t)) of the system S.

Note that in the instants where the supply function is positive, work is supplied to the system

and in the opposite case, work is being done by the system. V (x), with x : R → Rn, is called

a storage function and generalizes the notion of an energy function for a dissipative system.

Moreover, if the function V (t), with t ∈ R, is differentiable as a function of time the relation

V̇ (t) < s(t) holds.

The classical motivation for the storage function comes from circuit theory, where the product

of tensions and currents at a given point of a circuit reveals that a subsystem is instantaneously

receiving or providing energy. In mechanical systems and in thermodynamics, similar notions

of storage functions have been in use for long time.

Consider now the dissipativity definition of linear, time-invariant systems F : u → y, de-

scribed as a finite-dimensional operator with state-space realization

ΣF :=







ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.2.4)

with the quadratic supply function

s(u(t),y(t)) =





y(t)

u(t)





T 



Qyy Qyu

Quy Quu









y(t)

u(t)



 , (2.2.5)

where no assumptions are made on the matrix Q ∈ R(p+m)×(p+m)

Q =





Qyy Qyu

Quy Quu



 .

Using the equation for the output y in (2.2.4), the supply function can be expressed in terms of

u(t) and x(t) as

s(u(t),x(t)) =





x(t)

u(t)





T 



C D

0 Im





T 



Qyy Qyu

Quy Quu









C D

0 Im









x(t)

u(t)



 , (2.2.6)
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where Im is the identity matrix of dimensions m ×m. Along this thesis we will use the same

symbol F to denote both a system and its particular realization ΣF , as the meaning will become

clear from the context.

In what follows, the definition of positive definite matrices will be required.

Definition 2.2.2 A matrix P ∈ Rn×n is positive definite, denoted in compact form as P > 0 if

and only if xTPx > 0, for any non-null column vector x ∈ Rn.

This definition will be revisited later in section 2.4. In a similar way, a semi-definite positive

matrix, denoted P ≥ 0 verifies xTPx ≥ 0 for all non-null x. For a negative definite matrix,

denoted P < 0, the expression xTPx < 0, for all non-null inputs is verified. The next the-

orem provides necessary and sufficient conditions for the system F , with the supply function

s(u(t),y(t)) to be dissipative, see [68]. Moreover, it is the first example of a systems’s property

described as LMIs.

Theorem 2.2.3 Suppose the system F : u → y with realization ΣF is controllable and let the

supply function s(u(t),x(t)) be defined by (2.2.5). The following statements are equivalent:

1. The system is strictly dissipative;

2. The system admits a quadratic storage function V (x(t)) = xT (t)Px(t), where P ∈ Rn×n

is a positive definite symmetric matrix;

3. There exists a positive definite, symmetric matrix P ∈ Rn×n such that

F (P ) := −





ATP + PA PB

BTP 0



+





C D

0 Im





T 



Qyy Qyu

Quy Quu









C D

0 Im



 > 0; (2.2.7)

4. The transfer function F : C → Cp×m of the system with realization ΣF can be written

in compact form as F (s) = C(sIn − A)−1B +D, where s is the Laplace transform inde-

terminate. When evaluated along s = jω, for all ω ∈ R and with det(jωIn − A) 6= 0, it

satisfies1





F (jω)

Im





∗ 



Qyy Qyu

Quy Quu









F (jω)

Im



 > 0. (2.2.8)

1The operator []∗ stands for the transpose conjugate of a vector or matrix.
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Moreover, if one of the above statements holds, then V (x(t)) = xT (t)Px(t) is a quadratic storage

function if and only if P > 0 and F (P ) > 0.

Proof: The complete proof can be found in [68]. However, it is interesting to show how the

LMI in (2.2.7) appears. Given the analytic storage function V (x(t)) = xT (t)Px(t), with P ≥ 0,

the dissipativity relation (2.2.3) can be written as

∫ t1

t0

−
d

dt

(

xT (t)Px(t)
)

+ s(u(t),y(t))dt > 0,

with t1 > t0. Using (2.2.4) and (2.2.6) this relation results in

∫ t1

t0





x(t)

u(t)





T

F (P )





x(t)

u(t)



 dt > 0. (2.2.9)

Since this relation holds for all inputs u and for all instants t1 > t0, the dissipativity property

implies the LMI (2.2.7). The reverse is obvious, i.e., if the LMI (2.2.7) holds, the system F

satisfies (2.2.9) and, therefore, assuming a quadratic storage function, the strictly dissipative

property is verified.

The matrix F (P ) is usually called the dissipation matrix. The characterization of dissipative

systems is a key result in systems theory and the frequency characterization counterpart in

(2.2.8) is often referred to as the Kalman-Yakubovich Lemma [40, 79].

2.3 Lyapunov stability

As mentioned earlier Alekxandr Lyapunov studied the stability of mechanical systems about

equilibrium points. A major contribution has been the evidence that stability can be discussed

based on the existence of functions called Lyapunov functions. For general non-linear systems,

there are no systematic procedures to find such functions. However, for linear systems the

problem of finding a quadratic Lyapunov function leads to a feasibility test for the unknowns in

a linear matrix inequality. This fact will be stressed next in the definition of Lyapunov functions

and in a proposition summarizing the stability properties for linear and non-linear systems [47].

For real valued signals x(t) : R+ → Rn,

‖x‖22 =

∫ ∞

0
xT (τ)x(τ)dτ
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is the classical Euclidean norm.

Definition 2.3.1 A function V : x→ R is a Lyapunov function in a neighborhood N (xeq) ∈ Rn

of an equilibrium point xeq if

1. V is continuous at xeq;

2. V has a strong local minimum at xeq, i.e., there exists a continuous function α : R+ → R+,

strictly increasing with α(0) = 0, such that

V (x)− V (xeq) ≥ α(‖x− xeq‖2)

for all x ∈ N (xeq);

3. V is monotone non-increasing along all solutions of (2.2.1), with initial conditions x0 ∈

N (xeq), i.e., V (x(t)) is monotone non-increasing as a function of t for all x0 ∈ N (xeq).

An intuitive way of interpreting Lyapunov functions is in terms of storage functions, as

introduced above. In fact, energy decreases along the trajectories of a dissipative system. Next,

some properties of equilibria points will be described.

Definition 2.3.2 Consider the differential equation ẋ(t) = f(x).

1. An equilibrium point xeq ∈ Rn is called stable in the Lyapunov sense if given ε > 0, there

exists δε > 0 such that if ‖xeq − x0‖ ≤ δε then ‖x(t)− xeq‖ ≤ ε for all t ≥ 0.

2. The equilibrium point xeq is an attractor if there exists ε > 0 such that if ‖xeq − x0‖ ≤ ε

then limt→∞ x(t) = xeq.

3. The equilibrium point is called asymptotically stable, in the sense of Lyapunov if xeq is

stable and an attractor.

Proposition 2.3.3 Lyapunov Theorem: Consider the non-linear system described by (2.2.1)

with the equilibrium point xeq ∈ Rn.

1. The equilibrium point is stable if there exists a Lyapunov function V in a neighborhood

N (xeq) of xeq;
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2. xeq is an asymptotic stable equilibrium if there exists a Lyapunov function V in a neighbor-

hood N (xeq) of xeq such that the only solution of (2.2.1) in N (xeq) for which V̇ (x(t)) = 0

is x(t) = xeq.

Consider the non-linear autonomous system (2.2.1) expressed explicitly in terms of its com-

ponents as

ẋ(t) =











a1(x(t))
...

an(x(t))











,

where x(t) =
[

x1(t) · · · xn(t)
]T

. The equilibrium point xeq is such that a(xeq) = 0. In-

troducing the perturbation variable δx(t) = x(t)− xeq, this non-linear relation admits the first

order Taylor expansion in the neighborhood of the equilibrium

˙∂x(t) = A∂x(t), (2.3.1)

where A : Rn → Rn is a linear map described by an n× n matrix, defined as

A :=











∂
∂x1

a1(x) · · · ∂
∂xn

a1(x)
...

. . .
...

∂
∂x1

an(x) · · · ∂
∂xn

an(x)











x=xeq

.

The next result characterizes the only equilibrium point candidate - the origin of the resulting

linear map - when A is invertible, in terms of asymptotic stability.

Proposition 2.3.4 Let the linear system in (2.3.1) be the linearization of the non-linear au-

tonomous system (2.2.1) at the equilibrium xeq. The following statements are equivalent:

1. The origin is an asymptotically stable equilibrium point for the linear system under study;

2. The origin is a global asymptotically stable equilibrium point for the linear system consid-

ered;

3. All eigenvalues λ(A) of A have strictly negative real part;

4. The linear matrix inequalities on the symmetric matrix P ∈ Rn×n

ATP + PA < 0 and P > 0

are feasible.
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Moreover, if these statements hold, the equilibrium point of the non-linear differential equation

under study is asymptotically stable.

The stability of the non-linear system near the equilibrium point xeq, can be discussed based

on the eigenvalues of the linearization matrix A. This fact reduces the complexity of the problem

at hand and provides an insight to the behaviour of very general non-linear systems. In the same

way, the existence of a quadratic Lyapunov function V (x(t)) = xT (t)Px(t) for the linear system,

with negative time derivative along the trajectories expressed as

V̇ (x(t)) = xT (t)(ATP + PA)x(t) < 0,

allows one to conclude on the stability of the corresponding non-linear system. Once again the

feasibility study of linear matrix inequalities reveals intrinsic properties on systems’ theory.

2.4 Linear matrix inequalities

In the previous sections some classical problems in systems theory were revisited. Solutions

were deduced in the form of matrix inequalities, linear in some unknown parameters (which can

be also matrices). This was the motivation for the study of this type of relations -linear matrix

inequalities (LMI) expressed in the form (see [14] for details)

F (x) := F0 + x1F1 + · · ·+ xkFk = F0 +
k
∑

i=1

xiFi > 0,

where the vector x = [x1 · · ·xk]
T is the vector of k real numbers (also called free decision vari-

ables) and F0, · · · , Fk are symmetric matrices Fi = F Ti ∈ Rn×n known a priori. The inequality

in the equation above should be read as positive definite, i.e., for all non-null u of proper di-

mensions uTF (x)u > 0 and all eigenvalues of F (x) are positive. This type of relation can also

be denominated as the function F being affine in the unknowns.

An important fact is that the set S := {x : F (x) > 0} related with the linear matrix

inequality F (x) > 0 defines a convex constraint on x. To prove this fact, note that if x1 and

x2 ∈ S and α ∈ [0, 1], then

F (αx1 + (1− α)x2) = F0 +
k
∑

i=1

(αx1i + (1− α)x2i)Fi

= F0 + α

k
∑

i=1

x1iFi + (1− α)
k
∑

i=1

x2iFi = αF (x1) + (1− α)F (x2),
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which allows one to conclude that F (αx1+(1−α)x2) > 0 and, therefore, that αx1+(1−α)x2 ∈ S

also.

In the case where a system of LMIs F1(x) > 0, · · · , Fm(x) > 0 in the same unknowns is

considered, an important fact is that they can be written in a block diagonal LMI of the form

F (x) :=

















F1(x) 0 · · · 0

0 F2(x) · · · 0
...

...
. . .

...

0 0 · · · Fm(x)

















> 0, (2.4.1)

due to the fact that each LMI is symmetric. Moreover, as the eigenvalues of F (x) are the union

of the eigenvalues of all Fi(x), i = 1, . . . ,m, any x that satisfies (2.4.1) also satisfies the system

of LMIs.

Another important property of LMIs that allows some non-linear relations to be converted

into linear inequalities are the so-called Schur complements, as presented in the following propo-

sition.

Proposition 2.4.1 Consider a symmetric matrix M ∈ Rn×n affine in x, with a partition

M(x) =





Q(x) S(x)

ST (x) R(x)



 ,

where Q(x) = QT (x) and R(x) = RT (x). The matrix M(x) > 0 if and only if R(x) > 0 and

Q(x)− S(x)R−1(x)ST (x) > 0. (2.4.2)

Proof: This equivalence can be obtained by introducing two auxiliary matrices

U(x) :=





I S(x)R−1(x)

0 I



 > 0, V (x) :=





I −S(x)R−1(x)

0 I



 > 0 (2.4.3)

that verify U(x)V (x) = I.

From the algebraic identity M(x) = U(x)V (x)M(x)V T (x)UT (x) it follows that

M(x) = U(x)





Q(x)− S(x)R−1(x)ST (x) 0

0 R(x)



UT (x) > 0. (2.4.4)

With the argument that all matrices must be positive definite in the previous expression, the

equivalence follows from the elements in the diagonal of the matrix detailed in (2.4.4).

In the following, a result used to eliminate variables and to simplify LMIs will be presented.
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Lemma 2.4.2 [68] Let A and B be arbitrary matrices and P be a symmetric matrix of proper

dimensions. The LMI

ATXB +BTXA+ P < 0

in the unstructured variable X has a solution if and only if

(Ax = 0 ∨ Bx = 0 ) ⇒ ( xTPx < 0 ∨ x = 0 ).

where ∨ stands for the logical disjunction. Moreover, let A⊥ and B⊥ denote the generic matrices

whose columns form bases for the null spaces of A and B, respectively. The previous implication

can therefore be written as






AT⊥PA⊥ < 0

BT
⊥PB⊥ < 0

The reasons for the recent surge of interest in LMIs are twofold: there are a plethora of

problems in systems and control theory that can be cast in a general structure of this kind and

convex optimization problems using convex constraints on x in the form of F (x) > 0 can be

solved by resorting to computational methods. Moreover, efficient interior-point algorithms for

convex optimization have been developed recently [54] and commercially available optimization

packages [48] provide easy tools for setting up and solving the aforementioned problems.

The history on LMIs is not recent. It goes back to the contributions of Lyapunov near the

end of the XIX century. During the 1940s, Lure, Postnikov, and others in the Soviet Union

applied Lyapunov’s methods to engineering problems [46]. The next breakthrough took place

in the 1960s when Yakubovich, Popov, Kalman, and others introduced what we now call the

positive-real lemma. Some LMIs were then solved using graphical methods. In the late 1960s,

the relations of LMIs with passivity, with the small gain theorem (introduced by Zames and

Sandberg), and with quadratic optimal control were evident. By 1971, the positive-real lemma

could not only be solved graphically but also by solving a certain algebraic Riccati equation

[77]. It was only in the 1980s that it was stated that many LMIs could be solved by computer

via convex optimization methods [62]. The final step occurred in the late 1980s when interior-

point algorithms were developed [54], allowing the solution of LMIs to be found using efficient

computational methods. In [14] and in the references therein, a more in-depth history of LMIs

can be found.
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2.5 Norms of systems and linear matrix inequalities

This section addresses the computation of induced operator norms for finite-dimensional,

continuous-time driven, linear, time-invariant systems F described by a set of first order differ-

ential equations with realization

ΣF :=







ẋ(t) = Ax(t) +Bw(t)

z(t) = Cx(t) +Dw(t)
(2.5.1)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rm is the vector of inputs and disturbances and

z(t) ∈ Rp is the output vector. Norm computations will be done in terms of LMIs for stable

systems, that is, for the case when

Re(λi(A)) < 0, i = 1, ..., n.

The transfer function for this system can be written using the Laplace transform as

F (s) = C(sI −A)−1B +D. (2.5.2)

2.5.1 H∞ norm

Suppose that the input w to system (2.5.1) is taken from the set L2 of Lebesgue measurable,

real valued, square integrable functions of time with finite Euclidean norm

‖w‖2 =

(∫ +∞

0
wT (t)w(t)dt

)1/2

< +∞.

Due to the linearity and asymptotic stability of the system the output z is also a signal from

the set L2. One of the classical performance criteria for system (2.5.1) is its maximum gain

amplification

sup
w∈L2

‖z‖2
‖w‖2

,

also denoted as the L2 induced norm of ΣF .

The Hardy space H∞ consists of all complex valued functions F : C+ → Cp×m which are

analytic, with H∞ norm defined as

‖F‖∞ := sup
s∈C+

σmax(F (s)) <∞,
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where C+ is the open right half complex plane, σ(F (s)) = λ(F ∗(s)F (s)) is the spectrum of F (s),

i.e., the set of all singular values, and σmax(F (s)) denotes the largest one. It can be shown that

there exists an extension for each of these functions to the imaginary axis with the H∞ norm

given by

‖F‖∞ := sup
ω∈R

σmax(F (jω)).

The proposition below plays a key role in the development that follows.

Proposition 2.5.1 [68] Let the system F : w→ z described by (2.5.1) be asymptotically stable

and let γ > 0 be a real number. The following statements are equivalent:

1. ‖F‖∞ < γ;

2. The gain of the system verifies

sup
w∈L2

‖z‖2
‖w‖2

< γ,

with null initial conditions, x(t0) = x0 = 0;

3. The system is strictly dissipative with respect to the supply function

s(w, z) = γ2‖w‖22 − ‖z‖
2
2;

4. There exists a symmetric matrix P = P T ∈ Rn×n that enables the LMI




ATP + PA+ CTC PB + CTD

BTP +DTC DTD − γ2Im



 < 0. (2.5.3)

The equivalence of the two first items comes from the well known fact that for a stable

system the H∞ and the induced L2 norm are equal (see e.g. [68] for a detailed explanation).

The third item can be obtained using theorem 2.2.3 with

Q =





−Ip 0

0 γ2Im



 .

Using Schur complements, the LMI (2.5.3) can be presented in an alternative form as





ATP + PA PB

BTP −γ2Im



+





CT

DT





[

C D
]

=











ATP + PA PB CT

BTP −γ2Im DT

C D −Ip











< 0.

Once again the feasibility of an LMI can provide numerical solutions for the computation of

a commonly used performance index in system theory.
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2.5.2 H2 norm

The H2 norm of a system ΣF , denoted ‖F‖2 is relevant in a stochastic setting. For the

linear, time-invariant system described by (2.5.1), consider the input w as white-noise with zero

mean E[w] = 0 and unitary variance E[wwT ] = I. Define the covariance of the state as

W (t) = E[x(t)xT (t)] =

∫ t

−∞
eAτBBT eA

T τdτ. (2.5.4)

Using the Leibnitz’s rule it can be easily shown that the time derivative of the covariance verifies

the matrix differential equation

Ẇ (t) = AW (t) +W (t)AT +BBT .

Assuming that the system is asymptotically stable and controllable, in steady state this equation

becomes the algebraic relation AW+WAT+BBT = 0, whereW = limt→+∞W (t). The solution

can be written as

Wctr =

∫ +∞

0
eAtBBT eA

T tdt,

and is denominated as the controllability Grammian. The output variance is equal to the square

of ‖F‖2 and can be written, assuming D = 0, as

‖F‖22 = E[zzT ] = E[CxxTCT ] = tr(CWctrC
T ). (2.5.5)

Notice that if the matrix D is non-zero, then the H2 norm is infinite.

A similar result can be obtained considering the observability Grammian

Wobs =

∫ +∞

0
eA

T tCTCeAtdt,

which is the solution to the algebraic matrix equation ATV + V A+ CTC = 0. As the trace of

the product of matrices is commutative, the output variance can also be computed as

‖F‖22 = tr(BTWobsB).

The duality of these two alternative results has been known long ago in systems theory.

Another possible way of interpreting the H2 norm of a system is by viewing it as a a member

of the Hardy space H2. This space consists of all complex valued functions which are analytic

in C+, with an extension to the imaginary axis, with finite norm computed as

‖F‖22 =
1

2π
tr

∫ +∞

−∞
F (jω)F ∗(jω)dω <∞,
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where ω ∈ R. Injecting as inputs the Dirac functions wi(t) = δ(t), i = 1, ..,m, in the causal

system (2.5.1) with null initial state x(0) = 0, the output is z(t) = CeAtBw(t), t > 0. Using

Parseval’s theorem, the H2 norm of the aforementioned system can also be written as

‖F‖22 = tr

∫ +∞

0
CeAtBBT eA

T tCTdt = tr(CWctrC
T ),

where the controllability Grammian definition was used. Note that the same relation as stated

in (2.5.5) was recovered.

The next proposition characterizes the H2 norm in terms of LMIs, as well as the relations

between these two possible interpretations for the norm.

Proposition 2.5.2 [68] Let the system F : w→ z described by (2.5.1) be asymptotically stable

with the transfer function (2.5.2). Then ‖F‖2 < +∞ if and only if D = 0. Furthermore, the

following statements are equivalent:

1. ‖F‖2 < γ, for γ > 0;

2. There exists a positive definite, symmetric matrix P ∈ Rn×n and an auxiliary variable

X ∈ Rp×p such that




ATP + PA PB

BTP −Im



 < 0,





X C

CT P



 > 0, tr(X) < γ2; (2.5.6)

3. There exists a positive definite, symmetric matrix P ∈ Rn×n and an auxiliary variable

X ∈ Rm×m such that




AP + PAT PCT

CP −Ip



 < 0,





X BT

B P



 > 0, tr(X) < γ2. (2.5.7)

In light of the above, the controllability Grammian is the unique positive definite solution of

the Lyapunov equation AW +WAT +BBT = 0, which is equivalent to saying that there exists

a symmetric matrix Z > 0 such that

AZ + ZAT +BBT < 0.

Introducing the variable P = Z−1 and pre and post-multiplying this relation by P results in

PA+ATP + PBBTP < 0.
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Using Schur complements the first LMI in (2.5.6) is obtained. Note that the H2 norm is obtained

according to the relation (2.5.5). Using the auxiliary or slack variable X > 0, this relation can

be expressed alternatively as X > CP−1CT and tr(X) < γ2, which are the remaining LMIs in

(2.5.6). By using the observability Grammian definition a similar circle of ideas leads to the set

of LMIs in (2.5.7).

In both cases, the minimization of tr(X) can be viewed as the minimization of the norm

of the corresponding system F and will be used in the synthesis of estimators and trackers

throughout this thesis.

2.5.3 Generalized H2 norm

Often, it is of interest to find out how an input signal of bounded energy to the stable system

(2.5.1) impact on the peak of the corresponding signal at the output. To this effect, define L∞

as the space of Lebesgue measurable real valued functions of time, endowed with the norm

‖F‖2,∞ = sup
w∈L2

‖z‖∞
‖w‖2

(2.5.8)

and satisfies

‖F‖2,∞ =
1

2π
λmax

(∫ +∞

−∞
F (jω)F ∗(jω)dω

)

<∞,

where λmax(.) denotes the maximum eigenvalue of a matrix. When z(t) is a scalar quantity,

this relation degenerates into the previously introduced H2 norm, which is the reason why the

definition now introduced is usually called the generalizedH2 norm. The proposition that follows

characterizes the computation of the aforementioned norm in terms of LMIs.

Proposition 2.5.3 [68] Let the system F : w→ z described by (2.5.1) be asymptotically stable

with the transfer function (2.5.2). Assuming D = 0, ‖F‖2,∞ < γ, for γ > 0, if and only if there

exists a symmetric positive definite matrix P ∈ Rn×n for the LMIs




ATP + PA PB

BTP −Im



 < 0,





P CT

C γ2Ip



 > 0. (2.5.9)

The first LMI in (2.5.9) can be inferred from the application of the dissipativity theorem

(2.2.3) relative to the supply function s(x,w) = wTw. Therefore,

V (x(t)) = xT (t)Px(t) ≤

∫ t

0
wT (τ)w(τ)dτ. (2.5.10)
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Given ε > 0 such that CTC < (γ2 − ε2)P , using Schur complements, the the second LMI in

(2.5.9) is obtained. This expression allows one to write

< z(t), z(t) >= xT (t)CTCx(t) ≤ (γ2 − ε2)xT (t)Px(t)

where < ., . > represents the internal product between signals. Using these relations, it results

that

< z(t), z(t) >≤ (γ2 − ε2)‖w‖22.

Dividing this later expression by ‖w‖22 and taking the supremum over all w ∈ L2, the relation

(2.5.8) is recovered.

2.6 Stability regions

Frequency domain analysis for finite-dimensional, linear, time-invariant systems provides

insight into systems characteristics such as stability, norm interpretation, and spectral factor-

ization, to name but a few. In the case of estimator synthesis using LMIs, the specification of

constraints for regional placement of the closed loop eigenvalues of the resulting systems may

be required to avoid solutions with dynamics that are too fast, with poorly damped modes, or

with high frequency gain.

Let s be the complex valued indeterminate in the Laplace transforms of the systems under

study. In this case the corresponding characteristic equations are polynomials in s, with real

coefficients. Let λi, i = 1, ..., n be the roots of such equations verifying λi ∈ Cst ⇒ λi ∈ Cst,

where Cst is the stability region to be specified and the over-line stands for the complex conjugate

operation. Assume the required stability region is a convex region of C.

Some typical regions and the corresponding LMIs are summarized in table (2.6.1). In [21] it

was proven that the standard Lyapunov stability can be generalized to the case of LMI regions

of stability Cst using a technique summarized in the next theorem.

Theorem 2.6.1 [21] The closed loop dynamics matrix A has all its eigenvalues in the general-

ized LMI region

Cst = {s ∈ C : pij + qijs+ qjis < 0, i, j = 1 · · ·n} (2.6.1)

if and only if a symmetric, positive definite matrix X exists such that

P +QAX +QTATX < 0,
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Re(s) < 0

Re(s)

|s| < r

α1 < Re(s) < α2

β1 < Im(s) < β2

Open left half

complex plane

Guaranteed
damping

Maximal damping

Vertical strip

Horizontal strip

Im(s)

Re(s)

Im(s)

Re(s)

Im(s)

Re(s)

Im(s)

Re(s)

Im(s)

β1

Inequality (< 0)

Re(s) < α

Description Math relation Cst

α1 α2

−r

α

β2

s− s− 2β1

0

s + s

s + s− 2α

s + s− 2α2

0 −s− s + 2α1

0

−r s

s −r

−s + s + 2β2

0

Table 2.6.1: Generalized stability regions as LMIs.
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Figure 2.7.1: General setup for filtering synthesis.

where pij and qij are the entries of line i and column j in the P and Q matrices, respectively.

Moreover, the characteristic equation of the closed loop system is given by P +Qs+QT s.

Circular sectors, ellipses, and conic sectors, as well as the regions presented in the previous

table, can all be written as in (2.6.1). The required stability region can be obtained from the

intersection of a set of convex regions, resulting in a convex region.

2.7 Estimator synthesis

In the course of this thesis some estimation problems will be formulated. The corresponding

analysis and synthesis methodologies will be presented, along with some relevant properties for

the proposed structures. Performance, stability, and robustness requirements will be described

in terms of constraints on norms to be minimized, by resorting to auxiliary inputs and outputs

to be defined. The problem of estimator design based on LMIs is therefore of utmost importance

in the present thesis.

The general setup for estimation design is presented in figure 2.7.1, where the nominal system

G is a linear, time-invariant system described by the realization

ΣG =



















ẋ(t) = A x(t) + Bw w(t)

z(t) = Cz x(t) + Dzw w(t)

y(t) = Cy x(t) + Dyw w(t),

(2.7.1)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rm is the vector of external inputs, z(t) ∈ Rp is

the vector of outputs from the system, y(t) ∈ Rq represents the measurement vector, and the
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matrices used have the compatible dimensions. Assuming stationary conditions, the estimator

under design E is also a linear, time-invariant dynamical system [2] with realization

ΣE =







˙̂x(t) = Af x̂(t) + Bf y(t)

ẑ(t) = Cf x̂(t) + Df y(t),
(2.7.2)

where x̂(t) ∈ Rnf is the estimated state vector and ẑ(t) ∈ Rp are the output estimates. Note

that no constraints on the dimension of the estimator state-space x̂ are imposed.

Interconnecting these two dynamical systems, as depicted in figure 2.7.1, yields a system F

with input w and with the estimation error e = z− ẑ as output, described by

ΣF =



































ẋ(t)

˙̂x(t)



 =





A 0

BfCy Af









x(t)

x̂(t)



 +





Bw

BfDyw



 w(t)

e(t) =
[

Cz −DfCy −Cf
]





x(t)

x̂(t)



 + [Dzw −DfDyw] w(t),

(2.7.3)

or, in compact form,

ΣF =







˙̃x(t) = Ã x̃(t) + B̃ w(t)

e(t) = C̃ x̃(t) + D̃ w(t).

The design of observers, where the variable to be estimated is the state variable x(t), goes

back to the work of Luenberger [45]. The optimal estimator with minimum output error variance

was first derived by Kalman in the late 1950s, by resorting to the solution of a Riccati equation.

This work motivated what is now considered the modern theory of estimation and control. See

[74] for details, where a selection of the original papers on the subject are available on this

subject.

As convincingly argued in [2], for nominal systems that are linear, the optimum estimator, in

the sense of providing the state estimate with minimum variance, is a finite-dimensional, linear,

time-invariant, dynamical system with the particular structure given by

ΣEk =







˙̂x(t) = A x̂(t) + K(y(t)− Cyx̂(t))

ẑ(t) = Cz x̂(t),
(2.7.4)

where K ∈ Rn×q is a constant observer gain to be determined and x̂(t) and ẑ(t) have the

same dimensions of x(t) and z(t), respectively. Moreover, note that the proposed structure is

a particular case of the general setup described by the realization in (2.7.2). The solution for
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this simpler, however, generic case will be presented next and will clarify the general solution

presented later in this section.

Let the state estimation error be defined as x̃ = x − x̂. Using the relations in (2.7.1) and

(2.7.4) yields a system Fkwith dynamics

ΣFk =







˙̃x(t) = (A−KCy) x̃(t) + (Bw −KDyw) w(t)

e(t) = Cz x̃(t) + Dzw w(t).
(2.7.5)

Applying to this system the results introduced in section 2.5, the norms computation can

be performed through the use of matrix inequalities. However, it can be easily foreseen that

the matrix inequalities are not linear in the unknown parameters, which precludes the use of

convex optimization tools to solve the problem at hand. The next two propositions present the

solutions for the H2 and H∞ norms, respectively, after introducing a non-linear transformation

in the unknowns.

Proposition 2.7.1 Consider a system Fk : w → z, composed of a nominal system G : w →

[zTyT ]T and an estimator Ek : y→ ẑ interconnected as described in figure 2.7.1, with realization

(2.7.5). Suppose Dzw = 0 and that ΣFk is asymptotically stable. The H2 norm of the system

obtained, from the input w to the output estimation error e is such that, for γ > 0, the following

statements are equivalent:

1. ‖Fk‖2 < γ;

2. There exists a symmetric, positive definite matrix P ∈ Rn×n, an auxiliary variable X ∈

Rp×p, and an auxiliary variable Y ∈ Rn×q verifying Y = PK, such that




ATP + PA− CTy Y
T − Y Cy PBw − Y Dyw

BT
wP −D

T
ywY

T −Im



 < 0,





X Cz

CTz P



 > 0,

tr(X) < γ2; (2.7.6)

3. There exists a symmetric, positive definite matrix P ∈ Rn×n, an auxiliary variable X ∈

Rm×m, and an auxiliary variable Y ∈ Rn×q verifying Y = PK, such that




PA+ATP − Y Cy − C
T
y Y

T CTz

Cz −Ip



 < 0,
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



X BT
wP −DywY

T

PBw − Y Dyw P



 > 0,

tr(X) < γ2. (2.7.7)

Proof: Applying the definition of the H2 norm presented in proposition 2.5.2 to the system

described by (2.7.5), the first LMI from the set (2.5.6) results in the matrix inequality





ATP + PA− CTy K
TP − PKCy PBw − PKDyw

BT
wP −D

T
ywK

TP −Im



 < 0,

which is not an LMI, as there are products of unknowns, namely P and K. Introducing the

auxiliary variable Y = PK results in the first LMI of (2.7.6). This can be understood as the

use of a non-linear transformation that allows the bilinear matrix inequality to become an LMI.

The remaining LMIs in (2.7.6) are those introduced in proposition 2.5.6, so the need for them is

obvious. The sufficient condition for this case closely follows the sufficiency proof on proposition

2.5.2.

The same circle of ideas can be used to derive the corresponding LMIs in (2.7.7), after pre

and post-multiplying the first two LMIs in (2.5.7) by





P−1 0

0 Ip



 and





Im 0

0 P−1



 ,

respectively.

Proposition 2.7.2 Consider a system Fk : w → z, composed of a nominal system G : w →

[zTyT ]T and an estimator Ek : y→ ẑ interconnected as described in figure 2.7.1, with realization

(2.7.5). Suppose that ΣFk is asymptotically stable and assume that there exists γ > 0. The

H∞ norm from the input w to the output estimation error e verifies ‖Fk‖∞ < γ if and only if

there exists a symmetric, positive definite matrix P ∈ Rn×n and an auxiliary variable Y ∈ Rn×q

verifying Y = PK, such that











ATP + PA− CTy Y
T − Y Cy PBw − Y Dyw CTz

BT
wP −D

T
ywY

T −γ2Im DT
zw

Cz Dzw −Ip











< 0. (2.7.8)
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The proof of this proposition is omitted as it follows the application of the same non-linear

transformation to the results presented in proposition 2.5.1, for the system described by (2.7.5).

In estimation and control theory the problems of designing stable estimators with the struc-

ture described in (2.7.4) and constant feedback stabilizable controllers for linear systems, or

u(t) = Lx(t) in (2.2.4), are dual. The parametrization of all stabilizable controllers as a convex

optimization problem is known for more than a decade [9]. However, the solution for the set of

all stabilizable estimators as a convex optimization problem has only recently been brought to

light [28]. The procedure to solve this problem for the H2 norm computation will be presented

next following the steps outlined in [56].

Consider the matrix K̃f that results from packing the unknown parameters in the generic

realization of the system (2.7.2), that is,

K̃f =





Af Bf

Cf Df



 ,

and define the auxiliary matrices

X̃ =





Z−T UT

U X̂



 , X̃−1 =





Y T V T

V T Ŷ T



 and T̃ =





ZT Y T

0 V T



 , (2.7.9)

such that the product

X̃T̃ =





I I

UZT 0



 .

The next lemma presents some algebraic results that will be required later on.

Lemma 2.7.3 Consider the auxiliary matrices introduced in (2.7.9). The variable transforma-

tions




Q F

L R



 =





V 0

0 I



 K̃f





UZT 0

0 I



 and S = V UZT (2.7.10)

linearize the matrices

T̃ T ÃX̃T̃ =





ZA ZA

Y A+ FCy +Q Y A+ FCy



 , T̃ T B̃ =





ZBw

Y Bw + FDyw



 ,

C̃X̃T̃ =
[

Cz −RCy − L Cz −RCy

]

and, T̃ T X̃T̃ =





Z Z

Y + S Y




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in the unknown variables Q ∈ Rn×n, F ∈ Rn×q, L ∈ Rp×n, R ∈ Rp×q, U = UT ∈ Rn×n,

V = V T ∈ Rn×n, Z = ZT ∈ Rn×n, Y = Y T ∈ Rn×n, and S = ST ∈ Rn×n.

We are now in position to present the result on the H2 norm minimization based on LMIs

for an estimator with general structure.

Theorem 2.7.4 Consider an asymptotically stable system F : w → z, composed of a nominal

system G : w→ [zTyT ]T and an estimator E : y→ ẑ interconnected as described in figure 2.7.1,

with realization (2.7.3). The H2 norm of the resulting system, from the input w to the output

estimation error e, is such that, for γ > 0, the following statements are equivalent:

1. ‖F‖2 < γ;

2. There exist matrices Z = ZT ∈ Rn×n, Y = Y T ∈ Rn×n, Q ∈ Rn×n, F ∈ Rn×q, L ∈ Rp×n,

and R ∈ Rp×q such that











ATZ + ZA ZA+ATY + CTy F
T +QT ZBw

ATZ + Y A+ FCy +Q ATY + CTy F
T + Y A+ FCy Y Bw + FDyw

BT
wZ BT

wY +DT
ywF

T −Im











< 0, (2.7.11)

and there exists a symmetric matrix W ∈ Rp×p that verifies











W Cz −RCy − L Cz −RCy

CTz − C
T
y R

T − LT Z Z

CTz − C
T
y R

T Z Y











> 0, (2.7.12)

Dzw −RDyw = 0 (2.7.13)

tr(W ) < γ2; (2.7.14)

3. There exist matrices Z = ZT ∈ Rn×n, Y = Y T ∈ Rn×n, Q ∈ Rn×n, F ∈ Rn×q, L ∈ Rp×n,

and R ∈ Rp×q such that











ATZ + ZA ZA+ATY + CTy F
T +QT CTz − C

T
y R

T − LT

ATZ + Y A+ FCy +Q ATY + CTy F
T + Y A+ FCy CTz − C

T
y R

T

Cz −RCy − L Cz −RCy −Ip











< 0,

(2.7.15)
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and there exists a symmetric matrix W ∈ Rm×m such that










W BT
wZ BT

wY +DT
ywF

T

ZBw Z Z

Y Bw + FDyw Z Y











> 0, (2.7.16)

Dzw −RDyw = 0 (2.7.17)

tr(W ) < γ2. (2.7.18)

Proof: The definition of H2 norm, presented in proposition 2.5.2, will be used to computed

the norm of the system that results from the interconnection of the estimator and the nominal

system, described in compact form by (2.7.3). To prove the necessity of item ii), the matrix

inequality resulting from the first LMI in the set (2.5.6) is pre and post-multiplied by adequate

matrices to obtain




T̃ T P̃−1 0

0 Im









ÃT P̃ + P̃ Ã P̃ B̃

B̃T P̃ −Im









P̃−1T̃ 0

0 Im



 < 0

and thus




T̃ T P̃−1ÃT T̃ + T̃ T ÃP̃−1T̃ T̃ T B̃

B̃T T̃ −Im



 < 0.

Using the results presented in lemma 2.7.3 and considering X = P̃−1, the LMI in (2.7.11) is

obtained. The relation (2.7.12) can be obtained from the second LMI in the set (2.5.6), using

lemma 2.7.3 and the auxiliary relation Y + S = Z,




Ip 0

0 T̃ T P̃−1









W C̃

C̃T P̃









Ip 0

0 P̃−1T̃



 =





W C̃P̃−1T̃

T̃ T P̃ C̃T T̃ T P̃−1T̃



 > 0.

The constraint (2.7.13) is necessary for the existence of the H2 norm. Finally, the relation

(2.7.14) is the third LMI in the set (2.5.6).

To prove sufficiency, the construction of an estimator with the requiredH2 norm from feasible

variables that constitute the solution to the LMIs (2.7.11), (2.7.12), and (2.7.14) (with the

constraint (2.7.13)) is required. In this case the realization matrices for the estimator can be

obtained from the relation (2.7.10) as

K̃f =





V −1 0

0 I









Q F

L R









Z−TU−1 0

0 I



 , (2.7.19)
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where the non-singularity of U and V are required.

The Schur complement of LMI (2.7.12) implies Y > 0 and Z(Y − Z) > 0. Rewriting the

auxiliary relation Y + S = Y + V UZT = Z as

V U = (Y − Z)Z−T ,

the right side of the relation is positive definite and, therefore, non-singularity of U and V are

guaranteed. Moreover, the non-singularity of the transformation T̃ is also guaranteed. Since the

equivalence between the first and third items follows exactly the same line of arguments as the

proof just outlined, it will be omitted here.

The following corollary to this result can be useful in interpreting the results obtained.

Corollary 2.7.5 The full rank estimator obtained by minimizing the H2 norm as presented in

theorem 2.7.4 is the optimal linear estimator from the class of all linear estimators.

This corollary paves the way for a broader view of the result obtained. For nominal linear

systems, the generic estimator given by (2.7.2) has the optimal structure among all causal

estimators, including the class of non-linear filters [2]. An interesting consequence of this fact is

that the optimum estimator under stationary conditions can be obtained from the solution of

an algebraic Riccati equation, and it is on the boundary of the convex space of solutions given

by theorem 2.7.4 (see [56] for details).

A result for the H∞ norm minimization, based on the non-linear transformation presented

in lemma 2.7.3 for a general linear estimator is presented next.

Theorem 2.7.6 Consider an asymptotically stable system F : w → z, composed of a nominal

system G : w→ [zTyT ]T and an estimator E : y→ ẑ interconnected as described in figure 2.7.1,

with realization (2.7.3). The H∞ norm of such system, from the input w to the output estimation

error e, verifies ‖F‖∞ < γ, for γ > 0 if and only if there exist matrices Z = ZT ∈ Rn×n,

Y = Y T ∈ Rn×n, Q ∈ Rn×n, F ∈ Rn×q, L ∈ Rp×n, R ∈ Rp×q, and W ∈ Rm×m such that

















ATZ + ZA ZA+ATY + CT
y FT +QT ZBw CT

z − CT
y RT − LT

ATZ + Y A+ FCy +Q ATY + CT
y FT + Y A+ FCy Y Bw + FDyw CT

z − CT
y RT

BT
wZ BT

wY +DT
ywFT −γ2Im DT

zw − DT
ywRT

Cz − RCy − L Cz − RCy Dzw − RDyw −Ip

















(2.7.20)
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is negative definite and

Y > Z > 0. (2.7.21)

Since the proof of this theorem follows the same steps as that of the H2 norm, it will be

omitted here. As in the previous theorem, a corollary similar to 2.7.5 is immediate. Following

the same arguments, the H∞ central estimator can be obtained on the boundary of the linear

inequalities under consideration.

2.8 Discrete-time systems

Some of the concepts presented in the previous sections will be revisited next and written

in a discrete-time setup. The term discrete-time expresses the fact that the signals and systems

only change in an infinite countable set of instants equally spaced in time. It is therefore possible

to index the elements of this set using an isomorphism to Z+. A signal can be represented as a

column vector with the discrete-time components stacked as in

u =

























u(0)

u(1)
...

u(k)
...

























k ∈ Z+,

where u(k) ∈ Rn and the Euclidean norm can be computed according to

‖u‖2 =

(

∞
∑

k=0

uT (k)u(k)

) 1
2

< +∞.

The space of such signals with finite Euclidean norm is denoted as l2(Z+,Rn), or as l2(Z+) if

the vector dimension is not relevant, or simply l2 when the instant index domain is obvious.

A discrete-time, finite-dimensional, linear, time-invariant system F can be described by a

set of difference equations with state-space realization

ΣF :=







x(k + 1) = Ax(k) +Bw(k)

y(k) = Cx(k) +Dw(k)
(2.8.1)

where x(k) ∈ Rn is the state vector, w(k) ∈ Rm is the input vector, and y(k) ∈ Rp is the output

vector which assumes its values in y, with the initial state x(k0) = x0. This type of systems can
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be regarded as a linear transformation from the spaces l2(Z+,Rm) → l2(Z+,Rp). In this case

the set of positive integers of the time index can be interpreted as if the signals were undefined

for all negative time-instants.

This isomorphism can be also used in sampled-data systems where the outputs of a continuous-

time system, such as the one in (2.2.4), are sampled and the outputs from the controller/estimator

are applied to the system input at the time instants tk = kh, k ∈ Z+, where h > 0 is the sampling

period. Moreover, by discretizing the plant and introducing fictitious sample and hold blocks

at the output and at the input, respectively, an interpretation for the resulting system in the

discrete-time setup is possible (see [19] for an interesting overview on sampled-data systems).

The concept of dissipativity can be introduced with an obvious adaptation to this setup, as

stated in the following definition.

Definition 2.8.1 Dissipativity The system F : w→ y with the quadratic supply rate function

s : [wTyT ]T → R,

s(w(k),y(k)) =





y(k)

w(k)





T 



Qyy Qyw

Qwy Qww









y(k)

w(k)



 , (2.8.2)

is said to be strictly dissipative if there exists a non-negative function V : X → R such that

V (x(k0)) +

k1
∑

k=k0

s(w(k),y(k)) > V (x(k1 + 1)), (2.8.3)

for all k0 < k1 and for all trajectories (w(k),x(k),y(k)) of the system F .

Note once again that no assumptions were made on the matrix Q ∈ R(p+m)×(p+m). Using

the telescopic property the previous relation can be written as

k1
∑

k=k0

(s(w(k),y(k))− V (x(k + 1)) + V (x(k))) > 0,

which must be valid for all time-instants k1 > k0. The next theorem provides necessary and

sufficient conditions for the system F with the supply function s(w(k),y(k)) to be dissipative.

Moreover, it will constitute the bridge between the class of dissipative discrete-time systems and

their characterization in terms of LMIs.

Theorem 2.8.2 Suppose the system F with realization ΣF is controllable, and let the supply

function s(w(k),y(k)) be defined as in 2.8.2. The following statements are equivalent:
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1. The system is strictly dissipative;

2. The system admits a quadratic storage function V (x(k)) = xT (k)Px(k), where P ∈ Rn×n

is a positive definite, symmetric matrix and P = P T > 0;

3. There exists a positive definite matrix P = P T ∈ Rn×n such that

F (P ) := −





ATPA− P ATPB

BTPA BTPB



+





C D

0 Im





T 



Qyy Qyw

Qwy Qww









C D

0 Im



 > 0.

(2.8.4)

4. The transfer function of the system with realization ΣF , obtained with the z-transform,

written as

F (z) = C(zIn −A)−1B +D, (2.8.5)

where z is the time-shift operator, evaluated along z = ejω for all ω ∈ [0, 2π[, and with

det(jωIn −A) 6= 0 satisfies





F (ejω)

Im





∗ 



Qyy Qyw

Qwy Qww









F (ejω)

Im



 > 0; (2.8.6)

Moreover, if one of the above statements holds, then V (x(k)) = xT (k)Px(k) is a quadratic

storage function if and only if P > 0 and F (P ) > 0.

The proof follows the same circle of ideas as in the continuous-time version. In the deduction

of (2.8.4) the dissipativity of the system under consideration implies that the relation (2.8.3) is

verified for all time-instants.

2.8.1 Norms of discrete-time systems

The computation of the H∞ norm of system ΣF with realization (2.8.1), from the input w

to the output y, both considered to be signals in the set l2(Z+), can be performed based on the

system dissipativity property as stated by the next proposition.

Proposition 2.8.3 Let the system F : w→ y in (2.8.1) be asymptotically stable, with all roots

inside the unit circle and let γ > 0 be a real number. The following statements are equivalent:

1. ‖F‖∞ < γ;
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2. The gain of the system verifies

sup
w∈l2

‖y‖2
‖w‖2

< γ,

with null initial conditions, x(0) = 0;

3. The system is strictly dissipative, with respect to the supply function

s(w,y) = γ2‖w‖22 − ‖y‖
2
2;

4. There exists a symmetric matrix P = P T ∈ Rn×n, that enables the LMI

















−P 0 ATP CT

0 −γ2Im BTP DT

PA PB −P 0

C D 0 −Ip

















< 0. (2.8.7)

Note that the third item can be obtained using theorem 2.8.2 with

Q =





−Ip 0

0 γ2Im



 ,

after organizing the terms in the resulting LMI. Note also that for linear and stable systems the

H∞ norm and the induced l2(Z+) norm are equal.

The H2 norm of discrete-time systems can also be interpreted in a stochastic setup in a

similar way as described in section 2.5, however, a deterministic interpretation will be presented

in the Hardy space H2. This space corresponds to the class of complex valued functions which

are analytic in C+. They do have an extension to the unitary circle and the norm of these

systems can be computed as

‖F‖22 =
1

2π
tr

∫ 2π

0
F (jω)F ∗(jω)dω <∞,

where ω ∈ [0, 2π[, due to the properties of the discrete-time Fourier transform. Injecting as

inputs the discrete-time Dirac functions wi(k) = δ(k), i = 1, ..,m, in the causal system with
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realization (2.8.1), and y(0) = 0 the resulting output is

y =

























D

CB
...

CAk−1B
...

























k ∈ Z+.

Using Parseval’s theorem, the H2 norm of the aforementioned system can also be written as

‖F‖22 = tr(DTD) + tr
+∞
∑

k=0

CAkBBTAT
k
CT = tr(DTD) + tr(CWctrC

T ),

where the discrete-time controllability Grammian Wctr =
∑+∞

k=0A
kBBTAT

k
was introduced.

Interestingly enough, the controllability Grammian verifies the Lyapunov equation

W (k + 1) = AW (k)AT +BBT .

Assuming that the system is asymptotically stable and controllable, this equation becomes the

algebraic relation W = AWAT + BBT , where W = limk→+∞W (k). In light of the above,

the next proposition summarizes the H2 norm computation as relations involving linear matrix

inequalities.

Proposition 2.8.4 Let the system F : w → y in (2.8.1) be asymptotically stable with the

transfer function described by(2.8.5) and let γ > 0 be a real number. The following statements

are equivalent:

1. ‖F‖2 < γ;

2. There exists a positive definite, symmetric matrix P ∈ Rn×n and an auxiliary variable

X ∈ Rp×p such that











P AP B

PAT P 0

BT 0 Im











> 0,





X C

CT P



 > 0, tr(X) + tr(DTD) < γ2; (2.8.8)
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3. There exists a positive definite, symmetric matrix P ∈ Rn×n and an auxiliary variable

X ∈ Rm×m such that











P ATP CT

PA P 0

C 0 Ip











> 0,





X BT

B P



 > 0, tr(X) + tr(DTD) < γ2. (2.8.9)

The proof, based on the Grammians previously introduced, follows the same steps as for

continuous-time systems and thus will be omitted here. In both cases, minimization of tr(X)

can be viewed as the minimization of the norm of the corresponding system F and will be used

in the synthesis of estimators in the next subsection.

2.8.2 Estimator synthesis for discrete-time systems

The general setup for estimator design in the discrete-time is also based on the structure

presented in figure 2.7.1, where the nominal system G is a linear time-invariant system with

realization

ΣG =



















x(k + 1) = A x(k) + Bw w(k)

z(k) = Cz x(k) + Dzw w(k)

y(k) = Cy x(k) + Dyw w(k),

(2.8.10)

x(k) ∈ Rn is the state vector, w(k) ∈ Rm is the vector of external inputs, z(k) ∈ Rp is the vector

of outputs from the system, y(k) ∈ Rq represents the measurement vector, and the remaining

matrices have the required dimensions. As stated for continuous-time systems, under stationary

conditions the estimator E is also a discrete-time, linear, time-invariant dynamical system [2],

described by

ΣE =







x̂(k + 1) = Af x̂(k) + Bf y(k)

ẑ(k) = Cf x̂(k) + Df y(k),
(2.8.11)

where x̂(k) ∈ Rnf is the estimated state vector and ẑ(k) ∈ Rp are the output estimates. Note

that no constraints on the dimension of the state estimator x̂ are imposed. The study of such

an estimator with a generic structure could be exploited in the same way as presented earlier for

the continuous-time systems. However, as convincingly argued in [2], for linear nominal systems

described by a set of difference equations, the optimum estimator, in the sense of providing
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the state estimate with minimum variance consists of a finite-dimensional linear time-invariant

estimator with realization

ΣEk =







x̂(k + 1) = A x̂(k) + K(y(k)− Cyx̂(k))

ẑ(k) = Cz x̂(k)
(2.8.12)

where K ∈ Rn×q is a constant observer gain to be determined and x̂(k) and ẑ(k) have the same

dimensions of x(k) and z(k), respectively.

Let the state estimation error be defined as x̃ = x− x̂ and the estimation error as e = z− ẑ.

Using the relations in (2.8.10) and (2.8.12) the dynamics is

ΣFk =







x̃(k + 1) = (A−KCy) x̃(k) + (Bw −KDyw) w(k)

e(k) = Cz x̃(k) + Dzw w(k).
(2.8.13)

Applying the results introduced earlier in this section to this system, the H2 and H∞ norms

can be computed using the same non-linear transformation on the unknown variables as for the

continuous-time version.

Proposition 2.8.5 Consider the discrete-time asymptotically stable system Fk : w → z com-

posed of a nominal system G : w → [zTyT ]T and an estimator Ek : y → ẑ interconnected as

described in figure 2.7.1, with realization (2.8.13). The H2 norm of this system, from the input

w to the output estimation error e, is such that, given γ > 0, the following statements are

equivalent:

1. ‖Fk‖2 < γ;

2. There exists a symmetric, positive definite matrix P ∈ Rn×n, an auxiliary variable X ∈

Rp×p, and an auxiliary variable Y ∈ Rn×q verifying Y = PK such that











P PA− Y Cy PBw − Y Dyw

ATP − CTy Y
T P 0

BT
wW −DT

ywY
T 0 Im











> 0,





X CzP

PCTz P



 > 0,

tr(X) + tr(DT
zwDzw) < γ2; (2.8.14)
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3. There exists a symmetric, positive definite matrix P ∈ Rn×n, an auxiliary variable X ∈

Rm×m, and an auxiliary variable Y ∈ Rn×q verifying Y = PK such that











P ATP − CTy Y
T CTz

PA− Y Cy P 0

Cz 0 Ip











> 0,





X BT
wP −D

T
ywY

T

PBw − Y Dyw P



 > 0,

tr(X) + tr(DT
zwDzw) < γ2. (2.8.15)

Proof: Applying the definition of the H2 norm presented in proposition 2.8.4 to the system

described by (2.8.13), the first LMI from the set (2.8.8) in the variable W = P−1, after pre and

post-multiplying by










P 0 0

0 P 0

0 0 Im











results in the matrix inequality











P PA− PKCy PBw − PKDyw

ATP − CTy K
TP P 0

BT
wP −D

T
ywK

TP 0 Im











> 0,

which is not an LMI, as there are products of unknowns, namely P and K. Introducing the

auxiliary variable Y = PK results in the first LMI of (2.8.14). This can be understood as the

use of a non-linear transformation that allows the bilinear matrix inequality to become an LMI.

The second LMI in (2.8.14) is obtained from the second LMI in the set (2.8.8) written in the

variable W = P−1 after pre and post-multiplying by





Ip 0

0 P



 .

The sufficiency of the result follows the sufficiency proof of proposition 2.8.4. Moreover, the

same set of arguments could be used to derive the corresponding LMIs in (2.5.7).
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Proposition 2.8.6 Consider the discrete-time asymptotically stable system Fk : w → z com-

posed of a nominal system G : w → z × y and an estimator Ek : y → ẑ interconnected as

described in figure 2.7.1, with realization (2.8.13). The H∞ norm from the input w to the out-

put estimation error e verifies ‖Fk‖∞ < γ, for γ > 0, if and only if there exists a symmetric,

positive definite matrix P ∈ Rn×n and an auxiliary variable Y ∈ Rn×q verifying Y = PK such

that
















−P 0 ATP − CTy Y
T CTz

0 −γ2Im BT
wP −D

T
ywY

T DT
zw

PA− Y Cy PBw − Y Dyw −P 0

Cz Dzw 0 −Ip

















< 0. (2.8.16)

The proof of this proposition is omitted as it follows exactly the same steps as those outlined in

the proof of the previous proposition.

The procedures to synthesize discrete-time estimators with generic structure that are the

counterpart of ΣE in (2.7.2) are omitted. See [56] for a complete exposition of this material,

as well as for the non-linear transformation required to convert the constraints into LMIs. The

proofs that the estimators derived are the H2 and the central H∞ estimators, respectively, are

also available in [56]. Moreover, in the same way as in the continuous-time versions, they can

be found on the boundaries of the convex spaces associated with the generic cases.

2.9 Conclusions

This chapter introduced an LMI characterization of closed loop estimators, in the continuous

and discrete-time settings. An LMI approach to H∞ and H2 design was performed and convex

constraints on the regional placement of the eigenvalues in terms of LMIs were presented.

The results obtained are easily implementable using commercially available packages such as

the MATLAB LMI Optimization Toolbox and play a key role in the design of estimators with

multiple constraints. Some application examples will be found along this thesis.



Chapter 3

Complementary Filters

3.1 Introduction

Classically, the design of controllers, filters, and estimators was supported in the theoretical

results introduced by Wiener during the 1940s (see [39] and the references therein for an overview

of the work). The framework proposed, based on a stationary stochastic characterization of

the signals used and on linear time-invariant systems, leads to a linear time-invariant solution

resorting to spectral factorization techniques.

In the case of a general stochastic setting, the design of feedback systems and in particular

the design of estimators (the main focus of this thesis) is done using Kalman-Bucy filtering

theory [17]. In the case of non-linear systems, design solutions are usually sought by resorting

to Extended Kalman filtering techniques [17]. The stochastic setting requires a complete char-

acterization of process and observation noises, a task that may be difficult, costly, or not suited

to the problem at hand. This issue is argued at length in [18], where the author points out that

in a great number of practical applications the filter design process is entirely dominated by

constraints that are naturally imposed by the sensor bandwidths. In this case, a design method

that explicitly addresses the problem of merging information provided by a given sensor suite

over distinct, yet complementary frequency regions is warranted.

Complementary filters have been developed to address this issue explicitly. See for example

[18, 50] for a concise introduction to complementary filters and their applications. In the linear

time-invariant setting, filter design is ultimately reduced to the problem of decomposing an

41
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identity operator into stable low and high-pass transfer functions that operate on complementary

sensor information. The bandwidth of the low-pass transfer function becomes a tuning parameter

aimed at matching the physical characteristics of the “low frequency” sensor. Therefore, the

emphasis is shifted from a stochastic to a deterministic framework, where the main objective is

to shape the filter closed-transfer functions. Interestingly this is the structure that results from

using the classical approach introduced by Wiener.

This chapter is organized as follows: section 3.2 introduces linear estimation techniques,

namely the Wiener filtering technique and section 3.3 sets the motivation for the sections that

follow with simple filtering problems. Complementary filters are characterized in terms of an

algebraic relation involving the transfer functions from the sensors inputs to the estimated

outputs. Moreover, the relations of complementary filters with the Wiener and Kalman filters

will be discussed.

3.2 Linear Estimation

In this section the work of Norbert Wiener, developed in the early 1940s at the MIT Radiation

Laboratory, will be briefly presented. Some definitions on stochastic processes and on linear

estimation optimization will also be introduced.

In preparation to what follows lets start by introducing some properties for scalar stochastic

processes, i.e., a non-countable infinite collection of random variables, over the time domain

t ∈ R. The random variable obtained from a stochastic process x(t), when a particular instant

t considered, has the distribution

F (x, t) = P{x(t) < x},

and its first-order function f(x, t) is defined as

f(x, t) =
dF (x, t)

dt
.

The nth-order distribution of x(t) has a joint distribution F (x1, . . . ,xn; t1, . . . , tn) of the random

variables x(t1), ..., x(tn), and it is a generalization of the distribution introduced above. The

statistic properties of a stochastic process are mainly determined in terms of this function. In

some special cases, only the expected values of x(t) and x2(t) are important (see [60] and the
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references therein for a detailed discussion on stochastic processes and random variables). Note

that a n-dimensional stochastic process x : R → Rn can be represented as a stacked column

vector of stochastic processes as introduced above. The second order statistics for a stochastic

process are introduced next.

Definition 3.2.1 The mean ηx(t) of the random variable x(t) is its expected value

ηx(t) = E[x(t)] =

∫ +∞

−∞
xf(x, t)dx.

Definition 3.2.2 The auto-correlation Rxx(t1, t2) of the stochastic process x(t), at the time-

instants t1 and t2, is the expected value of the product x(t1)x
T (t2)

Rxx(t1, t2) = E[x(t1)x
T (t2)] =

∫ +∞

−∞

∫ +∞

−∞
x1x

T
2 f(x1,x2; t1, t2)dx1dx2 = RTxx(t2, t1).

Note that the auto-correlation is positive definite due to the identity

0 ≤ E[|
∑

i

aix(ti)|
2] =

∑

i,j

aiajE[x(ti)x
T (tj)],

and the average power of x(t) is obtained when the time-instants considered are equal, i.e.,

R(t, t) = E[x2(t)] ≥ 0.

Definition 3.2.3 The auto-covariance Cxx(t1, t2) of the stochastic process x(t), at the time-

instants t1 and t2, is the covariance of the random variables x(t1) and x(t2)

Cxx(t1, t2) = Rxx(t1, t2)− ηx(t1)η
T
x (t2).

In the case where the same time-instants are considered Cxx(t, t) equals the variance of the

random variable x(t). Moreover, for null-mean random variables the auto-covariance and the

auto-correlation are equal.

Definition 3.2.4 The cross-correlation of two processes x(t) and y(t) is the function Rxy(t1, t2) =

E[x(t1)y
T (t2)] = RTyx(t2, t1). Similarly, the cross-covariance of these two processes is

Cxy(t1, t2) = Rxy(t1, t2)− ηx(t1)η
T
y (t2).
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Two stochastic processes with null cross-correlation Rxy(t1, t2) = 0, for all t1, t2 ∈ R are called

orthogonal. If Cxy(t1, t2) = 0 independently of the time-instants considered, the processes x(t)

and y(t) are uncorrelated.

The definition of stationarity is central to the discussion that will be presented along this

work. A stochastic process x(t) is stationary in strict-sense if its statistical properties are

invariant to a shift in the time variable, i.e., the processes x(t) and x(t + c) have the same

statistics for any c ∈ R. Moreover, two processes are jointly stationary if the joint statistics of

x(t) and y(t) are the same as the statistics of x(t + c) and y(t + c), respectively, for any c. A

stochastic process is called wide-sense stationary if its mean is constant E[x(t)] = ηx and its

auto-correlation depends only on the time difference τ = t1 − t2,

Rxx(τ) = E[x(t+ τ)xT (t)].

In particular Rxx(0) = E[|x2(t)|], therefore the average power of a wide-sense stationary process

is constant over time and the auto-covariance depends only on τ = t1 − t2 and verify

Cxx(τ) = Rxx(τ)− ηxη
T
x .

The estimation problem formulated by Wiener belongs to a broad class of optimization

problems that can be described as follows:

Proposition 3.2.5 Based on measurements of a random variable y with a known joint prob-

ability density function fxy(x,y), how to obtain an estimate x̂ of a non-directly measurable

variable x(t) that minimizes the expected value of a quadratic function on the estimate error

e(t) = x(t)− x̂(t).

Note that in general the estimate x̂ = h(y) can be a linear or non-linear function of the

measurable variable y. The solution of these optimization problems are called mean-square

error estimates or least squares estimates, for short. There are multiple reasons to address

this type of problems: i) the least squares estimates can be specified as a conditional mean;

ii) for gaussian variables they are linear functions of the observations; iii) suboptimal solutions

are easy to obtain in general and in the case where the estimates are linear functions of the

observations, only knowledge on the first and second order statistics is required; iv) a rich
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geometric interpretation for the solution obtained exists. For a survey study on the classic

optimization problems briefly described above see [39] and the references therein.

In the case where the estimate x̂ is assumed to be linear on the observations the follow-

ing theorem provides an enlightening interpretation for the linear least squares estimates, that

constitute the solution to the optimization problem at hand.

Theorem 3.2.6 [39] The error estimate e = x−x̂ for the random variable x, assuming a linear

combination of the observations x̂ =
∑

i aixi, has a minimum that is orthogonal to all data, i.e.,

verifies

E[(x−
∑

i

aixi)xi] = 0, i = 1, . . . , n.

Proof: To minimize the function J = E[(x− x̂)2] relative to the unknowns ai can be obtained

by differentiation

∂

∂ai
J = E[2((x−

∑

i

aixi))(−xi)] = 0, i = 1, . . . , n,

which results on the orthogonal condition stated in the theorem.

Note that this result paves the way for a rich interpretation on the minimization problem under

study.

The general problem addressed by Wiener will be presented next in a stochastic setting,

based on the stochastic processes and on the linear estimation optimization problem briefly

introduced above.

Given two zero-mean wide sense stationary random processes x(t) and y(t), with zero mean

ηx = ηy = 0 and known auto-covariances and cross-covariance Rxx(τ), and Ryy(τ), and Rxy(τ),

respectively, solve the following problem:

Proposition 3.2.7 (Wiener) Given the observations y(τ), with −∞ < τ < t find the linear

least mean-square error estimate of x(t+ λ), for a fixed positive constant λ.

Considering that a linear dependence on the observations is sough, then the estimate x̂(t+λ)

can be written as

x̂(t+ λ) =

∫ t

−∞
h(t, τ)y(τ)dτ,
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where h(t, τ) is the impulsive response of a causal linear system whose response at time t, y is

the system input, and x̂(t+ λ) is the desired value, which minimizes

E[(x(t+ λ)− x̂(t+ λ))2].

According with the projection theorem presented above,

E[(x(t+ λ)− x̂(t+ λ))y(σ)] = 0, for −∞ < σ < t,

which yields

E[x(t+ λ)y(σ)] =

∫ t

−∞
h(t, τ)E[y(τ)y(σ)]dτ,

where the linear characteristics of the expected value and the integral were used. From the defi-

nitions of auto and cross-correlation introduced above and after the coordinate transformations

τ ′ = t− τ and t− σ = t′ it is straightforward to obtain

Rxy(t′+ λ) =

∫ ∞

0
h(t′+ σ, t′+ σ − τ ′)Ryy(t′ − τ ′)dτ ′, for t > 0.

The auto and cross-correlation functions do not depend on σ, therefore h(t′+ σ, t′+ σ − τ ′)

must be a function only of the difference of its arguments. With some abuse of notation the

above expression can be rewritten as

Rxy(t+ λ) =

∫ ∞

0
h(τ)Ryy(t− τ)dτ, for t > 0, (3.2.1)

where h(t) = 0, for t < 0. The equations of this form are usually called Wiener-Hopf equations.

It might appear that the Laplace transform could be used to solve this equation, however the

fact that this relation holds only for positive values of t precludes the use of such methodology

(see [39] for a detailed discussion of this fact).

A more sophisticated technique, developed by Wiener and Hopf in 1931, must be used to solve

the aforementioned type of equations. This technique will be briefly discussed next for stationary

processes with rational power spectral density functions. Interestingly, this set corresponds

also to the processes obtained when white-noise is used as input for finite-dimensional, linear,

continuous time-invariant systems.

Consider the Laplace transform of the transfer function of the single-input, single-output

system H : u → y, where u ∈ R is a zero-mean and unitary variance white-noise input and

y ∈ R is the output, when null initial conditions are considered. The bilateral Laplace transform
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of the covariance of the output y(t) verifies Syy(s) = H(s)H(−s). It is immediate that Syy(s) =

Syy(−s) and that the numerator (zeros) and denominator roots (poles) present the following

properties:

• they are symmetric relative to the real axis, as Syy(s), when s = jω, is real;

• they are symmetric relative to the imaginary axis, due to the fact that Syy(s) is even;

• there are an even number of zeros on the imaginary axis, as Syy(s) ≥ 0

• there are no poles on the imaginary axis, because in that case it could not be a covariance

function.

The constraints on H(s) imply that all poles should be on the left-half-plane, i.e., all roots

of the denominator have a negative real part. Moreover, a canonical factorization of the form

Syy(s) = S+
yy(s)S

−
yy(s) will be possible, where S+

yy(s) is the stable and minimum-phase power

spectral density function, composed by the poles and zeros on the left-half-plane.

The solution to the problem at hand can be obtained using the following result:

Proposition 3.2.8 (Wiener)[39] The Wiener-Hopf equation (3.2.1)

Rxy(t+ λ) =

∫ ∞

0
h(τ)Ryy(t− τ)dτ, for t > 0,

where h(t) = 0, for t < 0 has the solution 1

H(s) =
1

S+
yy(s)

{

Sxy(s)e
sλ

S−yy(s)

}

+

(3.2.2)

Proof: Lets start by introducing the auxiliary function

g(t) = Rxy(t+ λ)−

∫ ∞

0
h(τ)Ryy(t− τ)dτ,

where g(t) = 0 for t > 0 and unknown for the negative values of the time index. The Laplace

transform of g′(t) = g(t)u(t) is G(s) = L{g′(t)}, where u(t) is the Heaviside step function, has

no poles on the left-half-plane s < 0. Using this fact to compute the Laplace transform of the

previous expression leads to

G(s) = Sxy(s)e
(s)λ −H((s))Syy(s).

1The notation {.}+ stands to the operation of choosing the poles on the right-half-plane of the function under

consideration.
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Using the canonical factorization introduced above, this expression can be written as

G(s)

S−yy(s)
=
Sxy(s)e

(s)λ

S−yy(s)
−H(s)S+

yy(s).

Note that from this expression the equation (3.2.2) results taking into account that poles on the

left-half-plane exists only in the terms on the right side of the equation.

Extensions to the original Wiener theory have been developed along the last fifty years,

namely for non-stationary processes and to non-scalar processes. A special application of Wiener

filtering - complementary filters - where the estimate of an unknown variable is sough, based

on redundant measures corrupted by noise will be introduced next, through the use of some

motivating examples.

3.3 Motivation for the use of complementary filters

This section reviews the basic structure of complementary filters through a motivation ex-

ample. To that purpose an attitude navigation system will be formulated and the structure of

the solution will be discussed in detail.

3.3.1 Complementary filters: basic concepts and definitions

Complementary filters arise naturally in the context of signal estimation based on measure-

ments provided by sensors over distinct, yet complementary regions of frequency. Brown [18] was

the first author to stress the importance of complementary filters in navigation system design.

Since then, this subject has been studied in a number of publications that address theoretical

as well as practical implementation issues; see for example [7, 44, 50, 53, 72] and the references

therein. The key ideas in complementary filtering are very intuitive, and can be simply intro-

duced by referring to the example of the process model M depicted in figure 3.3.1. The figure

captures the practical situation where the heading ψ of a vehicle must be estimated based on

measurements rm and ψm of r = ψ̇ and ψ provided, respectively, obtained using a rate gyro and

a flux-gate compass. The measurements are corrupted by disturbances rd and ψd as depicted in

the model M.

Let ψ(s) and r(s) denote the Laplace Transforms of ψ and r, respectively. Then, for every
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Figure 3.3.1: Process model M.

k > 0, ψ(s) admits the stable decomposition

ψ(s) =
s+ k

s+ k
ψ(s) =

k

s+ k
ψ(s) +

s

s+ k
ψ(s)

= T1(s)ψ(s) + T2(s)ψ(s), (3.3.1)

where T1(s) = k/(s+ k) and T2(s) = s/(s+ k) satisfy the equality

T1(s) + T2(s) = I. (3.3.2)

Using the relationship r(s) = sψ(s), it follows from the above equations that

ψ(s) = Fψ(s)ψ(s) + Fr(s)r(s),

where Fψ(s) = T1(s) = k/(s+k) and Fr(s) = 1/(s+k). This suggests a filter with the structure

ψ̂ = Fψψm + Frrm,

where Fψ and Fr are linear time-invariant operators with transfer functions Fψ(s) and Fr(s),

respectively. Clearly, the filter admits the state-space realization F

˙̂
ψ = −kψ̂ + kψm + rm

= rm + k(ψm − ψ̂) (3.3.3)

that is represented in figure 3.3.2.
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Figure 3.3.2: Complementary filter.

Let T1 and T2 denote linear time-invariant operators with transfer functions T1(s) and T2(s),

respectively. Simple computations show that

ψ̂ = (T1 + T2)ψ + Fψψd + Frrd,

that is, the estimate ψ̂ consists of an undistorted copy (T1 + T2)ψ = ψ of the original signal ψ,

together with corrupting terms that depend on the measurement disturbances ψd and rd.

Notice the following important properties:

• T1(s) is low-pass: the filter relies on the information provided by the compass at low

frequency only.

• T2(s) = I − T1(s): the filter blends the information provided by the compass in the low

frequency region with that available from the rate gyro in the complementary region.

• the break frequency is simply determined by the choice of the parameter k.

The frequency decomposition induced by the complementary filter structure holds the key

to its practical success, since it mimics the natural frequency decomposition induced by the

physical nature of the sensors themselves: the compass provides reliable information at low

frequency only, whereas the rate gyro exhibits bias and drift phenomena in the same frequency

region and is therefore useful at higher frequencies.

Complementary filter design is then reduced to computing the gain k so as to meet a target

break frequency that is entirely dictated by the physical characteristics of the sensors. From

this point of view, the emphasis is shifted from a stochastic framework, which relies heavily on a
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correct description of process and measurement noise [18] and the minimization of filter errors,

to a deterministic framework that aims at shaping the filter closed-transfer functions.

As convincingly argued in [18], the latter approach is best suited to tackle a large number

of practical situations where the characterization of process and measurement disturbances in

a stochastic context does not fit the problem at hand, the filter design process being entirely

dominated by the constraints imposed by sensor bandwidths. Once this setup is adopted, how-

ever, one is free to use any efficient design method, the design parameters being viewed simply

as ”tuning knobs” to shape the characteristics of the closed loop operators. In this context,

filter design can be done using H2 or H∞ design techniques [17, 30, 31, 34, 53]. Filter analysis is

easily carried out in the frequency domain using Bode plots. In the simple case described here,

the underlying process model M can be written relying on the realization

ΣM :=







ψ̇ = rm − rd

ψm = ψ + ψd
, (3.3.4)

where rd and ψd play the roles of process and measurement disturbances, respectively. Notice

the important fact that ψm (the measured value of ψ) is an input to the system. In anH2 setting,

the objective is to minimize the estimation error ψ− ψ̂ for given values of the covariances of ψd

and rd. The optimal solution to this problem has the complementary filter structure described

in relation (3.3.3). The covariances of ψd and rd are simply viewed as design parameters to vary

the break frequency.

In practice, the simple complementary structure described above can be modified to meet

additional constraints. For example, to achieve steady state rejection of the rate gyro bias, the

filter must be augmented with an integrator to obtain the new complementary filter depicted in

figure 3.3.3 with the realization

ΣM :=



































ẋ1

ẋ2



 =





−k1 1

−k2 0









x1

x2



+





k1

k2



ψm +





1

0



 rm

ψ̂ =
[

0 1
]





x1

x2





, (3.3.5)

where x1 and x2 denote the states associated with ψ̂ and the bias term, respectively, and k1 and

k2 are filter gains. To illustrate its relationship with a conventional Kalman filter, the expression
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Figure 3.3.3: Complementary filter with bias estimation.

above can be rewritten as







ẋ = Ax+Bu+K(y − ŷ)

ŷ = Cx
(3.3.6)

where x =





x1

x2





T

, u = rm, y = ψm, and

A =





0 1

0 0



 , B =





1

0



 , C =
[

1 0
]

, and K =





k1

k2



 .

Simple computations show that in this case

ψ̂ = (T1 + T2)ψ + η,

where

T1(s) =
k1s+ k2

s2 + k1s+ k2
, T2(s) =

s2

s2 + k1s+ k2
,

and η = Fψψd + Frrd is a noise term, the intensity of which depends on Fψ(s) = T1(s) and

Fr(s) =
s

s2 + k1s+ k2
.

Again, notice that T1(s) + T2(s) = I, T1(s) is low-pass, and T2(s) is high-pass. The filter blends

the information provided by the compass at low frequency with that available from the rate gyro

in the complementary frequency range, leaving the original signal ψ undistorted. Furthermore,
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any constant terms in rd (rate gyro bias) will be naturally rejected at the output since Fr(0) = 0.

Notice also that the filter rejects high frequency noise present in the flux-gate measurements.

In view of the discussion above, we henceforth adopt a deterministic framework for comple-

mentary filter design and analysis where the objective is to shape the filter transfer functions

to obtain desired bandwidths. Furthermore, in preparation for the work that follow, it is conve-

nient to formally introduce the definition of a complementary filter for the underlying process

model (3.3.4) (with rd = ψd = 0) in a state-space framework (see figure 3.3.1).

Definition. (r, ψ) Complementary Filter. Consider the process model

Mψr :=



















ψ̇ = r

ψm = ψ

rm = r

(3.3.7)

and a filter F with realization

ẋ = Ax+Brrm +Bψψm

ψ̂ = Cx.

Then, F is said to be a complementary filter for Mψr if

• F is internally stable.

• For any initial conditions ψ(0) and x(0) limt→∞{ψ(t)− ψ̂(t)} = 0.

• F satisfies a bias rejection property, that is, limt→∞ψ̂ = 0 when ψm = 0 and rm is an

arbitrary constant.

• The operator Fψ : ψm → ψ̂ is a finite bandwidth low-pass filter.

Clearly, for every k1, k2 > 0 the filter with realization (3.3.5) is a complementary filter for

the process Mψr in (3.3.7).

It is important to point out that, according to the definition above, filter (3.3.5) is but

one representative of a large class of complementary filters for Mψr. See table (3.3.1), where

two separate intervals of frequency are considered: a low band frequency ranging from zero

to a pre-specified finite value and a high band frequency that can be considered to end at
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Table 3.3.1: First order complementary filters.
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infinite frequency. Consider that there are sensors available providing measurements on the

angle variable and on the rate of variation of that variable. Moreover, assume that it is possible

to have these sensors providing reliable measurements on each of the frequency regions defined

above, based on different physical principles.

The upper right position of table (3.3.1) corresponds to the first order complementary filter

introduced above. The remaining complementary filters on the table correspond to alternative

structures that can be used to solve the estimation problem at hand in cases where the available

sensors are not the ones considered in the aforementioned filter problem. The process of deducing

the structures presented in this table is similar to the one used above and expressed in relation

(3.3.1). Moreover, all structures obey to the fundamental relation expressed by relation (3.3.2).
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Chapter 4

Synthesis of Periodic Estimators

4.1 Introduction

The study of dynamic systems where more then one sampling rate is used has received special

attention in recent decades, due to the theoretical results that have become available for this

particular class of time-varying systems [20]:

• In complex systems, where several variables must be sampled, it is difficult to sample all

variables at the same rate. Some of the variables may need long processing intervals (e.g.,

chemical based samplers); or delays in the propagation of physical phenomena of interest

restrict the sampling rate (e.g., acoustic based sensors).

• Performance, in general, is improved with faster sampling strategies but the computational

burden also increases. For loops with higher bandwidths, better trade-offs are obtained

with faster sampling rates and performance can be increased using multi-rate systems.

• The superiority of periodic linear time-varying discrete-time controllers was shown in [42].

The stabilization of any linear time-invariant plant with improvements on the gain and

phase margins, and the stabilization of any finite collection of discrete time-invariant plants

resorting to stable periodic time-varying controllers are examples of such situations.

In this chapter the synthesis of periodic estimators for periodic and multi-rate systems will

be described in detail. To that purpose, the definition of multi-rate systems as periodic systems

will be presented in section 4.2. A description of linear systems as operators will be introduced

57
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in section 4.3, with an emphasis on the properties of linear, periodically time-varying systems.

A technique that establishes the equivalence of linear, periodic systems with a sub class of linear

time-invariant systems will be presented in section 4.4 along with a relation on the properties

of both classes of systems. The Kalman filter for the periodic systems at hand will be briefly

introduced in section 4.5. Recent work on the existence and uniqueness of solutions of the

Lyapunov and Kalman periodic equations [10, 73] associated with the discrete-time estimators

will also be presented in this section. An invariant version for the off-line Kalman filter design

will be introduced in section 4.6.

New theoretical results on the H2 and H∞ norms of periodic systems will be presented in

section 4.7. A synthesis solution to the estimators with the structure proposed in chapter 2

will be presented in section 4.8. The methodology proposed, resorting to convex optimization

procedures, is based on the minimization of the H2 or H∞ norms from auxiliary inputs to aux-

iliary outputs, constrained by the norms of other input/output signals of a generalized system.

This powerful methodology paves the way for the use of such framework in periodic control,

in multi-rate filter design, etc. Finally, these new synthesis methodologies will be applied to a

classic example in section 4.9 and some conclusions will be presented in section 4.10.

4.2 Periodic systems representation

i1

op

um

u1

-

-

P

-

-

im

o1

y1

yp

Figure 4.2.1: Multi-rate system with generic sample periods for the inputs and outputs.

Let P be a multi-rate discrete-time system with m inputs and p outputs, as depicted in

figure 4.2.1. This system can result from the use of a linear time-invariant, finite-dimensional,
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continuous-time system where appropriate sample and hold devices are used in the inputs and

outputs, respectively. However, in this thesis the discrete-time periodic systems under study

do not have to be the result of the discretization of continuous-time systems. The approach

presented next follows the same circle of ideas as in [63] and constitutes a generalization of the

(P -M)-shift-invariant operator introduced in [51].

Consider the system P with the inputs and outputs sampled at positive time intervals (in

appropriate units) denoted ij , j = 1, · · · ,m and oj , j = 1, · · · , p, respectively. Let h be the

base time period h = lcd{{ij , j = 1, · · · ,m}, {oj , j = 1, · · · , p}} and let Mh = lcm{{ij , j =

1, · · · ,m}, {oj , j = 1, · · · , p}} be the system time period. Let Ij = Mh
ij
, j = 1, · · · ,m and

Oj =
Mh
oj
, j = 1, · · · , p be the sampling schedule for the inputs and for the outputs, respectively.

Throughout this thesis M will denote the system period.

Using the isomorphism previously introduced relating the base sampling time-instants tk =

hk, k = 0, · · · ,∞ and the set of integer numbers Z+, and assuming P as a linear, finite dimension

system, its dynamics can be represented by a set of difference equations with realization

ΣP :=







x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k),
(4.2.1)

where the p outputs y ∈ Rp can be expressed as a linear dependence on the state x ∈ Rn and

on the m inputs u ∈ Rm. Note that this realization is not unique because there is freedom in

assigning the time-instant k = 0 for the beginning of the period.

In order to express the aforementioned relations, the system matrices must satisfy other

constraints, namely 1:

• Bij(k) = 0 if k MOD ij 6= 0, i.e., the jth input only influences the system each Ij sample;

• Cij(k) = 0 if k MOD oi 6= 0, i.e., the ith output is updated only at each Oi sample;

• Dij(k) 6= 0 if k MOD ij = 0, and k MOD oi = 0.

The use of the function MOD in the system matrix indexes together with the definition of

M makes it clear that the multi-rate system P just defined is a periodic system.

1The subscripts in the system matrices stand for the ith line and jth column. (.)MOD(.) stands to represent

the integer division of the first argument by the second argument.
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4.3 Operator representation of linear systems

A number of concepts in mathematics and in feedback systems theory can be described

using operator theory [65]. Causality, time-invariance, periodicity, and stability are some of the

concepts, to name a few, that can be described using this framework for linear time-invariant

systems and that can be naturally extended to the class of periodic time-varying systems.

Consider a discrete-time, finite-dimensional, linear, time-invariant system F described by a

set of difference equations with state-space realization

ΣF :=







x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k),
(4.3.1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input vector, and y(k) ∈ Rp is the output

vector, with null initial state x(0) = 0. This system can also be regarded as a linear operator from

the spaces F : Rm → Rp. The set of all bounded linear operators will be denoted as L(Rm,Rp)

and constitutes the focus of the results presented below. In the case where the domain and

the range spaces are the same, this set will be denoted as L(Rm). To correctly interpret these

statements the following basic definitions for linear spaces are required. Consider U as a linear

space over the field F = R.

Definition 4.3.1 A norm is a function ‖.‖ : U → R+
0 which satisfies for every x, y ∈ U and for

every α ∈ F:

1. ‖αx‖ = |α|‖x‖;

2. ‖x‖ = 0 if and if x is the null vector;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖;

Definition 4.3.2 Let U and Y be normed linear spaces. The operator M : U → Y is:

Linear if given α, β ∈ F and any x, y ∈ U ,

M(αx+ βy) = αM(x) + βM(y);

Bounded if the norm of M ‖M‖ is finite, i.e.,

‖M‖ = sup
x∈U

‖Mx‖

‖x‖
<∞;
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Normed if there exists a functional < . , . >: U × U → R satisfying for any x, y, z ∈ U , and

α, β ∈ F:

1. < αx+ βy, z >= α < x, z > +β < y, z >;

2. < x, y >= < y, x >;

3. < x, x >≥ 0, < x, x >= 0 if and only if x is the null vector.

A normed space is said to be complete if any Cauchy sequence u(k) : k = 1, · · · ,∞ converges,

or more precisely if it satisfies

limn→∞,m→∞‖u(n)− u(m)‖ = 0.

A complete inner product space is called a Hilbert space and a complete normed space is called

a Banach space.

The matrix operator associated with the system with realization described in (4.3.1) can be

obtained stacking the inputs and outputs as vectors as presented in the following relation:































y(0)

y(1)

y(2)
...

y(k)
...































=































D 0 0 · · · 0 · · ·

CB D 0 · · · 0 · · ·

CAB CB D · · · 0 · · ·
...

...
...

. . .
...

...

CAk−1B CAk−2B CAk−3B · · · D · · ·
...

...
...

...
...

. . .





























































u(0)

u(1)

u(2)
...

u(k)
...































(4.3.2)

or in compact form as y = Fu. This infinite-dimensional matrix is also known as the impulse

response matrix due to the fact that column k is the output to an impulse applied to the system

at the time-instant k. The Toeplitz structure of the matrix is evident and causality is closely

related to the low-triangular structure of matrix D as will be seen later in this section.

Consider now some auxiliary bounded and linear operators. The forward shift operator

Λ : l2(Z+,Rm)→ l2(Z+,Rp) can be defined as

Λ(k) =







u(k − 1) k > 1

0 k ≤ 1,
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where u(k) is the input signal and the associated matrix operator is given by

Λ =

















0 0 0 · · ·

Ip×m 0 0 · · ·

0 Ip×m 0 · · ·
...

...
...

. . .

















.

The backward shift operator Λ∗ : l2(Z+,Rp) → l2(Z+,Rm) defined as Λ∗(k) = u(k + 1) can be

associated with the matrix operator

Λ∗ =

















0 Im×p 0 · · ·

0 0 Im×p · · ·

0 0 0 · · ·
...

...
...

. . .

















,

where the non-causal nature of this system is evident. Moreover, it can be easily proven that

the H∞ and H2 norms of Λ are unitary and that the composition of Λ∗ with Λ is the identity

operator, Λ∗Λ = I. The composition of such operators is therefore an isometry.

Another interesting operator, crucial in the definition of causality, is the truncation operator

ΠK : l2(Z+,Rm)→ l2(Z+,Rp), defined as

ΠK(k) =







u(k) k ≤ K

0 k > K,

which corresponds to the matrix operator

ΠK =


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
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...
...

...

0 0 · · · Ip×m 0 · · ·
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...

...
...

...
...

. . .


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
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



















K blocks of size p×m.

These functions allow elegant definitions of some key concepts on systems theory presented in

the next propositions.
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Proposition 4.3.3 A discrete-time system is time-invariant if its corresponding matrix opera-

tor F commutes with the shift operator or, stated mathematically, if it verifies

FΛ = ΛF.

This proposition can be interpreted as time-invariance leads to the same output signals:

when the shift operator is applied to the output of the operator F , and when the operator F is

applied to a shifted version of the input signal.

Proposition 4.3.4 A discrete-time system is causal if its corresponding matrix operator verifies

the relation

ΠKFΠK = ΠKF.

Proposition 4.3.5 A discrete-time system is periodic time-variant with period M if its corre-

sponding matrix operator F commutes with the M th power shift operator, expressed as

FΛM = ΛMF.

Two more operators relating signals expressed at different time scales will be introduced

next. Given an n dimensional signal u, represented as an infinite sequence, the de-multiplexing

operator WM : l2(Z+,Rn)→ l2(Z+,RnM ) can be defined as

u =





































u(0)

u(1)
...

u(M − 1)

u(M)

u(M + 1)
...





































→ ū = WMu =

















u(0) u(1) · · · u(M − 1)

u(M) u(M + 1) · · · u(2M − 1)

u(2M) u(2M + 1) · · · u(3M − 1)
...

...
...

...

















, (4.3.3)

resulting inM sub-sequences extracted from the original one. From the definitions of the forward

shift operator Λ and the de-multiplexing operator WM , the relation

ΛWM = WMΛM (4.3.4)
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is obvious and can be interpreted as the equivalence between one forward shift in the de-

multiplexed signal and M forward shifts in the original signal space.

The inverse of the de-multiplexing operator (4.3.3) is the multiplexing operator defined as

W−1
M : l2(Z+,RnM )→ l2(Z+,Rn)

ū =

















u(0) u(1) · · · u(M − 1)

u(M) u(M + 1) · · · u(2M − 1)

u(2M) u(2M + 1) · · · u(3M − 1)
...

...
...

...


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
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→ u = W−1
M ū =
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, (4.3.5)

verifying the relation ΛMW−1
M = W−1

M Λ, which states the same equivalence as expressed by

(4.3.4). Moreover, from the definitions of WM and W−1
M it is immediate that they are isometric

as they verify WMW
−1
M = I = W−1

M WM .

The stability of a system is a property of utmost importance. Several classic definitions

of stability exist in the systems theory literature. Next, an input/output definition will be

presented, based on the ratio of energy in the output of a system G, given the energy fed into

its input.

Definition 4.3.6 The operator G associated with the linear system G : l2(Z+,Rm)→ l2(Z+,Rp)

is input-output stable if and only if

‖G‖ = sup
u∈l2

ΠKu6=0

‖ΠKGu‖2
‖ΠKu‖2

<∞, ∀K ∈ Z.

Note that in this definition no constraints on the system time-invariance are imposed, which

constitutes an interesting feature to be explored. Moreover, this definition presents the advantage

of implying causality for the system under study, as expressed in the next theorem. For periodic

time-varying systems the concept of stability will be further worked out using the H2 and the

H∞ induced norms, in section 4.7.

Theorem 4.3.7 If the operator G associated with the linear system G as defined in 4.3.6 is

stable, then the system under study is causal.
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Proof: Assume that the system is not causal. In this case, there exits an input w such that

ΠKGw 6= ΠKGΠKw.

Applying the auxiliary input u = w −ΠKw then

ΠKu = ΠK(w −ΠKw) = ΠKw −ΠKΠKw = 0.

However, if the linear system under study is not causal, then

ΠKGu = ΠKG(w −ΠKw) = ΠKGw −ΠKGΠKw 6= 0.

Note that the previous two relations were used in the definition of the stability introduced above

and in this case (null denominator with non-null numerator) there exists an infinite amplification

for this input and therefore the system is not stable, which is a contradiction and concludes the

proof of the result at hand.

4.4 Lifting technique

In this section an equivalence between discrete-time periodic systems and a subset of the

linear, time-invariant, discrete-time systems introduced by Friedland [26] will be presented.

This technique is commonly denominated as lifting. Davis [24] used the same technique for

stability analysis of the feedback connection of a linear, time-invariant plant and a periodic

memoryless controller. In [42, 63] Khargonekar showed the superiority of linear, periodic time-

varying discrete-time controllers, resorting also to this technique. These were some of the steps

that paved the way for the use of periodic dynamic systems in filtering, estimation, and control

of multi-rate discrete-time systems and in multi-rate sampled-data systems.

Consider the discrete-time linear system P, with m inputs, p outputs, and period M , ex-

pressed as in (4.2.1). This system has a realization, repeated in the following for convenience,

ΣP :=







x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)
,

where the periodic characteristic of the system implies that the matrices in the state space

representation verify A(k+M) = A(k), B(k+M) = B(k), C(k+M) = C(k), and D(k+M) =

D(k), independent of the realization used. The state of the system (4.2.1) at instant k can be
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evaluated in terms of the initial state x(k0) and the input u, along the interval j = k0, · · · , k− 1

according to

x(k) = Φ(k,k0)x(k0) +
k−1
∑

j=k0

Φ(k,j+1)B(j)u(j),

where the auxiliary function Φ(i,j), defined as

Φ(i,j) =



















A(i− 1)A(i− 2) · · ·A(j + 1)A(j) i > j

In×n i = j

0 i < j

(4.4.1)

was used. Note the similarity between this auxiliary function and the classical transition matrix,

for i ≥ j. Given the evolution of the state of the dynamic system (4.2.1) expressed above, the

output signal can be written as

y(k) = C(k)Φ(k,k0)x(k0) + C(k)
k−1
∑

j=k0

Φ(k,j+1)B(j)u(j) +D(k)u(k).

Applying the de-multiplexing operator WM to the inputs and outputs of system P described

by (4.2.1), a new operator P̄ : l2(Z+,RmM ) → l2(Z+,RpM ) named the lift of system P can be

defined. The relations among the signals and operators involved are resumed in the commutative

diagram presented in figure 4.4.1. Based on the operators (4.3.3), and (4.3.5), previously intro-

P

P̃

WM WM

l2(Z+,Rm) l2(Z+,Rp)

l2(Z+,RmM ) l2(Z+,RpM )

66

-

-

Figure 4.4.1: The operator P associated with the system P and the lifted operator P̄ .

duced and taking into account the maps expressed in the above diagram, the lift operator can

be written as ΩM : P →WMPW
−1
M , resulting in this case that P̄ = WMPW

−1
M . Using the defi-

nition of time-invariance introduced in proposition 4.3.3, P̄ can be proven to be time-invariant.

The proof follows along the set of identities

P̄Λ = WMPW
−1
M Λ = WMPΛMW−1

M = WMΛMPW−1
M = ΛP̄ ,
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where the relations (4.3.4) and (4.3.5) were used.

The inverse lift operator Ω−1 can be defined as Ω−1 : P̄ → W−1
M P̄WM . According to the

definition 4.3.5, it can be proven to be M -periodic, i.e.,

PΛM = W−1
M P̄WMΛM = W−1

M P̄ΛWM = W−1
M ΛP̄WM = ΛMP.

A realization for the lifted version of the periodic system (4.2.1) can be obtained by defining

a stacked version for the input and output vectors along the Kth period

u(K) =

















u(kM)

u(kM + 1)
...

u(kM +M − 1)


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
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





, y(K) =

















y(kM)

y(kM + 1)
...

y(kM +M − 1)

















, (4.4.2)

respectively, where K ranges from kM to kM +M − 1. The system state at instant K + 1 =

kM+M , based on the state at instant K and on the inputs specified in (4.4.2), has the realization

ΣP̄ :=







x(K + 1) = Āx(K) + B̄u(K)

y(K) = C̄x(K) + D̄u(K).
(4.4.3)

To obtain the matrices for the realization (4.4.3) the dynamics of the periodic system (4.2.1)

must be computed along the M instants of a period and written in matrix form, resulting in

Ā = Φ(M,0) , B̄ = [Φ(M,1)B(0) · · · Φ(M,M−1)B(M − 2) B(M − 1)],

C̄ =























C(0)

C(1)Φ(1,0)

...

C(M − 2)Φ(M−2,0)

C(M − 1)Φ(M−1,0)























, D̄ =























D(0) · · · 0 0

C(1)B(0) · · · 0 0
...

. . .
...

...

C(M − 2)Φ(M−2,1)B(0) · · · D(M − 2) 0

C(M − 1)Φ(M−1,1)B(0) · · · C(M − 1)B(M − 2) D(M − 1)























.

(4.4.4)

The operator P̄ associated with the lifted system P̄, assuming null initial conditions, is given

by

P̄ =

























D(0) · · · 0 · · · · · ·
...

. . .
... · · · · · ·

C(M − 1)Φ(M−1,1)B(0) · · · D(M − 1) 0 · · ·

C(M)Φ(M,1)B(0) · · · C(M)B(M − 1) D(M) · · ·
...

...
...

...
. . .

























,
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where the upper-left block with dimensions pM ×mM coincides with the D̄ matrix. Using the

time-invariance nature of this system, the associated system operator can be proven to have the

Toeplitz structure

P̄ =



















M0 0 0 · · ·

M1 M0 0
. . .

M2 M1 M0
. . .

...
. . .

. . .
. . .



















,

where each block Mi has the dimensions pM ×mM and M0 = D̄.

Some properties of the lift operator ΩM are outlined next. For an in-depth characterization

of the lift operator as well as proofs of the statements presented, see [35], and the references

therein.

• The operator ΩM is time-invariant;

• The operators ΩM and Ω−1M preserve the matrix representation of the linear system (in-

variant or time-varying);

• The operators ΩM and Ω−1M are isomorphisms, i.e., they are bijective and linear.

• The operators ΩM and Ω−1M are isometric, and they preserve the induced norms of the

original systems.

• The operators ΩM and Ω−1M preserve the input/output stability characteristics of the causal

linear periodic systems.

• The operator ΩM preserves the periodic characteristic of the composition of periodic op-

erators, i.e.,

ΩM (GoF ) = ΩM (G)oΩM (F ),

where o is the composition operator and the operators F and G are of appropriate dimen-

sions. Moreover, it also preserves the linearity, causality, and time-invariance characteris-

tics of the composition operation.
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4.5 Periodic Riccati based estimators

In this section recent solutions for minimization of the H2 norm of the estimation error

for linear discrete-time periodic systems resorting to the solution of Riccati equations using an

indirect technique based on the lift operator will be presented. The reasons for presenting these

results are twofold: to introduce the technical conditions for the existence and uniqueness of

solutions of the periodic estimation problem at hand; and to compare these solutions with a

new synthesis methodology of estimators for periodic systems, based on the H2 and H∞ norms

minimization, resorting to convex optimization problems expressed in the form of LMIs. This

new methodology will be presented in section 4.8. The technical conditions presented in this

section will also play an important role in establishing the feasibility conditions for such new

design methods.

4.5.1 Periodic estimators

In control and estimation problems, where actuation variables or sensor measurements are

available at different sampling rates, a multi-rate system is naturally obtained as described in

section 4.2. The estimators for periodic systems, conducing to periodic Kalman filters, are

presented in the following.

Consider a discrete-time, finite-dimensional, linear, periodically time-varying system Ps :

u→ y. This system is described by a set of difference equations with state-space realization

ΣPs :=







x(k + 1) = A(k)x(k) +B(k)u(k) +G(k)w(k)

z(k) = C(k)x(k) + v(k)
(4.5.1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input vector, and y(k) ∈ Rp is the output

vector. Note that the state and the measurements are corrupted by white, gaussian noise, with

zero mean and with covariance matrices

E[w(k)w(j)T ] = Q(k)δ(k − j)

E[v(k)v(j)T ] = R(k)δ(k − j)

where δ(k − j) is the Kronecker δ and Q(k) ≥ 0 and R(k) > 0. The periodic characteristic of

the system implies that the matrices in the state-space representation verify A(k+M) = A(k),

B(k+M) = B(k), C(k+M) = C(k), G(k+M) = G(k), Q(k+M) = Q(k) and R(k+M) = R(k).
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Under the technical conditions that will be detailed next, the estimator that presents the

minimum expected error variance is a periodic Kalman filter, as convincingly argued in [10, 74].

The structure of such filter is given by

x̂(k + 1) = A(k)x̂(k) +B(k)u(k) +K(k)[z(k)− C(k)x̂(k)], (4.5.2)

where x̂(k) ∈ X is the state estimate and the Kalman gain K(k) ∈ Rn×m is defined as

K(k) = P (k)CT (k)
(

C(k)P (k)CT (k) +R(k)
)−1

, (4.5.3)

where P (k) = E[(x̂(k) − x(k))(x̂(k) − x(k))T ] is the covariance of the error which verifies, at

each step, the Riccati equation with periodic parameters

P (k + 1) = A(k)P (k)AT (k) +G(k)Q(k)GT (k)

−A(k)P (k)CT (k)
(

C(k)P (k)CT (k) +R(k)
)−1

C(k)P (k)AT (k). (4.5.4)

The solution of this periodic Riccati equation is in general, not periodic. However, as in the

invariant case, the periodic stationary positive semi-definite solution for an infinite prediction

interval is sought.

4.5.2 Existence of a solution for the periodic system

The periodic Riccati equation associated with the prediction problem at hand has been

presented in [10], for non-reversible and non-stabilizable systems. The existence, uniqueness,

and stability properties of Symmetric Periodic Positive Semi-definite (SPPS) solutions for the

periodic Riccati equation (4.5.4) have been studied in [73]. The notation X(.) will be used

to denote any of the matrices X(k) involved in the periodic description of the system. The

following definitions are central to the results that follows:

Definition 4.5.1 Φk = Φ(k+M,k) is the monodromy of the periodic system (4.5.1), at instant

k.

Note that the eigenvalues of Φk are independent of k and are named the characteristic multipliers

of A(.). In general a periodic system is asymptotically stable if and only if the characteristic

multipliers are all inside the unit circle.
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Definition 4.5.2 An eigenvalue λ of Φk is called (A(.),B(.)) reachable at time-instant k if and

only if it is a reachable mode of (Φk,Wrea(k +M,k)), where

Wrea(k +M,k) =

k+M−1
∑

i=k

Φ(k +M, i)B(i− 1)BT (i− 1)ΦT (k +M, i)

is the reachability grammian matrix of (A(.),B(.)).

Definition 4.5.3 The pair (A(.),C(.)) is detectable at time k if and only if the pair (Wobs(k +

M,k),Φk) is detectable, where

Wobs(k +M,k) =
k+M−1
∑

i=k

Φ(i, k)TCT (i)C(i)Φ(i, k)

is the observability grammian matrix of (A(.),C(.)).

The real symmetric periodic non-negative definite solutions of the periodic Riccati equation

that, after computing the Kalman gain, give rise to a system with characteristic multipliers

inside, or on, the unit circle, are called strong solutions. Existence, uniqueness, and stability

properties of strong solutions are vital for periodic estimator synthesis and are presented next.

Lemma 4.5.4 [73] Let P (.) be a periodic strong solution of the periodic Riccati difference equa-

tion (PRDE). Then:

a) if the eigenvalues of Φk on the unit circle are (A(.),B(.)) reachable, then P (.) is stabilizing;

b) if the eigenvalues of Φ(k) inside, or on, the unit circle are (A(.),B(.)) reachable for all k,

then P (.) is stabilizing and positive definite for all k.

Lemma 4.5.5 [73] If the eigenvalues of Φ(k+M,k) outside the unit circle are (A(.),B(.)) reach-

able, then every symmetric periodic non-negative definite solution of the PRDE is a strong so-

lution.

Theorem 4.5.6 [73] The periodic stabilizing solution of the PRDE exists and is unique if and

only if (A(.),C(.)) is detectable and the eigenvalues of Φk on the unit circle are (A(.),B(.))

reachable.

Theorem 4.5.7 [73] The periodic stabilizing solution of the PRDE exists and is the only sym-

metric periodic non-negative definite solution of the PRDE if and only if (A(.),C(.)) is detectable

and the eigenvalues of Φk outside the unit circle are (A(.),B(.)) reachable.
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Theorem 4.5.8 [73] The periodic stabilizing solution of the PRDE exists and is positive definite

for all k if and only if (C(.),A(.)) is detectable and the eigenvalues of Φk inside, or on, the unit

circle are (A(.),B(.)) reachable for all k.

Stability conditions for periodic systems were set by Bittanti in the Periodic Lyapunov

Lemma [11] presented next, which is closely linked to the framework that will be introduced

later in this chapter.

Lemma 4.5.9 [11] The periodic system (4.5.1) is stable if and only if for any periodic C(.)

such that the pair (A(.),C(.)) is detectable, there exists a periodic, positive semi-definite solution

Q(.) for the Lyapunov equation

Q(k + 1) = AT (k)Q(k)A(k) + CT (k)C(k). (4.5.5)

Given the existence and uniqueness of solutions and the technical conditions for the stability

of the periodic systems at hand, the final question is how to obtain the periodic Kalman gain

matrices to use in the filter? Due to the periodic nature of the Riccati equation involved, the

stationary solution of the discrete-time algebraic Riccati equation setting P (k+1) = P (k) does

not result in the required periodic solution. A solution will be presented next.

4.6 Periodic and invariant estimators equivalence

Based on the lifting technique, the periodic estimator introduced in section 4.5.1 can be

synthesized using the equivalent invariant system [22]. The lifted version of the periodic sys-

tem (4.5.1) has the realization

ΣP̄s :=







x(K + 1) = Āx(K) + B̄u(K) + Ḡw(K)

z(K) = C̄x(K) + D̄uu(K) + D̄ww(K) + v(K),

where w(K) and v(K) are the stacked versions of state and observation noises. The associated

prediction estimator is

x̂(K + 1) = Āx̂(K) + B̄u(K) + K̄[z(K)− C̄x̂(K)− D̄uu(K)].
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The estimation error dynamics x̃(K) = x̂(K)− x(K), using the previous relations, is

x̃(K + 1) = (Ā− K̄C̄)x̃(K)− Ḡw(K) + K̄D̄ww(K) + K̄v(K)

and the estimation error covariance P (K) = E[x̃(K)x̃T (K)] verifies the relation

P (K + 1) = ĀP (K)ĀT + ḠQ̄ḠT + K̄(R̄+ C̄P (K)C̄T + D̄wQ̄D̄
T
w)K̄

T

−K̄(C̄P (K)ĀT + D̄wQ̄Ḡ
T )− (ĀP (K)C̄T + ḠQ̄D̄T

w)K̄
T , (4.6.1)

where Q̄ and R̄ are the covariance of the state and observation noises w(K) and v(K), respec-

tively. Only the last three terms have a quadratic matrix polynomial in the unknown K̄. The

matrix (R̄+ C̄P (k)C̄T + D̄wQ̄D̄
T
w) is symmetric and non-negative definite and therefore can be

written as the product of SST . Using the two relations, the Riccati equation can be written as

P (K + 1) = ĀP (K)ĀT + ḠQ̄ḠT

−(ĀP (K)C̄T + ḠQ̄D̄T
w)(R̄+ C̄P (K)C̄T + D̄wQ̄D̄

T
w)
−1(C̄P (K)ĀT + D̄wQ̄Ḡ

T )

{K̄S − (ĀP (K)C̄T + ḠQ̄D̄T
w)S

−T }{K̄S − (ĀP (K)C̄T + ḠQ̄D̄T
w)S

−T }T

where only the last term depends on K̄. The minimum covariance is obtained when

K̄S = ĀP (K)C̄T + ḠQ̄D̄T
w)S

−T

or using the definition of SST

K̄ = (ĀP (K)C̄T + ḠQ̄D̄T
w)(R̄+ C̄P (K)C̄T + D̄wQ̄D̄

T
w)
−1.

The resulting Riccati equation is

P (K + 1) = ĀP (K)ĀT + ḠQ̄ḠT (4.6.2)

−(ĀP (K)C̄T + ḠQ̄D̄T
w)(R̄+ C̄P (K)C̄T + D̄wQ̄D̄

T
w)
−1(C̄P (K)ĀT + D̄wQ̄Ḡ

T ),

which is a non-standard Riccati equation. Introducing the new variables

R̃ = R̄+ D̄wQ̄D̄
T
w,

Ã = Ā− ḠQ̄D̄T
wR̃

−1C̄, and

ḠḠT = ḠQ̄ḠT − ḠQ̄D̄T
wR̃

−1D̄wQ̄Ḡ
T

(4.6.3)
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the following standard Riccati equation is obtained:

P (K + 1) = ÃP (K)ÃT + G̃G̃T − ÃP (K)C̄T (R̃+ C̄P (K)C̄T )−1C̄P (K)ÃT . (4.6.4)

The established equivalence allows the design of the periodic stationary estimator using an

off-line procedure, composed of the following steps:

Algorithm 1:

Step 1: Obtain the lifted system

Given the system described by (4.5.1), the system is lifted using the method described

by (4.4.4).

Step 2: Estimation error covariance computation

Compute the auxiliary variables R̄, Ā, and ḠḠT and solve the Riccati equation (4.6.4).

The stationary estimate error covariance matrix P (K) is equal to that obtained using (4.5.4)

at the instant kM . Therefore, that equation can be iterated along the period to obtain Pi

and the Kalman gain Ki, using (4.5.4) and (4.5.3), respectively.

Step 3: Initialization

Initialize the filter state x̂(0) = x0 and the error covariance estimate P (0).

Step 4: On-line estimator

Iterate the estimator given by (4.5.2), where the subscript k denotes the matrices at instant

(k MODM). Set k = k + 1 and repeat Step 4.

In this off-line method no system of non-linear equations must be solved. Numerical error

propagation is avoided and, with minor computations, well known Riccati equation solvers can

be used.

4.7 Norms of periodic systems

This section will introduce two new methodologies to evaluate the H∞ and the H2 norms of

periodic systems using LMIs. The approach used borrows from the results presented in chapter 2
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and constitutes theoretical results that can be used in the synthesis of periodic feedback systems

in the same manner as described in the aforementioned chapter. In this thesis, as the main focus

is on estimation, the periodic estimators with the Luenberger’s observer structure that minimize

the H∞ and the H2 norms of an auxiliary signal will be presented.

4.7.1 H∞ norm

Consider a discrete-time, finite-dimensional, linear, periodically time-varying system PM ,

with system time period M described by

ΣPM :=







x(k + 1) = A(k)x(k) +B(k)w(k)

y(k) = C(k)x(k) +D(k)w(k),
(4.7.1)

where x(k) ∈ Rn is the state vector, w(k) ∈ Rm is the input vector with m components, and

y(k) ∈ Rp. Let the initial state x(k0) be 0.

The square H∞ norm of such systems was presented in [61] as a particular case for general

time-varying systems. The approach presented was based on linear matrix inequalities of infinite

dimension, which generally precludes the use of commercial software packages available. In the

case of periodic systems, finite-dimensional inequalities were recovered. However, the square

H∞ norm is a different concept from the classical definition which corresponds to the approach

presented in chapter 2.

Due to the linearity and causality characteristics of (4.7.1), the definition presented for the

H∞ norm

‖P‖∞ = sup
w∈l2

‖y‖2
‖w‖2

,

is also valid (see [25] for details). The isometric properties of the WM and W−1
M operators imply

that the H∞ norms of the original and lifted system P̄M = WMPMW
−1
M are the same. Moreover,

an immediate consequence of this fact is that the lift operator preserves any induced norm (see

[35]).

The H∞ norm computation for the system described by (4.7.1), from the input w(k) to the

output y(k), both considered to be signals in the set l2(Z+), can be performed based on the

system dissipativity property as stated in the next theorem.
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Theorem 4.7.1 2 Let the system PM : U → Y in (4.7.1) be (A(.),C(.)) detectable with all the

eigenvalues of Φk on the unit circle being (A(.),B(.)) reachable and let γ > 0 be a real number.

The following statements are equivalent:

1. ‖PM‖∞ < γ;

2. The gain of the system verifies

sup
w∈l2

‖y‖2
‖w‖2

< γ,

with null initial conditions, x(0) = 0;

3. The system is strictly dissipative with respect to the supply function

s(w,y) = γ2‖w‖22 − ‖y‖
2
2;

4. There exist symmetric matrices P (i) = P T (i) ∈ Rn×n, i = 0, · · · ,M − 1, such that the set

of LMIs
















−P (i) 0 AT (i)P (i+ 1) CT (i)

0 −γ2Im BT (i)P (i+ 1) DT (i)

P (i+ 1)A(i) P (i+ 1)B(i) −P (i+ 1) 0

C(i) D(i) 0 −Ip

















< 0 (4.7.2)

for i = 0, · · · ,M − 1.

Proof: Under the technical conditions presented, the existence and the uniqueness of a periodic

stabilizing solution is guaranteed, see section 4.5.1. In that case, the equivalence among the first

three items follows the same lines of argument used for the continuous and the discrete time-

invariant cases. The fourth item can be obtained using the dissipativity concept introduced

earlier in 2.8.2, with the supply function

s(w,y) = γ2‖w‖22 − ‖y‖
2
2,

leading to the set of LMIs for i = 0, · · · ,M − 1




AT (i)P (i+ 1)A(i)− P (i) AT (i)P (i+ 1)B(i)

BT (i)P (i+ 1)A(i) BT (i)P (i+ 1)B(i)





2This theorem was derived independently. Later it came to the knowledge of the author that in [12] the same

result was presented.
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+





CT (i)C(i) CT (i)D(i)

DT (i)C(i) DT (i)D(i)− γ2Im



 < 0.

The ith LMI in the aforementioned set can be written as




−P (i) 0

0 −γ2Im



+





AT (i)

BT (i)



P (i+ 1) [A(i)B(i)] +





CT (i)

DT (i)



 [C(i)D(i)] < 0,

resulting in
















−P (i) 0 AT (i) CT (i)

0 −γ2Im BT (i) DT (i)

A(i) B(i) −P−1(i+ 1) 0

C(i) D(i) 0 −Ip

















< 0.

Pre and post-multiplying each one of these LMIs in P (i), and in P−1(i+1), i = 0, · · · ,M −1

by
















In 0 0 0

0 Im 0 0

0 0 P (i+ 1) 0

0 0 0 Ip

















,

and taking into consideration that the set of matrices P (i) verify P (i +M) = P (i), the set of

LMIs (4.7.2) is obtained.

4.7.2 H2 norm

In the literature of periodic control a solution for the problem of computing the H2 norm of a

given system appeared in [78]. However, a two step solution is proposed. The first step consists

of finding a periodic matrix using the projection result presented in lemma 2.4.2, and a second

step is required to subsequently compute a periodic controller. The first set is solved by resorting

to a convex minimization. The second step, based on a feasibility problem, does not guarantees

optimality of the controller found. Moreover, the methodology proposed cannot be used with

other convex constraints on the controller under synthesis, thereby precluding its use in a more

generic framework required on a mixed or on a multi-objective optimization problem.

Next, a new method for the H2 norm computation of periodic systems will be introduced,

based on LMIs. As a motivation to the approach that follows, consider the basic relation with
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respect to the H2 norm of a periodic system and the lifted system that results from applying

the operator ΩM introduced previously in this chapter.

Lemma 4.7.2 The H2 norms of the periodic system PM and the lifted system P̄ = WMPW
−1
M ,

obtained using the lift operator ΩM , are related as

‖P̄M‖
2
2 = M‖PM‖

2
2.

See [35] for a proof based on the stochastic interpretation of the norm under discussion. In order

to preserve the deterministic interpretation presented in chapter 2, a generalization of the H2

norm definition should be used (see [78, 5] for similar definitions), considering as input a train

of Dirac signals, non-null at the time-instants of the first period, i.e., for k = 0, · · · ,M − 1. In

both cases the computed norm can be interpreted as the average energy on the outputs for the

inputs under consideration.

For the periodic system described by (4.7.1), consider the set of inputs wi(k) = δ(k− i), i =

0, · · · ,M − 1, where δ(.) is the discrete-time Dirac function. The outputs will be denoted next

as yi and can be written as

yi =































D(i)

C(i+ 1)Φ(i+1,i+1)B(i)

C(i+ 2)Φ(i+2,i+1)B(i)
...

C(k)Φ(k,i+1)B(i)
...































.

In light of the above, the generalized H2 norm can be obtained as

‖PM‖
2
2 =

1

M

M−1
∑

i=0

‖PMwi‖
2
2 =

1

M

M−1
∑

i=0

‖yi‖
2
2.

The H2 norm of each of the signals yi(k) can be written using the definition presented in sec-

tion 2.8 of chapter 2 and the observability Grammian considered in the definition of detectability

for periodic systems 4.5.3 as

‖yi‖
2
2 = tr(DT (i)D(i)) + tr(BT (i)Wobs(∞, i)B(i)). (4.7.3)
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Interesting enough, the observability Grammian considered above verifies the periodic Lyapunov

equation

AT (i)Wobs(∞, i+ 1)A(i) + CT (i)C(i) = Wobs(∞, i),

which has the form of the Lyapunov equation (4.5.5) introduced in lemma 4.5.9, running back-

wards on the time variable.

The H2 norm for the system in (4.7.1) from the input w to the output y can therefore be

computed using these results as stated in the next theorem.

Theorem 4.7.3 Let the system PM : u → y in (4.7.1) be (A(.),C(.)) detectable with all the

eigenvalues of Φk on the unit circle (A(.),B(.)) reachable and let γ > 0 be a real number. The

‖PM‖2 < γ if and only if there exist positive definite symmetric matrices P (i) ∈ Rn×n, i =

0, · · · ,M − 1, and auxiliary matrices X(i) ∈ Rp×p, i = 0, · · · ,M − 1 such that










P (i) A(i)P (i+ 1) CT (i)

P (i+ 1)AT (i) P (i+ 1) 0

C(i) 0 Ip











> 0, i = 0, ...,M − 1;





X(i+ 1) BT (i)P (i+ 1)

P (i+ 1)B(i) P (i+ 1)



 > 0, i = 0, ...,M − 1;

∑M−1
i=0 tr(X(i)) + tr(DT (i)D(i)) < Mγ2.

(4.7.4)

Proof: Based on the technical conditions introduced above, existence and uniqueness of a peri-

odic stabilizing solution, as expressed by theorem 4.5.6, is guaranteed. Applying the definition

of the H2 norm based on deterministic signals presented above and the relation with the observ-

ability Grammian expressed in relation (4.7.3), the solution for the set of Lyapunov equations

AT (i)W (i+1)A(i) +CT (i)C(i)−W (i) = 0, i = 0, · · · ,M − 1 is sought, where the notation was

simplified, using the abbreviate notation Wobs(∞, i) = W (i).

Given a set of auxiliary positive definite variables P (i) ∈ Rn×n, i = 0, · · · ,M − 1, verifying

P (i) > W (i), the set of Lyapunov equations verified by the observability grammians used in

the norm computation of the outputs yi introduced above can be expressed as a set of matrix

inequalities

AT (i)P (i+ 1)A(i) + CT (i)C(i)− P (i) < 0, i = 0, · · · ,M − 1.

Using Schur complements, the first set of LMIs presented above are obtained. The norm com-

putation can be written using a set of auxiliary variables X(i) ∈ Rp×p, i = 0, · · · ,M − 1 such
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Figure 4.8.1: General setup for periodic filtering synthesis.

that

X(i+ 1) > BT (i)P (i+ 1)B(i), i = 0, · · · ,M − 1,

and finally

M−1
∑

i=0

(tr(DT (i)D(i)) + tr(BT (i)W (i)B(i)) ≤
M−1
∑

i=0

(tr(DT (i)D(i)) + trX(i)) < Mγ2,

which can be written as the second set of LMIs introduced above and the relation with γ for a

periodic system, respectively.

The last two theorems are the key results for the synthesis of estimators that will be presented

in the next section. The results obtained, sharing the same structure with the ones obtained for

linear, discrete-time, invariant systems, allow for the development of common design method-

ologies for the synthesis and analysis of these two classes of systems.

The results obtained are also promising as a design framework for periodic feedback control,

periodic output feedback, and periodic filter synthesis. They will be the focus of future research.

4.8 Estimator synthesis for periodic systems

The general setup for estimation design for periodically time-varying, discrete-time systems

consists of the interconnections presented in figure 4.8.1, which exhibit the same structure as in

chapter 2. The nominal system GM is a linear, periodically time-varying discrete-time system
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with realization

ΣGM =



















x(k + 1) = A(k) x(k) + Bw(k) w(k)

z(k) = Cz(k) x(k) + Dzw(k) w(k)

y(k) = Cy(k) x(k) + Dyw(k) w(k)

, (4.8.1)

where x(k) ∈ Rn is the state vector, w(k) ∈ Rm is the vector of external inputs, z(k) ∈ Rp

is the vector of outputs from the system, y(k) ∈ Rq represents the measurement vector, and

the remaining matrices have compatible dimensions. Following the arguments presented for

the linear, time-invariant case (based on the arguments of [2]), the optimum estimator in the

sense of providing the state estimate with minimum variance for the system (4.8.1) consists of

a finite-dimensional linear, periodically time-varying estimator with realization

ΣEM =







x̂(k + 1) = A(k) x̂(k) + K(k)(y(k)− Cy(k)x̂(k))

ẑ(k) = Cz(k) x̂(k)
, (4.8.2)

where K ∈ Rn×q is a periodically varying observer gain to be determined, x̂(k), and ẑ(k) have

the same dimensions of x(k) and z(k), respectively.

Let the state estimation error be defined as before x̃ = x − x̂ and the estimation error as

e = z − ẑ. The corresponding dynamics using the relations in (4.8.1) and (4.8.2) have the

realization

ΣFM =







x̃(k + 1) = (A(k)−K(k)Cy(k)) x̃(k) + (Bw(k)−K(k)Dyw(k)) w(k)

e(k) = Cz(k) x̃(k) + Dzw(k) w(k).

(4.8.3)

Applying the results introduced in the previous section to this system, the H2 and H∞ norms

can be computed. Similar non-linear transformations on the unknown variables as those used

for the linear, time-invariant, discrete-time versions will also be required.

Theorem 4.8.1 Consider the periodically time-varying discrete-time system FM : w→ z com-

posed of a nominal system GM : w → [zTyT ]T and an estimator EM : y → ẑ interconnected as

described in figure 4.8.1, with realization (4.8.3). The H2 norm of such a system, from the input

w to the output estimation error e, is such that ‖FM‖2 < γ if and only if there exists a set of

symmetric, positive definite matrices P (i) ∈ Rn×n, i = 0, · · · ,M − 1, a set of auxiliary variables

X(i) ∈ Rm×m, i = 0, · · · ,M − 1 and a set of auxiliary variables Y (i) ∈ Rn×q, i = 0, · · · ,M − 1
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verifying Y (i) = P (i+ 1)K(i), such that











P (i) A(i)P (i+ 1)− CT
y (i)Y

T (i) CTz (i)

P (i+ 1)AT (i)− Y (i)Cy(i) P (i+ 1) 0

Cz(i) 0 Ip











> 0,

i = 0, ...,M − 1;




X(i+ 1) BT
w(i)P (i+ 1)−DT

yw(i)Y
T (i)

P (i+ 1)Bw(i)− Y (i)Dyw(i) P (i+ 1)



 > 0,

i = 0, ...,M − 1;
∑M−1

i=0 tr(X(i)) + tr(DT (i)D(i)) < Mγ2.

(4.8.4)

Proof: Applying the definition of the H2 norm presented in theorem 4.7.3 to the system de-

scribed by (4.8.3), the following set of inequalities for i = 0, · · · ,M − 1 is obtained











P (i) ? ?

P (i+ 1)AT (i)− P (i+ 1)K(i)Cy(i) P (i+ 1) ?

Cz(i) 0 Ip











> 0,

which is not an LMI as there are products of unknowns, namely P (i+ 1) and K(i). The same

products were also found in the definition of the H2 norm computation based on LMIs in the

time-invariant cases. Note that in this case, a periodic set of matrices are sought verifying

P (M + i) = P (i). Introducing the set of auxiliary variables Y (i) = P (i+1)K(i), i = 0, · · · ,M −

1 results in the first set of LMIs described above. This can be understood as the use of a

periodic non-linear transformation (a Lyapunov transformation) that allows the bilinear matrix

inequalities to become LMIs. The second set of LMIs introduced in (4.8.4) is obtained from the

second set of LMIs in (4.7.4). The last LMI is obvious.

The sufficiency of the result follows the same lines as sufficiency proof on proposition 2.8.4

and will be omitted here.

Theorem 4.8.2 Consider the discrete-time system FM : w→ z, composed of a nominal system

GM : w → [zTyT ]T and an estimator EM : y → ẑ interconnected as described in figure 4.8.1,

with realization (4.8.3). The H∞ norm from the input w to the output estimation error e

verifies ‖Fk‖∞ < γ if and only if there exists a symmetric, positive definite set of matrices

P (i) ∈ Rn×n, i = 0, · · · ,M − 1 and a set of auxiliary variables Y (i) ∈ Rn×q, i = 0, · · · ,M − 1
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verifying Y (i) = P (i+ 1)K(i), such that
















−P (i) ? ? ?

0 −γ2Im ? ?

P (i+ 1)A(i)− Y (i)Cy(i) P (i+ 1)Bw(i)− Y (i)Dyw(i) −P (i+ 1) ?

Cz(i) Dzw(i) 0 −Ip

















< 0,

i = 0, ...,M − 1.

(4.8.5)

The proof of this theorem is omitted as it follows exactly the same steps as those outlined in

the proof of the previous theorem, in this case based on theorem 4.7.1.

The results obtained for the synthesis ofH2 andH∞ norms allow the design of mixedH2/H∞

estimators and multi-objective estimators from auxiliary inputs to auxiliary outputs as a generic

design framework. In the next section, an example will be presented for a classical complemen-

tary filter structure, with both simulation results and results obtained with an autonomous

catamaran performing a mission at sea.

4.9 Multi-rate navigation system design for the Delfim catama-

ran

The design of a multi-rate navigation system for an Autonomous Surface Craft (ASC) will

be presented next as an example of application of the new synthesis methodologies introduced

in this chapter. Implementing and testing the aforementioned navigation system has been made

possible through the EC MAST-III ASIMOV project. Results obtained during sea trials will be

presented next, allowing for the assessment of the navigation system performance under realistic

work conditions.

The main thrust of the ASIMOV project (see [3] for details) is the development and inte-

gration of advanced technological systems to achieve coordinated operation of an Autonomous

Surface Craft and an Autonomous Underwater Vehicle (AUV) while ensuring a fast communi-

cation link between the two vehicles. The ASC / AUV ensemble is being used to study the

extent of shallow water hydrothermalism and to determine patterns of community diversity at

the vents in the D. João de Castro bank in the Azores (see figure 4.9.1).
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Figure 4.9.1: Location of D. João de Castro bank (on the left). Hydrothermal activity.

By properly maneuvering the ASC to always remain in the vicinity of a vertical line directed

along the AUV, a fast communication link can be established to transmit navigational data from

the ASC to the AUV, as well as acoustic / vision data from the AUV to the ASC. The ASC

can therefore be used as a communications relay to an end-user located on-board a support ship

or on-shore. An accurate and reliable navigation system running on-board the ASC, providing

estimates of the position and velocity is central for the success of the ASIMOV project.

The DELFIM ASC was designed and built by the Institute for Systems and Robotics of

the Instituto Superior Técnico to carry out automatic marine data acquisition and to serve

as an acoustic relay between the submerged craft and a support vessel. This will enable the

transmission of sonar and video images through a specially developed acoustic communication

channel that is optimized to transmit in the vertical. The DELFIM ASC can also be used as a

stand-alone unit, capable of maneuvering autonomously and performing precise path following

(see [1] for details) while carrying out automatic marine data acquisition (including bathymetric

data) and transmiting data to an operating center installed on-board a support vessel or on-

shore. This is in line with the current trend to develop systems that will lower the costs and

improve the efficiency of operation of oceanographic vessels at sea.

The DELFIM is a small Catamaran 3.5 m long and 2.0 m wide, with a mass of 320 kg, see

figure 4.9.2. The propulsion system consists of two propellers driven by electrical motors. The

vehicle is equipped with on-board resident systems for navigation, guidance, and control, as well

as for mission control. Navigation is done by integrating motion sensor data obtained from an
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Figure 4.9.2: DELFIM in operation at the D. João de Castro bank.

attitude reference unit, a Doppler log, and a DGPS (Differential Global Positioning System)

receiver. The guidance and control systems consist of simplified versions of the s− y controller

described in [71].

Transmissions between the vehicle, its support vessel, the fixed GPS station and the on-shore

control center installed on-shore are achieved by means of a radio link with a range of 80 km.

The vehicle has a wing shaped central structure that is lowered during operations at sea. At the

bottom of this structure a hydrodynamically shaped body is installed that carries all acoustic

transducers, including those used to communicate with the underwater craft.

In what follows, {I} is a fixed reference frame located at the origin of the pre-specified

mission area and {S} is a body-fixed coordinate that moves with the ASC. The vehicle motion

is subject to the influence of a constant unknown current Iv
W

= [Iu
W
Iv

W
0]T expressed in {I},

which is equivalent to assuming that there is a coordinate frame {W} attached hypothetically

to a point in the water. The following notation is required:
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IpS := [ Ixs
Iys

Izs ]T - position of the origin of {S} measured in {I};

IvS := [ Ius
Ivs

Iws ]T - relative velocity of the origin of {S} with respect

to the fixed frame {I};
WvS := [ Wus

W vs
Wws ]T - relative velocity of the origin of {S} with respect

to the water attached coordinate frame {W};

λ := [ φ θ ψ ]T - vector of of roll, pitch, and yaw angles that

parametrize locally the orientation of {S} rel-

ative to {I};
I
SR (λ) - rotation matrix from {S} to {I}.

With this notation, the relevant kinematics of the ASC can be written in compact form as

d

dt
IpS = IvS + b, (4.9.1)

where b is an installation bias to be estimated.

As briefly mentioned above, the AUV is equipped with the following motion sensors:

1. a NAVSTAR GPS (Global Positioning System) receiver that computes the latitude, lon-

gitude, and altitude in the WGS-84 datum based on the travel time delays of an electro-

magnetic pulse from a synchronized constellation of satellites orbiting the hearth.

2. a Doppler log sonar that provides on-board referenced measurements of the body-fixed

velocities S(IvS) = S
IR

IvS and S(WvS) of the vehicle with respect to the sea bottom and

to the water, respectively.

3. An attitude reference unit is also available to provide accurate estimates of the vector λ

of roll, pitch, and yaw angles.

Based on the coordinates provided by the GPS, after a suitable transformation for the

local coordinate frame {I}, the position of the ASC (IpS)m :=
[

(Ixs)m (Iys)m (Izs)m

]T

of IpS is available. The GPS receiver, running recently developed algorithms for positioning,

namely the Real Time Kinematics (RTK), can achieve centimetric accuracy in the fixed version

and decimetric accuracy in the float version. The Doppler data are simply converted from

the body to the reference coordinate frame using the relation IvS = I
SR (λ)S(IvS) to obtain

measurements (IvS)m =
[

(Ius)m (Ivs)m (Iws)m

]T
. The interrogation rates for the GPS
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and for the Doppler sonar are 2Hz and 4Hz, respectively. According to the definitions for the

multi-rate systems introduced in the beginning of this chapter, the basic time period is h = 0.25s

and the period is M = 2.

Following an integrated approach in the design of the navigation, guidance, and control

systems, presented in detail in [1], the following specifications for the navigation system are the

guidelines for the design of a multi-rate complementary filter:

1. Obtain accurate estimates I p̂S =
[

I x̂s
I ŷs

I ẑs

]T
and v̂S =

[

I ûs
I v̂s

Iŵs

]T
of the

vehicle position and velocity, respectively;

2. Achieve a settling time of 240 s on the estimate of the mis-installation bias.

3. Achieve a settling time of 6 s on the position estimate.

y

(Ius)m

h

h

2h

z

h

hz−1 z−1

G2 y

x2

h

x1

6
- ?-

66
- - ?-

6 h

2h
G2

Figure 4.9.3: Position estimation: filter design model.

Following the guidelines introduced in chapter 3, the design model for the complementary

navigation filter is easily obtained from the kinematic equations of the AUV, leading to three

sets of decoupled equations that correspond to the three linear coordinates x, y, and z. See

figure 4.9.3 for the design model that captures the motion of the AUV along the coordinate x.

The output integrator captures the relationship I ẋs = Ius + bx and the input integrator was

inserted to estimate the installation bias, assumed constant. Adopting the basic sampling period
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h = 0.25 s, the design model admits the realization

ΣG2 =



















x(k + 1) = A(k) x(k) + Bu(k) u(k)

z(k) = Cz(k) x(k)

y(k) = Cy(k) x(k)

, (4.9.2)

where x =
[

x1 x2

]T
, u = (Ius)m, and z = y = (Ixs)m. Furthermore,

A(k) =





1 h

0 1



 , Bu(k) =





h

0



 ,

Cz(k) =
[

1 0
]

, and Cy(k) =











[

1 0
]T

if k MODM = 0
[

0 0
]T

if k MODM = 1
,

where the periodic nature of the matrix Cy(k) is obvious.

In preparation for the approach that will be introduced later, the project of a linear, time-

invariant system where Cy = Cz =
[

1 0
]T

will be presented using classical design tools. To

that purpose, the system (4.9.2) will be considered to be driven by null mean, gaussian white-

noise v(k) and the output is assumed to be corrupted by gaussian white-noise, with null mean,

i.e. E[w(k)] = 0, leading to the realization ΣGn

ΣGn =







x(k + 1) = A x(k) + Bu u(k) + v(k)

y(k) = Cy x(k) + w(k).
(4.9.3)

The state covariance, considered as a tuning mechanism in the estimator design is

Qv =





qx 0

0 qb



 ,

and an unitary output covariance Qw was considered, without loss of generality. Moreover,

define a set of auxiliary transfer functions that will help introduce the constraints in the design

of the estimator at hand, namely

Txm→e - transfer function from the position measurement (Ixs)m to

the estimate error e = (Ixs)m −
I x̂s;

Tum→x̂ - transfer function from the velocity measurement (Ius)m to

the position estimate I x̂s;

Txm→x̂ - transfer function from the position measurement (Ixs)m to

the position estimate I x̂s.
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Figure 4.9.4: ‖Txm→e‖2 for a range of qb and qx values.

Figures 4.9.4, 4.9.5, and 4.9.6 depict the values for the norms obtained for the aforementioned

transfer functions when the tuning knobs (qb and qx) are used in the specified ranges. Note that

the transfer function Txm→e, depicted in figure 4.9.4, has a smaller H2 norm when the gains

are smaller and the bandwidth from the position sensor to the error estimate is smaller. Figure

4.9.5, where the ‖Tum→x̂‖2 is depicted for the same range of design parameters, shows opposite

behaviour. Note that the overall structure of the system under consideration is a complementary

filter. Finally, figure 4.9.6 depicts the ‖Txm→x̂‖∞, where a value over 1 is always obtained.

The approach to the design of the estimator at hand as a convex optimization problem is

clearly validated from the results described in the aforementioned figures and can be stated as

min ‖Txm→e‖2

subject to:

‖Tum→x̂‖2 < γv

‖Txm→x̂‖∞ < γp

(4.9.4)

The rationale for this choice is to decrease the dependence on the sensor that will be available

at higher sampling periods. However, this minimization will not lead to a degenerated solution

as the transfer function Tum→x̂ should be chosen in such a way that the influence from the faster

sensor on the position estimate is guaranteed, as depicted in figure 4.9.5, and the fundamental
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Figure 4.9.5: ‖Tum→x̂‖2 for a range of qb and qx values.

relation for complementary filters is valid for the proposed structure. Moreover, to aid in the

estimator design, a bound on the errors in the position estimate due to possible errors introduced

by the position sensor is set through the constraint on the magnitude of the transfer function

Txm→x̂.

The structure presented in figure 4.8.1 is repeated in the case shown in figure 4.9.7, where

the sampling rates associated with the underlying signals were left in to highlight the multi-rate

nature of the estimator under design. To achieve the design requirements introduced above, the

bounds γv = 0.65 and γp = 1.8 were used leading to the filter gains

K(k) =











[

0.1890 0.0027
]T

if k MODM = 0
[

0 0
]T

if k MODM = 1

for a minimum value of ‖T ∗xm→e‖2 = 1.0651.

The performance of the navigation system was evaluated in simulation for an initial 10m

error on the position estimate. The installation bias was setup to 0.1m/s and the initial estimate

was b̂x = 0m/s. The temporal evolution of the estimates is depicted in figure 4.9.8.

As mentioned earlier, this navigation system was tested in the DELFIM catamaran per-

forming a mission at sea. Figure 4.9.9 depicts the trajectory, in local coordinates for latitude
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Figure 4.9.6: ‖Txm→x̂‖∞ for a range of qb and qx values.

and longitude, during a bathimetric survey performed at sea in October 2000 off the coast of

Setubal. The stability and reliability of the filter used show great promise for the use of such

simple structures as reliable navigation systems for autonomous vehicles. Figure 4.9.10 presents

a zoom over a period of 50 samples (= 12.5 s), to emphasize the multi-rate characteristic of

the navigation system as well as the low-pass characteristics from the measured position to the

estimated position, as required due to the complementary nature of the filter chosen.

To acquire a better understanding of the multi-rate system used a series of simulation tests

were performed. In order to gain some insight into the evolution of the attainable norm for

‖T ∗xm→e‖2, a set of experiments were performed where the ratio M of the the fastest sampled

sensor (velocity sensor) to the slowest one (position sensor) was tested for the range starting

at M = 1 (the time-invariant case) and finishing at M = 9. The auxiliary bounds were set to

γv = 0.8 and γp = 3, respectively, leading to the results presented in figure 4.9.11. Interesting

to remark, is the graceful degradation experienced by the lower bound on the norm under

minimization for this system in the interval under consideration. Moreover, for a period of

M = 9 and above, the convex optimization problem is infeasible.

The influence of the basic sampling rate for this system was also studied under simulation by

performing a series of tests where the same minimization problem was solved using the MATLAB
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Figure 4.9.7: Estimator design structure for system (4.9.2).

LMI Optimization toolbox. In this series of tests the sampling period h was changed from 0.05s

to 0.5 s, while the period was changed in the same range as in the previous set of experiments.

Again a graceful degradation in the minima is observed. However, for high values of the sampling

rate the infeasibility is reached for smaller values of the relative period, as depicted in figure

4.9.12. The conclusions from these series of tests are consistent with the common sense notion

that an navigation system designer should have: to attain better results the fastest possible

sensors should be chosen. If the problem at hand is naturally multi-rate, choose, if possible,

for smaller system periods. However, due to technological, physical, or economic constraints,

the sampling rates associated with the available sensors generally impose limits on the overall

performance of the system being designed.

The navigation system under design was tested in a more complex setup, where the measure-

ments from the velocities relative to the inertial frame (IvS)m and relative to the sea bottom
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Figure 4.9.8: Position x (dashed line) and position estimate x̂, on the top; Velocity u (dashed

line) and velocity estimate, in the middle and bias bx (dashed line) and bias estimate, on the

bottom.

(WvS)m were used to estimate the installation bias, the position estimate I p̂S , and the unknown

current I v̂
W
. Assuming that the same installation bias b affects both velocity measurements,

the following relations hold:

ΣGa































d
dt
IpS = (IvS)m

d
dtb = 0

(IvS)m = IvW +WvS + b

(WvS)m = WvS + b

,

and the block diagram of the systems used are represented in figure 4.9.13, where each of the

blocks has a structure as defined above.

The performance of the navigation system obtained with these interconnections was evalu-

ated in simulation for an initial 10m error on the position estimate. The installation bias was

set to 0.1m/s, but the initial estimate was b̂x = 1.0m/s, with a temporal evolution as depicted

in figure 4.9.14. Moreover, a constant current along the x direction with a value of 1m/s was

included, with a null initial estimate. The results obtained allow one to draw some conclusions

about the promising characteristics of the new methodology proposed and used.



94 CHAPTER 4. SYNTHESIS OF PERIODIC ESTIMATORS

250 300 350 400 450 500 550 600 650 700

350

400

450

500

550

600

650

700

East [m]

N
or

th
 [m

]

xy Multi−rate Navigation
xy GPS−RTK

Figure 4.9.9: Trajectory of the Delfim catamaran during a bathymetric survey at sea, in the

Setubal canyon.

4.10 Conclusions

This chapter introduced new theoretical results on theH2 andH∞ norms of periodic systems.

For a generic structure of periodic estimators, a synthesis solution was proposed with well

established properties. The methodology proposed, resorting to convex optimization procedures,

is based on minimization of the H2 or H∞ norms from auxiliary inputs to auxiliary outputs,

constrained by the norms of other input/output signals. This powerful methodology paves the

way for the use of such framework in other problems such as periodic feedback control and

multi-rate filter design. Finally, this new synthesis methodology has been applied to a classic

example leading to promising simulation results. The proposed navigation system was later

validated with results obtained during sea trials performed with an autonomous surface craft.
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Figure 4.9.10: Detail of the trajectory of the Delfim catamaran.
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Chapter 5

Analysis of Periodic Estimators

5.1 Introduction

The synthesis of feedback systems to solve a given estimation problem, resorting to optimiza-

tion tools, requires that the performance of the final design be evaluated according to a number

of relevant features. Time response characteristics of the output signals when pre-specified in-

puts are fed into the system and analysis of its frequency-response, as criteria to evaluate system

performance, have been used for a long time and shown to be of utmost importance.

The requirements for the problem at hand, expressed in the form of technical specifications,

should be used in the synthesis methodology leading to an optimal solution if possible. In the

case that some technical requirements can not be incorporated in the synthesis directly they

should be verified a posteriori after a solution is obtained. This can lead to a redesign process

conducing to a new solution. However, some reasons can preclude a solution to be obtained:

• Given a set of constraints, some of them contradictory, the resulting optimization problem

can be infeasible;

• Qualitative features of the solution may be hard or impossible to be formulated in terms

of quantitative characteristics to be used in the synthesis methodology;

• Some of the constraints can be incompatible with the framework used. For instance,

in a methodology using LMIs and where the solution is obtained resorting to convex

optimization algorithms, constraints on the rank and structure of the solution sought are

99
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non-convex (see [13] for an enlightening characterization of that technical requirements).

Apart from the constraints enumerated above, there are time-response characteristics that

can be formulated as convex constraints in the design parameters as presented in section 2.6.1 of

chapter 2. Moreover, using the isomorphic properties of the z transform, some of the frequency-

response constraints can also be setup as convex constraints on the location of the eigenvalues

of the specified closed loop solution. In the case of linear, time-invariant systems this approach

is commonly used. However, in the case of linear, periodically time-varying system the notion

of frequency-response is not clear and the system designer is thus left without an important tool

to assess system performance. This chapter aims to clarify these issues and to explain how a

frequency-like interpretation can be obtained even for a broad class of time-varying systems.

To this purpose, a classical method for representing multi-rate feedback systems by equivalent

single rate systems that goes back to the pioneering work of Kranc [43] in the late 1950s - the

switch decomposition method - will be summarized later in this chapter. See also [52], where

this technique was exploited, leading to the study of linear periodic time-varying systems in

the time and frequency domain. The underlying technique, also called polyphase decomposition

when applied to the lift system, will be also presented for reference in this chapter. However, as

will be clear, the technique does not afford system designers a versatile tool for system analysis

in the frequency domain.

To overcome this difficulty a new methodology for system analysis is introduced that builds

on work described in previous chapters and allows for an interpretation in the frequency domain.

The organization of this chapter is as follows: The operations associated with digital rate

conversion are presented in section 5.2 and the switch decomposition method is reviewed in

section 5.3. In section 5.4 a new methodology for the analysis of linear systems is introduced

and the resulting properties are discussed. The natural extension to the class of discrete, pe-

riodic time-varying systems will be presented with emphasis on the physical meaning of the

methodology presented. Interestingly, this method can be applied to a broad class of linear and

non-linear systems as will be shown in chapter 6. In order to provide insight into the proposed

method, the periodic estimation problem solved in the previous chapter is analyzed, with the

results presented in section 5.5. Moreover, based on the new methodology the design of periodic

systems incorporating the frequency domain properties directly is proposed. Finally, conclusions
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will be drawn and some future work will be outlined in section 5.6.

5.2 Digital rate conversion

The frequency analysis of a multi-rate system implies the conversion of the sampling rates

of the discrete signals involved. The signals can be converted using multi-rate signal processing

techniques - interpolators and decimators - described in the following [23].

The process of sampling a continuous signal x(t) using an ideal sample and hold device is

assumed to be uniform, occurring h time apart. A sequence x(kh) results, referred to as x(k)

when only one rate is used. In order to be able to reconstruct the band-limited signal x(k), the

sampling period h should be chosen to satisfy the Nyquist sampling theorem.

The process of digitally converting the sampling rate of a signal from a given rate F = 1/h

to F ′ = 1/h′ is called sampling rate conversion and takes the name of interpolation if F ′ > F

and decimation if F ′ < F .

The rate conversion system, given an input signal x(k), outputs a signal y(m) with a new

sampling rate F ′ = 1/h′. In the following it is assumed that the sampling periods of the input

and output signals are related by a rational fraction

h′

h
=
F

F ′
=
M

L
.

Systems that can perform such rate conversion are linear time-varying discrete systems where

the output y(m) at instant m is the response to an input at the time (bmML c − k) and can be

expressed as

y(m) =
∞
∑

k=−∞

gm(k)x

(

b
mM

L
c − k

)

,

where buc denotes the integer less or equal to u. The system response gm(k) is periodic in m

with period L, verifying gm(k) = gm+rL(k) with r = 0,±1,±2, . . .. In the case where h = h′ the

above expression degenerates into the classic convolution sum.

5.2.1 Sampling rate reduction - decimation by an integer factor M

The operation of sampling rate reduction by an integer factor M , relating the input and

output sampling periods by h/h′ = F/F ′ = M , produces a signal with the new sampling rate
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F ′ = F/M . This operation is generally called decimation 1.

Given a full band signal x(k) with a non-zero spectrum in all frequencies such that −F
2 ≤

f ≤ F
2 with ω = 2πfh

|X(ejω)| 6= 0, |ω| = |2πfh| ≤
2πFh

2
= π

the rate reduction is achieved by generating a sequence y(m) such that each M th input sample

is copied to the output resulting a sequence y(m) = x(Mk).

To obtain the relationship on the z transforms of the signals, the definition of an auxiliary

signal x′(n), defined as

x′(k) =







x(k), k = 0,±M,±2M, . . .

0, otherwise
,

verifying that x′(k) = x(k)
{

1
M

∑M−1
l=0 ej2πlk/M

}

results that Y (z) can be expressed as

Y (z) =
1

M

M−1
∑

l=0

X
(

e−j2πl/Mz1/M
)

. (5.2.1)

Evaluating Y (z) on the unit circle z = ejw′

Y (ejw′) =
1

M

M−1
∑

l=0

X
(

ej(w′−2πl)/M
)

where w′ = 2πfh′, the above equation allows an interpretation of sample rate reduction as the

sum of frequency shifted versions of the input signal spectrum. If an anti-aliasing filter with

bandwidth π/M is used then

Y (ejw
′
) =

1

M
X
(

ejw
′/M
)

, |w′| ≤ π.

5.2.2 Sampling rate increase - interpolation by an integer factor L

The operation of sample rate increase is usually called interpolation. If a signal is interpolated

by an integer factor L, the sampling period relation is h′/h = F/F ′ = 1/L and a signal with a

new update rate F ′ = LF is produced.

1To be precise, decimation should be the reduction by a factor of 10. However, the scientific community has

adopted this term as the generic rate reduction denomination.
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Sample rate increase is obtained by interpolating the input signal x(k) with L − 1 null

samples, resulting in a signal y(m) that can be described by

y(m) =







x(mL ), m = 0, ±L, ±2L, . . .

0, otherwise
,

which has a z transform

Y (z) =
∞
∑

i=−∞

x(i/L)z−i = X(zL). (5.2.2)

Evaluating Y (z) on the unit circle z = ejw′, Y (ejw′) = X(ejw′L), which corresponds to a fre-

quency expansion.

h(z) ML
x(k) y(m)

Figure 5.2.1: Sampling rate conversion by a factor L/M , using an interpolator (↑ L) and a

decimator (↓M).

In the case where a generic (rational) relation on the sampling rates of the input and output

signals is seek, i.e. F ′/F = L/M , a cascade of interpolators and decimators can be used. See one

such example in figure 5.2.1, where one interpolator and one decimator were used, represented

with the symbols ↑ L and ↓ M , respectively. A low-pass filter h(z) can be used to eliminate

components in the interpolated signal.

5.3 Switch Decomposition Method

The analysis of discrete or sampled-data systems where different sample intervals are present

goes back to the work of George Kranc [43]. The purpose of that work was to study multi-rate

feedback systems using the switch decomposition method-SDM to change the different

sampling periods to a common one (h), with the period of the least common multiple. In figure

5.3.1 a) the structure that implements this equivalence is presented.

A feedback system with different sampling rates, as represented in figure 5.3.1 b), should

be reduced to the equivalent single rate and the transfer functions should be evaluated using



104 CHAPTER 5. ANALYSIS OF PERIODIC ESTIMATORS

δ−M+1

δ1 δ−1

...

δM−1

...

h

h

h

h/M

G(s)

H(s)

h/p

h/q

R(s) Y (s)

a) Switch Decomposition Method b) Multirate feedback system

Figure 5.3.1: Multi-rate feedback analysis proposed by Kranc (δ = esh/M ).

superposition. The approach proposed by Kranc did not use zero order hold systems at the

sampling mechanism, but a similar approach will be used to study the frequency-response of a

system using discrete multi-rate data processing.
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VM−1(z) YM−1(z)

Figure 5.3.2: Digital Decomposition Method.

A decomposition method similar to the one proposed by Kranc is presented in figure 5.3.2.

The equivalent system uses a set of advances to generate a set of M replicas of the input signal

that are feed to the decimators stage. The low rate outputs of the decimators are connected to
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a set of interpolators and their outputs are delayed and summed to obtain the output signal.

The following lemma formalizes this structure:

Lemma 5.3.1 Given theM sub-sequences x(pM+k) of a signal with z transform X(z) obtained

using a set of tapped advances and M decimators, the relationship among sequences is

X(z) = X0(z
M ) + z−1X1(z

M ) + . . .+ z−(M−1)XM−1(z
M ).

and a set of M interpolators performing a 1 to M rate increase with tapped delays can recover

the original signal.

Proof:

Assuming X(z) as the z transform of the impulse response h(k) and Xj(z) =
∑∞

i=0 h(Mi+

j)z−i the z transform of the subsequences h(mM + j), the following relation is obvious from the

z transform definition

X(z) = X0(z
M ) + z−1X1(z

M ) + . . .+ z−(M−1)XM−1(z
M ). (5.3.1)

Defining the auxiliary signals Ul(z) = zlX(z), and using the frequency relation on a decima-

tor by a factor of M (see relation (5.2.1)), the expression for Vl(z) can be written as

Vl(z) =
1

M

M−1
∑

i=0

Ul(e
− j2πi

M z
1
M ) =

1

M

M−1
∑

i=0

(e−
j2πil
M z

l
M )X(e−

j2πi
M z

1
M ).

The signals Vl(m), composed by a set of aliased components, have a rate M times lower than

the full band original signal x(k). However, the proposed structure can be used to recover the

original signal considering the interpolator and delay structure of the output. Defining Yl(z) as

the z transform of the interpolator output, according to (5.2.2),

Yl(z) = Vl(z
M ) =

1

M

M−1
∑

i=0

(e−
j2πil
M (zM )

l
M )X(e−

j2πi
M (zM )

1
M ).

Simplifying this relation it can be written as

Yl(z) =
1

M

M−1
∑

i=0

(e−
j2πil
M zl)X(e−

j2πi
M z), (5.3.2)

and finally given that W (z) =
∑M−1

p=0 z−pYp(z), or using relation (5.3.2),

W (z) =
M−1
∑

p=0

z−p
1

M

M−1
∑

i=0

(e−
j2πip
M zp)X(e−

j2πi
M z);
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after cancelling the advance and delay factors and using the X(z) definition

W (z) =
1

M

M−1
∑

p=0

M−1
∑

i=0

e−
j2πip
M

∞
∑

q=0

x(q)(e−
j2πi
M z)−q.

Changing the summations and collecting the terms on ej2πi/M , the previous expression becomes

W (z) =
1

M

M−1
∑

p=0

∞
∑

q=0

x(q)z−q
M−1
∑

i=0

e
j2πi(q−p)

M .

Note that the last sum is given by

M−1
∑

i=0

e
j2πi(q−p)

M =







M q − p = ±rM

0 otherwise
.

W (z) can be expressed as

W (z) =
M−1
∑

p=0

∞
∑

r=0

x(rM + p)z−(rM+p),

and after a summation change,

W (z) =
∞
∑

r=0

M−1
∑

p=0

x(rM + p)z−(rM+p) =
∞
∑

r=0

x(r)z−r = X(z)

obtaining the identity on the lemma.

Attention should be paid to the following points in the interpretation of the previous result:

• The sampling rate in the input signal X(z) and on the output signal W (z) is greater, by

a factor of M , than the sampling rates of the signals Vl(z).

• The decimators outputs Vl(z) are closely related to the vector signals in the lifting tech-

nique presented in section 4.4. This scheme can be used with a lifted system, as will be

seen later.

• To implement the proposed method as a causal system, a delay zM in the input signal

should be used.

The equivalence described in lemma 5.3.1 can be further exploited in the implementation of

lifted systems. In the structure introduced above, note that the signals between the decimator
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Figure 5.3.3: Digital Decomposition Method of Lifted Systems.

and interpolator stages are the ones stacked in equation (4.4.2) leading to the lifted system

described by (4.4.3). The lifted system transfer function 5.3.6 is incorporated (see figure 5.3.3)

and the following lemma can be enunciated:

Lemma 5.3.2 The transfer function P (z) of a time-invariant discrete-time linear system is

recovered when the system is considered as M -periodic and is incorporated in the structure pre-

sented in lemma 5.3.1.

Proof:

Introducing the outputs from the lifted system Y
′

l ,






























Y
′

0 (z) = P0(z)V0(z) + z−1PM−1(z)V1(z) + . . .+ z−1P1(z)VM−1(z)

Y
′

1 (z) = P1(z)V0(z) + P0(z)V1(z) + . . .+ z−1P2(z)VM−1(z)

. . . . . .

Y
′

M−1(z) = PM−1(z)V0(z) + PM−2(z)V1(z) + . . .+ P0(z)VM−1(z)

.

and using the z transform of the interpolators (see equation 5.2.2) Yl(z) = Y
′
(zM ), the set of

signals Y (z) can be expressed as






























Y0(z) = P0(z
M )V0(z

M ) + z−MPM−1(z
M )V1(z

M ) + . . .+ z−MP1(z
M )VM−1(z

M )

Y1(z) = P1(z
M )V0(z

M ) + P0(z
M )V1(z

M ) + . . .+ z−MP2(z
M )VM−1(z

M )

. . . . . .

YM−1(z) = PM−1(z
M )V0(z

M ) + PM−2(z
M )V1(z

M ) + . . .+ P0(z
M )VM−1(z

M )

.
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The output W (z) can be obtained multiplying each relation by z−l and summing

W (z) = P (z)V0(z
M ) + z−1P (z)V1(z

M ) + . . .+ z−M+1P (z)VM−1(z
M )

= P (z)
M−1
∑

p=0

z−pVp(z
M ),

where the relations W (z) =
∑M−1

p=0 z−pYp(z) and (5.3.1) were used. Following along the lines of

the proof in lemma 5.3.1, the input-output relation is

W (z) = P (z)X(z).

This lemma provides a bridge between the lift system technique and the interpretation of

the switch decomposition method. The well known fact that the transfer function of a periodic

system does not exist, is also clear from figure 5.3.3. In the following, a counter-example, that

highlights this fact is presented.

5.3.1 SDM Example of a Quasi Invariant System

Suppose a scalar discrete-time system, with the state x ∈ R, the input u ∈ R, the output

y ∈ R, period M , and where only the output equation is periodic. The dynamics of such system

can be described by

x(k + 1) = akx(k) + bku(k),

and the output equation is

y(k) = ckx(k) + dku(k)

verifying ak = a, bk = b, dk = d and

ck =







c0 if kMODM = 0

c0̄ if kMODM 6= 0
.

Using the same arguments as in relation (5.3.6) the following relation for the lifted system

can be found:

P̃ (z) =

















P ′0(z), z−1P ′M−1(z), . . . z−1P ′1(z)

P1(z), P0(z), . . . z−1P2(z)
...

...
. . .

...

PM−1(z), PM−2(z), . . . P0(z)

















, (5.3.3)
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where Pj(z) and P ′j(z) are the z transform of the sequences obtained from auxiliary invariant

systems with ck = c0̄ and ck = c0, respectively. Note that P ′j(z) = c0/c0̄ Pj(z).

Following along the proof of lemma 4, the outputs from the lifted system Y
′

l are given by































Y
′

0 (z) = P ′0(z)V0(z) + z−1P ′M−1(z)V1(z) + . . .+ z−1P ′1(z)VM−1(z)

Y
′

1 (z) = P1(z)V0(z) + P0(z)V1(z) + . . .+ z−1P2(z)VM−1(z)

. . . . . .

Y
′

M−1(z) = PM−1(z)V0(z) + PM−2(z)V1(z) + . . .+ P0(z)VM−1(z).

The interpolators outputs, according to relation (5.2.2), are given by Yl(z) = Y
′
(zM ), and

the set of signals Y (z) can be expressed as































Y0(z) = P ′0(z
M )V0(z

M ) + z−MP ′M−1(z
M )V1(z

M ) + . . .+ z−MP ′1(z
M )VM−1(z

M )

Y1(z) = P1(z
M )V0(z

M ) + P0(z
M )V1(z

M ) + . . .+ z−MP2(z
M )VM−1(z

M )

. . . . . .

YM−1(z) = PM−1(z
M )V0(z

M ) + PM−2(z
M )V1(z

M ) + . . .+ P0(z
M )VM−1(z

M ).

The output W (z) can be obtained multiplying each relation by z−l and then summing all

the terms, resulting

W (z) = P (z)
M−1
∑

p=0

z−pVp(z
M )

+



(P ′0(z
M )− P0(z

M ))V0(z
M ) +

M−1
∑

p=1

z−M (P ′p(z
M )− Pp(z

M ))VM−p(z
M )



 ,

where the relations W (z) =
∑M−1

p=0 z−pYp(z) and (5.3.1) were used.

The first term in the previous equation can be simplified and the remaining terms are com-

puted using the expression for Vl(z), as defined in the proof of the lemma 5.3.1, resulting in the

relation

W (z) = P (z)X(z)

+

[

(P ′0(z
M )− P0(z

M ))
1

M

M−1
∑

i=0

X(e−
j2πi
M z

1
M )

+
M−1
∑

p=1

z−M ((P ′p(z
M )− Pp(z

M ))
1

M

M−1
∑

i=0

(e−
j2πi(M−p)

M z
(M−p)

M )X(e−
j2πi
M z

1
M )



 .(5.3.4)
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The above expression emphasizes the well known fact that a periodic system presents a

transfer function with replicas of the input shifted and scaled in the frequency. The transfer

functions, from the mM inputs to the pM outputs associated with the lifted system, can be

computed using the general relation

P̄ (z) = C̄(zMI − Ā)−1B̄ + D̄ = [P̄i,j ].

An invariant discrete-time system can be taken as M periodic for any M ≥ 1. In that case

the expressions for Ā, B̄, arC, and D̄ are respectively

Ā = AM , B̄ = (AM−1B,AM−2B, . . . , AB,B),

C̄ =























C

CA
...

CAM−2

CAM−1























, and D̄ =























D, . . . 0, 0

CB, . . . 0, 0
...

. . .
...

...

CAM−3B, . . . D, 0

CAM−2B, . . . CB, D























.
(5.3.5)

Given the impulse signal h(k) and denoting as Pj(z) =
∑∞

i=0 h(Mi+ j)z−i the z transform

of the subsequences h(mM + j), given the Markov parameters’ matrix for the lifted system, the

following relation can be found

P̄ (z) =

















P0(z), z−1PM−1(z), . . . z−1P1(z)

P1(z), P0(z), . . . z−1P2(z)
...

...
. . .

...

PM−1(z), PM−2(z), . . . P0(z)

















. (5.3.6)

Moreover, if the poles of the original system are λi the poles of the lifted system are λMi . It

can hardly be overemphasized the difficulties that the designer encounters in analyzing a system

with the tools presented above. To obviate such difficulties a new methodology is proposed.

5.4 Frequency analysis

The rest of the chapter departs considerably from the classical analysis derived above. The

key ideas exposed build on the usual concepts of low-pass and high-pass filters that play a key

role in assessing the performance of complementary filters and are well understood in the case of



5.4. FREQUENCY ANALYSIS 111

G
z

-- -Wn
ωc

-
6

yur

Figure 5.4.1: General setup for frequency analysis.

linear time-invariant systems. We now extend these concepts to the class of linear time-varying

systems.

5.4.1 Low and high-pass filters.

Definition. Low-pass property. Let G be a linear, internally stable time-varying system and

let Wn
ω be a low-pass, linear time-invariant Chebyschev filter of order n and cutoff frequency ω.

The system G is said to satisfy a low-pass property with indices (ε, n) over [0, ωc] if

‖(G − I)Wn
ωc‖∞ < ε. (5.4.1)

Definition. Low-pass filter with bandwidth ωc. A linear, internally stable time-varying

system G is said to be an (ε, n) low-pass filter with bandwidth ωc if

• limω→0 ‖(G − I)W
n
ω‖∞ is well defined and equals 0.

• ωc := sup{ω : ‖(G − I)Wn
ω‖∞ < ε}, i.e., G satisfies a low-pass property with indices (ε, n)

over [0, ω] for all ω ∈ [0, ωc) but fails to satisfy that property whenever ω ≥ ωc.

• For every δ > 0, there exists ω∗ = ω∗(δ) such that ‖G(I −Wn
ω )‖∞ < δ for ω > ω∗.

Definition. High-pass Filter with break frequency ωc. A linear, internally stable

time-varying system G is said to be an (ε, n) high-pass filter with break frequency ωc if (I − G)

is an (ε, n) low-pass filter with bandwidth ωc.

The conditions in the definition of low-pass filters generalize the following facts that are

obvious in the linear time-invariant case:
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• the filter must provide a gain equal to one at zero frequency.

• there is a finite band of frequencies over which the system behaviour replicates very closely

that of an identity operator.

• the system gain rolls off to zero at high frequency.

Notice the role played by the weighting operator Wn
ω , which was arbitrarily selected as a

Chebyschev filter. In practice, the order of the filter can be made sufficiently large so as to make

it effectively select the “low frequency components” of the input signal.

Consider the following conceptual experience that justifies the analysis methodology for

periodic systems, taking into consideration figure 5.4.1:

1. Given all non-null signals r, with finite energy, i.e., ‖r‖2 <∞, consider the signal u =Wn
ωcr

obtained at the output of a low-pass filter with bandwidth ωc > 0 arbitrary small. The

signal thus obtained has energy in the bandwidth ]0, ωc[.

2. Inject the signal u in the system under test and in an auxiliary identity operator.

3. Compute the signal z = (G − I)u as the difference from the output of the two signals

obtained in the previous step.

4. The maximum energy amplification can be expressed as

sup
r∈L2

‖z‖2
‖r‖2

= ‖(G − I)Wn
ω‖∞

and provides a measurement on the low-pass characteristics of the system under consider-

ation.

5. Repeat all the previous steps for increasing values of the bandwidth ωc, plotting the values

for the maximum amplification obtained.

This intuitive methodology results in a practical tool to evaluate the low (or high) pass

characteristics of the systems under analysis. Its application to the navigation system designed

in the previous chapter will be presented next.
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Figure 5.5.1: Analysis of the high-pass operator Txm→e. Generalized Bode plot.

5.5 Navigation system for the Delfim catamaran

The analysis of a multi-rate navigation system for an Autonomous Surface Craft (ASC)

designed in the previous chapter will be presented next, as an example of application of the new

synthesis methodologies proposed in this chapter.

See figures 5.5.1 and 5.5.2, where the operators Txm→e and Txm→x̂ introduced previously

are analyzed. The analysis procedure outlined above was performed with 4th order low-pass

Chebyshev filters.

Frequency constraints can be directly incorporated in the synthesis of the periodic estimator

presented in the previous chapter. For that purpose, the theorem 4.7.1 is instrumental to

incorporate the expression (5.4.1), introduced above. The optimization problem can then be

restated as

min ‖Txm→e‖2

subject to:

‖Tum→x̂‖2 < γv

‖Txm→x̂(I −W
n
ω )‖∞ < γp

(5.5.1)

Note that the resulting program is a non-convex optimization problem, due to the fact that

the system under synthesis has a reduced order, when compared with the underlying model
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Figure 5.5.2: Analysis of the low-pass operator Txm→x̂. Generalized Bode plot.

used. This precludes the use of the convex optimization tools described previously. No further

development on the approach required to tackle this problem will be presented in this chapter.

An alternative approach will be presented in the next chapter in a time-varying setup, and that

can also be adopted to solve the problem previously stated.

5.6 Conclusions and future work

A new methodology for the analysis of periodic time-varying systems was proposed and used

in the direct design of a periodic estimator, resorting to LMIs. The advantages of the proposed

method are evident and provide tools for a more accurate synthesis of this subclass of linear

systems.

The proposed methodology can be applied to the analysis and/or to the direct synthesis

of periodic controllers and multi-rate filters. Moreover, others classes of systems such that the

norm computation is achievable resorting to LMIS can also be addressed. One such class consists

of systems with unknown parameters bounded by polytopes, as described in the next chapter.



Chapter 6

Navigation System Design using

Time-Varying Complementary

Filters

6.1 Introduction

This chapter introduces a new methodology for the design of navigation systems for au-

tonomous vehicles. Using simple kinematic relationships, the problem of estimating the velocity

and position of an autonomous vehicle is solved by resorting to special bilinear time-varying

filters. These are the natural generalization of linear time-invariant complementary filters that

are commonly used to properly merge sensor information available at low frequency with that

available in the complementary region as introduced in chapter 3.

The time-dependence is imposed by the fact that some of the sensors provide measurements

in inertial coordinates, while other measurements are naturally expressed in body axis. To

merge the information from both types of sensors - while being able to compensate for sensor

biases - requires that the rotation matrix from inertial to body axis be explicitly included in the

navigation filters.

Complementary filters lend themselves to frequency domain interpretations that provide

valuable insight into the filtering design process. This chapter extends these properties to the

time-varying setting by resorting to the theory of linear differential inclusions and by converting

115
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the problem of weighted filter performance analysis into that of determining the feasibility of a

related set of LMIs. The resulting filters are bilinear and time-varying, but the time-dependence

is well structured. By exploiting this structure, the problem of filter design and analysis can be

converted into that of determining the feasibility of a set of Linear Matrix Inequalities (LMIs)

[14, 67] that arise in the theory of linear differential inclusions [8, 14]. As a consequence, the

stability of the resulting filters as well as their ”frequency-like” performance can be assessed using

efficient numerical analysis tools that borrow from convex optimization techniques [14, 48], in a

similar way as presented in the previous chapter for the class of periodic systems.

The design of a navigation system that estimates position and velocity of an autonomous

vehicle by complementing position information available from GPS with the velocity information

provided by a Doppler sonar system will again be used as a motivating example along this

chapter. However, there are no constraints on the application of the methodology formulated

along this chapter to other complementary structures as presented in chapter 3.

The chapter is organized as follows: the mathematical background that is required for com-

plementary time-varying filter analysis and design will be reviewed in section 6.2 namely induced

operator norms, and polytopic systems. Moreover, the new concepts of low and high-pass fil-

ters, introduced for periodic systems in chapter 5, are extended for linear time-varying systems.

Section 6.3 describes the navigation problem addressed in this paper and formulates it mathe-

matically in terms of an equivalent time-varying filter design problem. Section 6.4 provides the

main theoretical tools for linear time-varying filter design and analysis using the theory of linear

matrix inequalities. Section 6.5 describes a practical algorithm for complementary filter design

and illustrates the performance of the new filtering structure in simulation. Section 6.6 discusses

an extension of the results reported in previous sections to the case where accelerometers are

available instead of velocity sensors. Finally, some conclusions are drawn and some goals for

future work are set in section 6.7.

6.2 Mathematical background

This section summarizes the mathematical formalism that is required for the study of linear

systems, both from an internal and an input-output point of view. Throughout this chapter,

we will restrict ourselves to the class of linear time-varying systems Gt, described as a finite-
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dimensional operator where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the vector of inputs and

disturbances, and y(t) ∈ Rp is the output vector, with state-space realization

ΣGt :=







ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(6.2.1)

of bounded, piece-wise continuous matrix functions of time. Often, we will use the same symbol

Gt to denote both an linear time-varying system and its particular realization ΣGt , as the meaning

will become clear from the context.

Throughout the text, given any τ ∈ R+, Πτ denotes the projection operator defined for

every f by Πτf(t) = f(t) when t ≤ τ , and 0 otherwise. Let L2[0,∞;Rp] denote the Hilbert

space of of Lebesgue measurable functions endowed with the usual norm

||f ||22 :=

∫ ∞

0
||f(t)||22dt

and define the extended space L2e[0,∞;Rp] := {f ∈ X : Πτf ∈ L2[0,∞;Rp] for all finite τ in

R+}. In the sequel we compress the notation L2e[0,∞;Rp] and L2[0,∞;Rp] to Lp2e and Lp2,

respectively. This notation will be further simplified to L2e and L2 whenever the dimension of

p is not relevant. Along this chapter, L∞[0,∞;Rp] (abbv. L∞) denote the space of Lebesgue

measurable functions in Rn, endowed with the norm

||f ||∞ := ess sup
t∈R+

||f(t)||2.

If an operator Gt admits a state-space representation ΣGt that is internally stable, then Gt maps

L∞ to L∞ and the corresponding induced operator norm

||Gt||∞,i := sup{
||Gtf ||∞
||f ||∞

: f ∈ L∞, t ∈ R+}

is finite.

A realization is said to be exponentially stable if the null solution to the linear differential

equation dx(t)/dt = A(t)x(t) is uniformly asymptotically stable, that is, there exist positive-real

constants α and β such that ||Φ(t, τ)|| ≤ α exp[−β(t − τ)] for all t ≥ τ , where Φ(t, τ) denotes

the transition matrix associated with A(t). To simplify the exposition, we will henceforth refer

to an exponentially stable system as internally stable, while a (finite-gain) stable system will be

simply called stable. If Gt : L2e → L2e has an internally stable realization, then Gt defines a

stable operator from L2 → L2.
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The extension of these definitions to the case where the operator inputs and outputs belong

to the space of essentially bounded functions of time is immediate, and can be found in [76].

6.2.1 Computation of induced operator norms. Polytopic systems.

In the following there will be considered linear time-varying systems with realizations

{A(t), B(t), C(t), D(t)} ∈ Ω := Co{{A1, B1, C1, D1}, ..., {AL, BL, CL, DL}}

where

CoS :=

{

L
∑

i=1

λiAi |Ai ∈ S, λ1 + ...+ λL = 1

}

is the convex hull of the set S := {A1, ...,An}. These systems are usually referred to in the

literature as polytopic differential inclusions [14]. The next results gives conditions on the

computation of the H∞ norm of that class of systems.

Proposition 6.2.1 [14] Let the system Gt : w→ z described by (6.2.1) be asymptotically stable

and let γ > 0 be a real number. The following statements are equivalent:

1. ‖Gt‖∞ < γ;

2. The system is strictly dissipative, with respect to the supply function

s(w, z) = γ2‖w‖22 − ‖z‖
2
2;

3. There exists a symmetric matrix P = P T ∈ Rn×n that enables the LMIs





ATi P + PAi + CTi Ci PBi + CTi Di

BT
i P +DT

i Ci DT
i Di − γ

2Im



 < 0. (6.2.2)

for i = 1, 2, ..., L.

Note that the LMIs used are a natural extension to the ones used in the basic result for the

H∞ norm of a linear time-invariant system, presented in proposition 2.5.1. In a similar way

as in the precedent chapters, checking that such a P exists can be done quite efficiently using

highly efficient numerical algorithms.

The results above have their natural counterparts for the cases of operators that map L∞

to L∞, as well as for the H2 norm computation of such operators. As discussed in [67], the
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problem of computing the L∞ induced norm of an operator can still be cast in the framework of

LMI theory. However, the computational procedure is more complex and requires a line search

over a real parameter.

6.2.2 Low and high-pass time-varying filters.

The concepts of low-pass and high-pass filters introduced previously in this work will be

extended to the class of linear time-invariant systems. In a similar way as for periodic systems

(see chapter 5), they will also play a key role in assessing the performance of complementary

filters. The definitions of low and high-pass filters will be rewritten next for time-varying systems,

based on the H∞ norm computation of an auxiliary operator.

Definition 6.2.2 Low-pass property - Let Gt be a linear, internally stable time-varying sys-

tem and let Wn
ω be a low-pass, linear time-invariant Chebyschev filter of order n and cutoff

frequency ω. The system Gt is said to satisfy a low-pass property with indices (ε, n) over [0, ωc]

if

‖(Gt − I)W
n
ωc‖∞ < ε

Definition 6.2.3 Low-pass filter with bandwidth ωc - A linear, internally stable time-

varying system Gt is said to be an (ε, n) low-pass filter with bandwidth ωc if

• limω→0 ||(Gt − I)W
n
ω || is well defined and equals 0.

• ωc := sup{ω : ||(Gt − I)Wn
ω || < ε}, i.e. Gt satisfies a low-pass property with indices (ε, n)

over [0, ω] for all ω ∈ [0, ωc) but fails to satisfy that property whenever ω ≥ ωc.

• For every δ > 0, there exists ω∗ = ω∗(δ) such that ||Gt(I −W
n
ω )|| < δ for ω > ω∗.

Definition 6.2.4 High-pass Filter with break frequency ωc - A linear, internally stable

time-varying system Gt is said to be an (ε, n) high-pass filter with break frequency ωc if (I − Gt)

is an (ε, n) low-pass filter with bandwidth ωc.

Interestingly, these definitions rely only on the computation of the H∞ norm of polytopic

systems, which can be done resorting to 6.2.1. The same circle of ideas as introduced in chapter

5 can be applied to polytopic systems, therefore no further explanations will be used.
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6.3 Navigation system design: problem formulation

This section describes the navigation problem that is the main focus of the chapter and

formulates it mathematically in terms of an equivalent filter design problem. For the sake of

clarity, we first repeat the basic notation and summarize the kinematic equations for a general

vehicle.

6.3.1 Notation. Vehicle kinematics: a summary.

Let {I} be a reference frame, and let {B} denote a body-fixed frame that moves with the

vehicle. Note that in this case the vehicle under consideration can be a surface craft (such as

the Delfim catamaran) or an underwater vehicle (such as an autonomous underwater vehicle or

a remotely operated vehicle). The following notation is therefore required:

p := [ x y z ]T - position of the origin of {B} measured in {I};

Iv := [ ẋ ẏ ż ]T - linear velocity of the origin of {B} with respect to the

fixed frame {I};

v := [ u v w ]T - linear velocity of the origin of {B} with respect to the

inertial coordinate frame {I}, expressed in {B}, i.e.,

body-fixed velocity;

λ := [ φ θ ψ ]T - vector of roll, pitch, and yaw angles that parametrize

locally the orientation of {B} relative to {I};

ω := [ p q r ]T - angular velocity of {B} with respect to {I}, resolved

in {B};

Given two frames {A} and {B}, A
BR denotes the rotation matrix from {B} to {A}. In

particular, IBR (abbreviated R) is the rotation matrix from {B} to {I}, parametrized locally

by λ, that is, R = R(λ). Since R is a rotation matrix, it satisfies the orthonormality condition

RTR = I. Given the angular velocity vector ω, then

λ̇ = Q(λ)ω

where Q(λ) is a matrix that relates the derivative of λ with ω. The following kinematic relations

apply [15]:

d

dt
p =I v = Rv (6.3.1)
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and

Ṙ(λ) = R(λ)S(ω), (6.3.2)

where

S(ω) :=











0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0











(6.3.3)

is a skew symmetric matrix, that is, ST = −S. The matrix S satisfies the relationship S(a)b =

a× b, where a, b are arbitrary vectors and x denotes the cross product operation. Furthermore,

||S(ω)|| = ||ω||.

6.3.2 Time-varying complementary filters. Navigation problem formulation.

We now extend the basic concepts of complementary filtering to the time-varying setting.

The motivation for this work can be simply described by considering the example where one

is interested in estimating the position p and velocity Iv of a vehicle based on measurements

pm and vm of p and v, respectively. In the case of an ocean surface vehicle, pm is provided by

a Differential Global Positioning System (SGPS), whereas vm is provided by a Doppler sonar.

In the case of a fully submerged underwater vehicle, pm can be provided by a Long Baseline

System or by a GIB system [58].

It must be stressed that due to the physical characteristic of the Doppler sonar the measure-

ment vm is naturally expressed in body-axis, that is, in the reference frame {B}. Furthermore,

Doppler bias effects are also naturally expressed in {B}. This is in contrast with the mea-

surements pm, which are directly available in the reference frame {I}. These facts impose

important constraints on the class of complementary filters for position and velocity estimation,

as will become clear later.

The underlying process modelMpv is depicted in figure 6.3.1, where Et is a dynamical system

(filter) that operates on the measurements pm and vm to provide estimates p̂ of p. In the figure,

pd and vd are measurement disturbances. As detailed in the motivating example introduced

in the chapter on complementary filters, we study the situation where pd = 0 and vd = vd,0

where vd,0 is the Doppler bias. This setup is all that is required for the design of complementary

filters from a ”frequency-like” domain point of view. Notice that the process model Mpv is
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?

p̂-

Figure 6.3.1: Process model.

time-varying due to the presence of the rotation matrix R(t). However, the entries of R(t) and

their derivatives are not arbitrary functions of time but exhibit bounds that depend on each

specific vehicle mission under consideration. For example, if an underwater vehicle motion is

restricted to the horizontal plane and the maximum yaw rate achievable with that vehicle is

rmax, then this information must be explicitly included in the description of the process model

Mpv as we explain below. We now introduce the following definitions.

Definition 6.3.1 Process Model Mpv - The process model Mpv is given by

Mpv :=



















d
dtp = Iv

pm = p

vm = R−1(t)Iv + vd,0

(6.3.4)

We further assume that the matrix R and its derivative Ṙ are constrained through the inequal-

ities

|φ(t)| ≤ φmax, |θ(t)| ≤ θmax (6.3.5)

and

|p(t)| ≤ pmax, |q(t)| ≤ qmax, |q(t)| ≤ rmax (6.3.6)

for all t ∈ R+. Notice in the definition above that there are constraints on the roll and pitch

angles φ and θ respectively, but not on the yaw angle ψ. This is due to the fact that ocean
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vehicles are designed to undergo arbitrary maneuvers in yaw, but pitch and roll excursions are

restricted by vehicle construction.

Definition 6.3.2 Candidate complementary filter - Consider the process model Mpv in

(6.3.4) with vd,0 an arbitrary constant, and let Et be a linear time-varying filter with realization

Et :=







ẋ = A(t)x+Bp(t)pm +Bv(t)vm

p̂ = C(t)x.
(6.3.7)

Then, Et is said to be a candidate complementary filter for Mpv if

• Et is internally stable

• For every initial conditions p(0) and x(0), limt→∞{p(t)− ˆp(t)} = 0.

• Et satisfies a bias rejection property, that is, limt→∞ p̂ = 0 when v = 0.

Definition 6.3.3 Complementary filter with break frequency ωc - Let Et be a candidate

complementary filter for Mpv, and let Etp denote the corresponding operator from pm to p̂.

Then, Et is said to be an (ε, n) complementary filter for Mpv with break frequency ωc if Etp is

an (ε, n) low-pass filter with bandwidth ωc.

The discussion in the previous sections leads directly to the following filter design problem.

Problem formulation: Given the process model Mpv in (6.3.4) and positive numbers ωc, n,

and ε, find an (ε, n) complementary filter for Mpv with break frequency ωc.

6.4 Complementary filter design. Main results.

This section introduces a specific candidate complementary filter structure for Mpv and

derives sufficient conditions for the existence of a complementary filter with the structure adopted

that meets required bandwidth constraints.

6.4.1 Candidate complementary filter structure.

Figure 6.4.1 depicts the candidate filter structure forMpv that will be adopted in the chapter.

The structure is motivated by the simple example described in Section 3.3, where an extra
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Figure 6.4.1: Non-linear time-varying complementary filter.

integrator was inserted to estimate a sensor bias. Notice however that the filter explicitly

includes the rotation matrix R(t), which we assume is available from an attitude reference

system. The issue of robust filter performance against uncertainties in the measurement of R(t)

will be addressed later in this section. The following result is obtained.

Theorem 6.4.1 Consider the process model Mpv and the time-varying filter

Et :=



















ẋ1 = R(t)vm +R(t)x2 +K1(p− x1)

ẋ2 = R−1(t)K2(p− x1)

p̂ = x1

(6.4.1)

Suppose the filter Et is internally stable. Then, Et is a candidate complementary filter for Mpv.

Proof: From the assumptions, the time-varying filter has the realization

Et :=



















ẋ = A(t)x+
[

Bp(t) Bv(t)
]





pm

vm





p̂ = C(t)x.

where

A(t) =





−K1 R(t)

−R−1(t)K2 0



 , Bp(t) =





K1

R−1(t)K2



 , Bv(t) =





R(t)

0



 , C(t) =





I

0




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Furthermore, vm = v + vd,0, where vd,0 is an arbitrary constant vector (Doppler bias). Let

Φ(t, τ) denote the state transition matrix associated with A(t). Then, using the equalities

BPp(τ) = −A(τ)





p(τ)

0



 , Bvv(τ) =





d
dτ p(τ)

0



 , Bvvd,0 = −A(τ)





0

vd,0





the filter state evolution is given by




x1(t)

x2(t)



 = Φ(t, t0)





x1(t0)

x2(t0)



+

∫ t

t0

Φ(t, τ) {BPp(τ) +Bv(v(τ) + vd,0)} dτ

= Φ(t, t0)





x1(t0)

x2(t0)





+

∫ t

t0

Φ(t, τ)







−A(τ)





p(τ)

0



+





d
dτ p(τ)

0











dτ

+

∫ t

t0

Φ(t, τ)







−A(τ)





0

vd,0











dτ.

(6.4.2)

The transition matrix Φ(t, τ) satisfies

d

dτ
Φ(t, τ) = −Φ(t, τ)A(τ) (6.4.3)

and therefore 6.4.2 can also be written as




x1(t)

x2(t)



 = Φ(t, t0)





x1(t0)

x2(t0)



+

∫ t

t0







d

dτ



Φ(t, τ)





p(τ)

0















dτ

+

∫ t

t0







d

dτ



Φ(t, τ)





0

vd,0















dτ

= Φ(t, t0)





x1(t0)

x2(t0)



+





p(t)

0



− Φ(t, t0)





p(t0)

0





+





0

vd,0



− Φ(t, t0)





0

vd,0





(6.4.4)

Since the filter is stable, limt→∞ ||Φ(t, t0)|| = 0. The results follows immediately by observing

that p̂ = x1.
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Notice that the state x2 of the appended integrator tends asymptotically to −vd,0. Thus,

x2 provides an estimate of the Doppler bias in the body frame. This result makes perfect sense

form a physical point of view since the bias is constant in the body frame (not in the reference

frame I).

6.4.2 The candidate complementary filter: sufficient conditions for stability

and guaranteed break frequency.

The next result establishes sufficient conditions for the existence of fixed gains K1 and K2

such that the candidate filter is internally stable and has a guaranteed break frequency of at

least ωc, where ωc is a design parameter. In preparation for that result we let

ωr = [pr qr rr ]T := Rω

and define

Sr := S(ωr) = S(Rω)

Given the original design bounds (6.3.5)-(6.3.6), it is possible to compute positive upper bounds

p+r , q
+
r , and r

+
r such that

|pr| ≤ p+r , |qr| ≤ q+r , |rr| ≤ r+r . (6.4.5)

Let p−r = −p+r , q
−
r = −q+r , r

−
r = −r+r and construct the set {ωir, i = {1, .., 8}}, where

ω1
r =











p−r

q−r

r−r











,ω2
r =











p+r

q−r

r−r











,ω3
r =











p−r

q+r

r−r











,ω4
r =











p+r

q+r

r−r











, .....ω8
r =











p+r

q+r

r+r











.

Then

ωr ∈ Co{ω
i
r, i = {1, .., 8}} and

Sr ∈ Co{S
i
r = S(ωir); i = {1, .., 8}}

Theorem 6.4.2 Consider the linear time-varying filter (6.4.1) and assume that the bounds

(6.4.5) on ωr apply. Given n and ωc, let

ΣW :=







ẋ(t) = AWx(t) +BWu(t)

y(t) = CWx(t)
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be a minimal realization for the weighting Chebyschev filter introduced in subsection 6.2.2. Fur-

ther let

F =





0 I

0 Sr



 , and H =
[

−I 0
]

.

Suppose that given ε > 0 ∃ K ∈ R6×3, P ∈ R(6+n)×(6+n), P > 0, such that the linear matrix

inequalities

LLPi
(K,P, ε) :=























P





Fi +KH KCW

0 AW



+





Fi +KH KCW

0 AW





T

P

+





HT

−CT
W



 [H − CW ]

P





0

BW





[

0 BT
W

]

P −ε2I























< 0,

Fi =





0 I

0 S(ωi
r)



 , i = {1, ...8} (6.4.6)

are satisfied. Then, the constant gains





K1

K2



 := K

make the filter Et internally stable. Furthermore, the operator Etp : p → p̂ satisfies a low-pass

property with indices (ε, n) over [0, ωc], that is, ||(Etp − I)W
n
ωc || < ε.

Proof: Given the realization 6.4.1, consider the Lyapunov coordinate transformation [16]

ζ(t) = P̄ (t)x(t),

where

P̄ (t) =





I 0

0 R(t)



 .

With this change of coordinates, the operator Etp admits the realization

Etp =







ζ̇ = (P̄AP̄−1 + ˙̄PP̄−1)ζ + P̄Bpp

p̂ = CP̄−1ζ
(6.4.7)

Using the relations

P̄AP̄−1 =





−K1 I

−K2 0




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and

˙̄PP̄−1 =





0 0

0 RS(ω)R−1



 =





0 0

0 S(Rω)



 =





0 0

0 S(ωr)





(6.4.7) can be written as

ζ̇ =





−K1 I

−K2 S(ωr)



 ζ +





K1

K2



p

p̂ = [I 0] ζ. (6.4.8)

Simple algebra now shows that (Etp − I)W
n
ωc admits the state-space representation

(Etp − I)W
n
ωc :=

















−K1 I K1CW 0

−K2 Sr K2CW 0

0 0 AW BW

I 0 −CW 0

















= (6.4.9)

=











F +KH KCW 0

0 AW BW

H −CW 0











∈ Co





























Fi +KH KCW 0

0 AW BW

H −CW 0











, i = {1, ..., 8}



















.

where

K =





K1

K2





and F, H, and Fi are defined above.

Suppose ∃ P > 0 and K such that























P





Fi +KH KCW

0 AW



+





Fi +KH KCW

0 AW





T

P

+





HT

−CT
W



 [H − CW ]

P





0

BW





[

0 BT
W

]

P −ε2I























< 0,

i = {1, ..., 8}. (6.4.10)

Then, using standard results on polytopic system analysis (see proposition 6.2.1 or equation

(6.54) in [14])) it follows that ||(Etp−I)W
n
ωc || < ε. Clearly, if the inequalities (6.4.10) are satisfied
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then the gains




K1

K2



 := K (6.4.11)

guarantee that ||(Etp − I)W
n
ωc || < ε. Notice if expression (6.4.10) is satisfied for some P and K

then the matrices




Fi +KH KCW

0 AW



 , i = 1, ..., 8

are stable and therefore the polytopic system (6.4.8) with state matrix F + KH is internally

stable [14]. Since Lyapunov transformations preserve internal stability, the original system 6.4.1

is also internally stable.

The above theorem establishes sufficient conditions for the existence of fixed gains K1 and

K2 such that the complementary filter (6.4.1) is internally stable and meets desired ”frequency-

like” response characteristics. However, it does not provide any results on the feasibility of the

problem at hand. The theorem that follows addresses this problem partially, by showing that

there always exists a set of fixed gains for which the filter (6.4.1) is internally stable.

Theorem 6.4.3 Consider the linear time-varying filter (6.4.1). Then, for every set of finite

positive numbers p+r , q
+
r , and r

+
r such that the bounds (6.4.5) on ωr apply there exist fixed gains

K1 and K2 that make the filter internally stable.

Proof: From the proof of theorem 6.4.2, the filter (6.4.1) is internally stable if and only if the

unforced polytopic system

ζ̇ = (F +KH)ζ (6.4.12)

is internally stable for some choice of K. Given (6.4.12), consider the related time-invariant

system

ζ̇ = (A+KH)ζ = AKζ, (6.4.13)

where

AK = A+KH; A =





0 I

0 0



 .

The simple structures of the matrices A and H implies that (6.4.13) can be made stable by

choosing K1 = k1I,K2 = k2I, where k1 and k2 > 0 are positive but otherwise arbitrary. This
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stems from the fact that the closed loop eigenvalues of A+KH have multiplicity three and are

easily obtained from the roots of the second order polynomial s2 + k1s + k2. Therefore, from

basic Lyapunov stability theory it follows that for every γ1 > 0, γ2 > 0 there exists a positive

definite matrix

P1 =





P11 P12

P12 P22



 > 0

such that

ATKP1 + P1AK = −Q =





−γ1I 0

0 −γ2I



 (6.4.14)

Expanding (6.4.14) we obtain




−2P11K1 − 2P12K2 −P12K1 − P22K2 + P11

(−P12K1 − P22K2 + P11)
T 2P12



 =





−γ1I 0

0 −γ2I



(6.4.15)

and therefore P12 = −(γ2/2)I. Furthermore, since K1 and K2 are diagonal, P11 and P22 are

also diagonal. Consider now the linear time-invariant systems

ζ̇ = (Fi +KH)ζ = AKi
ζ i = 1, ..., 8 (6.4.16)

with Fi defined as before. Using the relation (S ir)
T = −Sir it follows that

AKi
P1 + P1AKi

=





−γ1I P12Sir

(Sir)
TP12 −γ2I



 i = 1, ..., 8 (6.4.17)

We now show that (6.4.17) can be made negative definite for all i = 1, 2, ...8 by suitable

choice of γ1 and γ2. In fact, using Schur complements [14] it easily shown that (6.4.17) is

negative definite if and only if

γ1I − P12S
i
rγ
−1
2 (Sir)

TP12 = γ1I − (γ2/4)S
i
r(S

i
r)
T > 0.

Since ||Sir(ω
i
r)|| = ||ω

i
r||, the above expression is satisfied with γ2 = 4 and γ1 > max{||ωir||

2 : i =

1, 2, ...8}. Hence, using the theory of polytopic systems [14] the system (6.4.12) and therefore

the original complementary filter are internally stable.

Note. From the proof of the theorem, it follows that the linear time-varying filter (6.4.1) is

internally stable for any choice of constant, positive, diagonal matrices K1 and K2.

We now address the issue of performance robustness of the complementary filter in the

presence of measurement errors in the rotation matrix R. In what follows, we let R = R(λ) and
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Rm = Rm(λm) denote the ”true” and measured rotation matrices, which are functions of the

”true” and measured orientation vectors λ and λm, respectively. We further let R−Rm = ∆R

and assume that ∆R is bounded, that is, there exists a positive constant δR such that ||∆R|| ≤

δR.

To compute the influence of ∆R on the estimation error ep = p − p̂, we set pm = p and

vm = v. From (6.3.4) and (6.4.1) it follows that the error ep is the output of a dynamical system

with input v and state-space realization

ΣEte :=



















ẋ(t) =





−K1 Rm

−R−1m K2 0



x(t) +





∆R

0



v(t)

ep(t) =
[

I 0
]

x(t)

(6.4.18)

The state matrix of Ete equals that of Et in theorem 6.4.1. Therefore, internal stability is

obtained if the conditions of theorem 6.4.2 are met with R replaced by Rm. In particular, if the

filter gainsK1 andK2 are constant, diagonal, and positive then internal stability is automatically

ensured (see theorem 6.4.3). The issue of robust performance requires further thought, but can

be addressed by viewing Ete as an input-output operator with realization

ΣĒte :=



















ẋ(t) =





−K1 Rm

−R−1m K2 0



x(t) +





I

0



u(t)

ep(t) =
[

I 0
]

x(t)

(6.4.19)

and input u = ∆Rv. If v is bounded uniformly in time, that is, ||v||∞ = v∞ <∞ then

||u||∞ ≤ ||∆R||||v||∞ = δRv∞

Since Ēte is internally stable, the induced norm ||Ēte‖∞,i of the corresponding operator is finite.

Therefore,

||e(t)||2 ≤ ||e||∞ ≤ ||Ēte||∞,i δRv∞

for all t in R+. Thus, the estimation error e(t) remains bounded for all t in the presence of

measurement errors in R and decreases uniformly to zero as δR approaches zero.

From the discussion above, it follows that the induced operator norm ||Ēte||∞,i is the correct

measure of performance robustness of the filter against measurement perturbations in the rota-

tion matrix R. A constraint on ||Ēte||∞,i can be included in the filter design process by using

the circle of ideas discussed in [67].
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6.5 Filter Design: a practical algorithm. Simulation results.

The previous section introduced the mathematical tools that are required to design a candi-

date complementary filter with a guaranteed break frequency. Notice, however, that the outcome

of the design process may very well be a filter with an effective bandwidth that is greater than

the one required. Clearly, the set of possible solutions must be further constrained so that the

designer have an extra design parameter at his disposal to select one solution (if it exists) that

meets the required break frequency criterion. This situation is identical to what happens in

the case of filter design using Kalman-Bucy theory, where the noise covariances play the role of

”tuning knobs” to shape the filter characteristics.

In the linear time-invariant case, a simple analysis of a Bode diagram indicates that an

expedite way of setting an upper bound on the break frequency is to make the filter ”roll-off”

sufficiently fast. In the time-varying setting, this corresponds to making ||EtpW
nh
ωh
|| < γ, where

Wnh
ωh

is a high-pass Chebyshev filter and ωh and γ play the role of ”tuning parameters”. In

practice, it is sufficient to vary the value of the parameter γ.

These considerations lead directly to a practical algorithm for the design of a time-varying

complementary filter with a desired break frequency ωc. This is done by using theorem 6.4.2

with the additional ”high-frequency” constraint described above, which can be also cast as a

LMI. The underlying optimization problem can be formulated as follows:

min γ

K

subject to:

||(I − Etp)W
n
ω0c
||∞ < ε0,

||EtpW
nh
ωh
||∞ < γ,

(6.5.1)

where the minimization is performed over the the set of gain matrices K ∈ R6x3 and ε0 captures

the low-pass requirement constraint. It is simple to see that the high-pass constraint ||EtpW
nh
ωh
|| <

γ is satisfied if ∃ Y > 0 and K such that
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LHPi
(Y,K, γ) :=























Y





Fi +KH KCWh

0 AWh



+





Fi +KH KCWh

0 AWh





T

Y

+





HT

0



 [H 0]

Y





KDWh

BWh





[

KDWh
BT
Wh

]

Y −γ2I























< 0,

i = {1, ...8}, (6.5.2)

where

ΣWh
:=







ẋ(t) = AWh
x(t) +BWh

u(t)

y(t) = CWh
x(t) +DWh

u(t).

The optimization problem (6.5.1) can now be cast in the LMI framework as follows. For

given numbers ε > 0 and γ > 0 define the sets

ΦLP (ε) = {K,P : P > 0, LLPi(K,P, ε) < 0, ∀i = 1, ..., 8} , (6.5.3)

ΦHP (γ) =
{

K,Y : Y > 0, LHPj (K,Y, γ) < 0, ∀j = 1, ..., 8
}

, (6.5.4)

where the expressions LLPi(K,P, ε) and LHPj (K,Y, γ) were defined in (6.4.6) and (6.5.2), re-

spectively. Then the solution K to the optimization problem (6.5.1) can be obtained by solving

the following constrained optimization problem:

min
(K,P )∈ΦLP (ε0);(K,Y )∈ΦHP (γ)

γ. (6.5.5)

The optimization problem (6.5.5) is non-convex. However, the matrix inequalities LLPi(K,P, ε) <

0 and LHPj (K,Y, γ) < 0 are jointly linear in the parameters P , K and Y . Therefore, for fixed K

the expressions LLPi(K,P, ε) and LHPj (K,Y, γ) are linear in P and Y respectively, and for fixed

P and Y they are linear in K. This observation suggests the following numerical solution/design

procedure to solve the above constrained optimization problem (see [29] and references therein

for similar approaches reported in the literature):

I Initialization

1 Fix ε > ε0 > 0. From operational conditions, determine the operating range of

angular velocities pr, qr, rr:

|pr| ≤ p+r , |qr| ≤ q+r , |rr| ≤ r+r .
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2 Specify the frequency ωc and use it to construct the low-pass weight Wn
ωc .

3 Specify the bandwidth ωt of the high-pass weight Wnh
ωh

. (As a rule-of-thumb choose

ωt >> ωc).

4 Select initial values for the gains K1, K2. (As suggested by the theorem 6.4.3 any

gains of the form γ1I, γ2I, γ1 > 0, γ2 > 0 will do.)

II Numerical optimization

1 Low-pass constraint. Solve

min
(P,K)∈ΦLP (ε),ε≥ε0

ε. (6.5.6)

Use K = [γT1 γT2 ] obtained in step I.4 to initialize K, then iterate over P and K to

solve the optimization problem (6.5.6). If no solution is found, increase ε0.

2 High-pass constraint. Let (P ∗,K∗) denote the solution to the optimization problem

(6.5.6). Solve

min
(Y,K)∈ΦHP (γ),(P ∗,K)∈ΦLP (ε0)

γ. (6.5.7)

Use K∗ as an initial value for K, then iterate over Y and K to solve the optimization

problem (6.5.7).

Due to non-convexity the numerical solutions proposed in Steps II.1 and II.2 are not guar-

anteed to converge to a local minimum [29]. Therefore, the algorithm should be run for multiple

initial conditions. It is then up to the system designer to select appropriate values of the tuning

parameters to try and meet all the criteria that must be satisfied by a complementary filter with

a desired break frequency. See the definitions of complementary filter with break frequency ωc

and low-pass filter with bandwidth ωc introduced early in this chapter.

To illustrate the performance of the complementary filtering structure, a simple filter design

exercise was carried out for an autonomous surface vehicle undergoing rotational maneuvers in

the horizontal plane. In this case, the navigation system is required to provide accurate estimates

of the vehicle’s position based on position and velocity measurements provided by a DGPS and

a Doppler sonar, respectively. In the scenario adopted the vehicle progresses at a constant speed

of 2m/s while it executes repeated turns at a maximum yaw rate of 3rad/s. The Doppler sonar

is assumed to introduce a constant bias term vd,0 = [0.1m/s, 0.2m/s]T . The selected break

frequency for the complementary filter was ωc = 4rad/s.
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Figure 6.5.1: Filter gain K1 versus iteration number.

The design procedure is illustrated in figures 6.5.1 - 6.5.3. In the design, the orders n and nh

of the Chebyschev weightsWn
ωc andWnh

ωh
were selected as 2. Furthermore, ωh was set arbitrarily

to 60rad/s. The performance parameter ε0 for the low-pass filter was chosen as 0.2.

Figure 6.5.1 shows the evolution of the complementary filter gain K1 for three different initial

values. The bold curve shows clearly the general tendency for the case where the initial values

are small: the filter does not exhibit a high enough break frequency, and therefore the gains

are increased until the low-pass requirement is met, possibly with a certain margin (the margin

depends on the particular sequence of iterations obtained by running the first minimization

problem in (6.5.6)). At this point, the high-pass constraint comes into play, forcing the gains

to change until the low-pass constraint is met, without incurring too much spillover at high

frequencies.

The three lower curves in figure 6.5.2 are plots of ||(Etp − I)Wn
ωc || as a function of ωc, the

operator Etp being computed with the gains obtained at steps A, B, and C of figure 6.5.1. The

top curve I shows the case where the filter gains were set to values much smaller than those

obtained in step A. Henceforth, we will refer to such plots as generalized Bode plots. The figure

shows clearly that the filter starts with a break frequency that is smaller than that required,

that frequency being increased until the break frequency requirement is met. It is the role of

the ”high-pass” constraint to guarantee that the low-pass requirement be met while reducing

the spillover at high frequencies. Figure 6.5.3 shows the evolution of ||EtpW
nh
ωh
|| as a function of
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Figure 6.5.2: Generalized bode plots - low-pass property

ωh. The iterative procedure described above aims at minimizing the value γ of these generalized

Bode plots at ω = 60rad/s subject to the low-pass constraint described before. The cases I and

A violate the low-pass constraint and are therefore not important to examine. Notice, however,

how the value of γ decreases from iteration B to C, thus showing that in case C less spillover is

introduced at high frequency.

The performance of the resulting filter was assessed in simulation. Figure 6.5.4 shows

the actual and estimated vehicle position when the initial state of the filter was set to x1 =

[10m, 20m]T and x2 = [0m/s, 0m/s]T . Figure 6.5.5 captures the evolution of the first compo-

nent of the Doppler bias estimate. It can be concluded from the figures that the filter provides

good tracking of the actual inertial trajectory and rejects the bias introduced by the Doppler

unit in the body-axis.

6.6 Extension to Accelerometers

In this section we extend the results discussed above to include the case of complement-

ing position information with that available from on-board accelerometers. This is a scenario

commonly encountered in the case of air vehicles. First, we introduce additional notation:

• Ia - linear acceleration of the origin of {B} measured in {I}.

• a - linear acceleration of the origin of {B} with respect to {I}, resolved in {B}
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Figure 6.5.3: Generalized bode plots - high-pass property

Using this notation we establish the following kinematic relationships for the case of accelerom-

eters:

d
dtp = Iv

d
dt
Iv = Ia = R(λ)a

d
dtR(λ) = R(λ)S(ω),

(6.6.1)

The underlying process modelMpa is depicted in figure 6.6.1, where Et is a dynamical system

(filter) that operates on the measurements pm and am to provide estimates p̂ of p. In the figure,

pd and ad are measurement disturbances. As in section 6.4, we study the situation where pd = 0

and ad = ad,0 where ad,0 is the accelerometer bias.

Definition 6.6.1 Process Model Mpa. The process model Mpa is given by

Mpa :=































d
dtp = Iv

d
dt
Iv = Ia

pm = p

am = R−1(t) Ia+ ad,0

(6.6.2)

The discussion in the previous sections leads directly to the following filter design problem.

Problem formulation. Given the process model Mpa in (6.6.2) and positive numbers ωc, n,

and ε, find an (ε, n) complementary filter for Mpa with break frequency ωc.
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Figure 6.5.4: Actual and estimated vehicle trajectory.

The theorem that follows introduces a candidate complementary filter for Mpa (see figure

6.6.2). The filter structure is motivated by the results presented in previous sections, where an

extra integrator was inserted to estimate the Doppler bias.

Theorem 6.6.2 Consider the process model Mpa and the time-varying filter

Eta :=































ẋ1 = x2 +K1(p− x1)

ẋ2 = R(t)am +R(t)x3 +K2(p− x1)

ẋ3 = R−1(t)K3(p− x1)

p̂ = x1

(6.6.3)

Suppose the filter Eta is internally stable. Then, Et is a candidate complementary filter forMpa.

The next result establishes sufficient conditions for the existence of fixed gains K1, K2 and

K3 such that the candidate filter is internally stable and has a guaranteed break frequency of

at least ωc, where ωc is a design parameter.

Theorem 6.6.3 Consider the linear time-varying filter (6.6.3) and assume that the bounds

(6.4.5) on ωr apply. Given n and ωc, let W
n
ωc be given by theorem 6.4.2. Further let

F =











0 I 0

0 0 I

0 0 Sr











, H = [I 0 0] .
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Suppose that given ε > 0 ∃ K ∈ R9×3, P ∈ R(9+n)×(9+n), P > 0 such that the linear matrix

inequalities






















P





Fi +KH KCW

0 AW



+





Fi +KH KCW

0 AW





T

P

+





HT

−CT
W



 [H − CW ]

P





0

BW





[

0 BT
W

]

P −ε2I























< 0,

Fi =











0 I 0

0 0 I

0 0 S(ωi
r)











, i = {1, ...8} (6.6.4)

are satisfied. Then, the constant gains










K1

K2

K3











:= K

make the filter Eta internally stable. Furthermore, the operator Etp : p → p̂ satisfies a low-pass

property with indices (ε, n) over [0, ωc], that is, ||(Etp − I)W
n
ωc || < ε.

The proofs of theorems 6.6.2 and 6.6.3 follow directly from the proofs of theorems 6.4.1 and

6.4.2 and will be omitted. The robustness of the filter Et with respect to uncertainties in the

rotation matrix R(t) can be analyzed using the steps outlined in Section 6.4. Similarly, the filter

design procedure given in Section 6.5 applies to the design of filter 6.6.3.
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Figure 6.6.1: Process model Mpa

6.7 Conclusions and future work

This chapter extended the theory of complementary filtering to the time-varying setting.

In particular, the frequency domain interpretations of complementary filters were extended by

resorting to the theory of linear differential inclusions and by converting the problem of weighted

filter performance analysis into that of determining the feasibility of a related set of Linear Ma-

trix Inequalities (LMIs). Using this setup, it has been shown how the stability of the resulting

filters as well as their ”frequency-like” performance can be assessed using efficient numerical

analysis tools that borrow from convex optimization techniques. The cases of complement-

ing position information with that available from on-board Doppler sonar and accelerometers

have been considered, however nothing precludes the use of the methodology proposed to other

complementary filters. The resulting design methodology was successfully applied to a design

example. Future work will aim at extending these results to the discrete-time, multi-rate case.

Numerical methods to solve Bilinear Matrix Inequalities (BMIs) constitute an active field of

research, with interesting results recently brought to light (see [68] and references therein). The

use of these new algorithms can help to solve the problem at hand, addressing the optimization

procedure directly and can pave the way to the solution of difficult problems to solve with the

tools available until recently.
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Chapter 7

Non-linear Tracker for Joint

ASC/AUV Oceanic Missions

7.1 Introduction

In recent years there has been increasing interest in the use of fleets of autonomous vehicles to

perform complex missions. Air, land, and sea examples of such cooperative missions can be found

in [70, 4] and in the references therein. See also [59, 3] for an example of cooperative motion

control of the DELFIM Autonomous Surface Craft (ASC) and the INFANTE Autonomous

Underwater Vehicle (AUV) for marine applications. The Delfim ASC / Infante AUV ensemble

is being used to study the extent of shallow water hydro-thermalism and to determine the

patterns of community diversity at the vents in the D. João de Castro bank in the Azores. To

that purpose on-board sensors such as a video camera and a sonar are carried by the AUV to

collect scientific data on a pre-specified survey area.

In the latter case, data exchange between the two vehicles must rely on acoustic communi-

cations due to the strong attenuation experienced by electromagnetic waves in the water. In

order to have access to higher bandwidth acoustic communications, the vertical channel must

be used [3]. This constraint motivated the design of joint cooperative missions where the ASC

Delfim will be positioned in a vicinity of the vertical position of the AUV Infante with minimal

or no exchange of navigation data among both platforms (see figure 7.1.1).

These requirements lead naturally to the need of implementing a tracker on-board the ASC

143
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Figure 7.1.1: Joint mission of the Delfim ASC and the Infante AUV.

to provide estimates of the relative position and velocity of both platforms. Traditional solutions

rely on the use of Ultra-Short Baseline positioning systems (USBL) or, more recently, on a GPS

Intelligent Buoy tracker system (GIB) [58]. However, their high price, complex installation, and

precise calibrating requirements lead one to pursue alternative solutions. This work proposes a

structure for the tracker that complements data from a camera with that available from other

motions sensors. This solution is plausible in shallow water and under high visibility conditions,

when an artificial feature associated with the AUV can be extracted from the image obtained

on-board the ASC.

Classically, trackers are based on the so-called proportional navigation law (PNG) [32]. How-

ever, the issues of stability and capturability are still active domains of research (see [55]). In-

teracting Multi Model (IMM) strategies have been proposed during the last decade [6] to take

into consideration the manoeuveurs by the tracking targets, but the complexity and computa-

tional power required to solve the complete problem preclude the implementation of the general

solution, as convincingly argued in [49]. Sub-optimal strategies are usually implemented with

some degradation of the resulting performance, but no reliable analysis are available.

Position, velocity, and attitude estimates (see chapter 4) are available for the ASC, provided

by a navigation system installed on-board [57], based on measurements from a DGPS, a Doppler
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Sonar log, and an Attitude and Heading Reference System (AHRS). The installation of a cali-

brated video camera on the ASC is required to provide access to the coordinates of an artificial

feature of the AUV in the image, such as a strobe light. To solve the ambiguity associated with

the image sensor, that maps the 3D world into 2D image coordinates, an additional measure-

ment of the AUV position is required. Alternatives measurements such as AUV depth or the

distance between the two vehicles can be provided by a depth cell or by an acoustic ranging

sensor, respectively, and will be discussed along this chapter. Moreover, in the case where the

previously specified depth for the AUV is used by the tracker, only data relative to deviations

from the mission plan are required to be transmitted through the acoustic communication link.

The key contribution of this work is the development of a vision based non-linear tracker

that departs considerably from classical solutions. The methodology developed for system design

builds on the theory of Linear Parametrically Varying (LPV) Systems [68], which are shown to

provide a new powerful framework for the design of navigation filters for autonomous vehicles

that rely on inertial and vision sensors. The new methodology leads to filter structures that are

intuitively appealing. Furthermore, it provides tools to assess regional (non-local) stability and

performance.

The work presented along this chapter builds on a key result presented in [64] relating the

errors on the image plane with the errors observed in the inertial frame, assuming a perspective

projection map. This algebraic relation allows for the design of an estimator that solves implicitly

the triangulation problem for the data from the video camera.

The organization of the chapter is as follows: section 7.2 reviews some background material

on linear time-varying systems, induced operator norms, and on linear parametrically time-

varying (LPV) systems. In section 7.3, some notation and the basic kinematic relations for the

autonomous vehicles present in the mission scenarios envisioned are described. The sensor suite

to be installed on board is discussed and the resulting non-linear synthesis model to be used

in the tracker design problem is introduced. Section 7.4 presents the main results of the paper

by providing a solution to the tracking problem considered. Section 7.5 discusses simulation

results. The non-linear tracker problem is revisited in section 7.6, where instead of using the

AUV depth, a ranging sonar providing measurements on the distance between the two platforms

is used. Results for this sensor suite are presented along with a simulation experiment to assess

the performance. Finally, conclusions and some areas for further work are outlined in section
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7.7.

7.2 Mathematical background

This section introduces some technical results for the study of linear parametrically varying

(LPV) systems as a special case of linear time-varying systems. The notation and the basic

theory are by now standard, see [8], [14], [68] and [76].

Let Q (a compact subset of Rp) denote a parameter variation set and let Fρ be the set of all

continuous functions mapping R+ to Q. We will restrict ourselves to the class of LPV systems

GFρ with finite-dimensional state-space realizations

ΣGFρ =







ẋ = A(ρ(t))x+B(ρ(t))w,

z = C(ρ(t))x
(7.2.1)

where ρ ∈ Fρ, x ∈ Rn is the state, w ∈ W = Rm is the input, and z ∈ Z = Rp is the system

output. The symbols A(ρ(t)), B(ρ(t)), and C(ρ(t)) denote matrices of bounded, piece-wise

continuous functions of time, depending on a continuous time-varying parameter ρ(t) of proper

dimensions. See [8, 14, 68] and references therein for an introduction to the subject. In an LPV

system the parameter ρ ∈ Fρ is assumed to be unknown but measurable online. Note that the

symbol GFρ denotes both an LPV system and its particular realization ΣGFρ , as the meaning

will become clear from the context.

An LPV system GFρ : L2 → L2 is said to be stable if its L2 induced operator norm

‖GFp‖2,i = sup
ρ∈Q

‖Gρ‖2,i = sup
ρ∈Q

sup{
‖Gρw‖2
‖w‖2

: w ∈ L2, ‖w‖2 6= 0} (7.2.2)

is well defined and finite. The following result is instrumental in computing the L2 induced

operator norm of a system.

Theorem 7.2.1 [8] Consider the LPV system GFρ : W → Z with realization (7.2.1). Suppose

there exists a positive definite, symmetric matrix X ∈ Rn×n such that for all ρ ∈ Q

AT (ρ(t))X +XA(ρ(t)) +XB(ρ(t))BT (ρ(t))X +
C(ρ(t))CT (ρ(t))

γ2
< 0. (7.2.3)

Then, for x(0) = 0, w ∈ L2, ‖w‖2 < 1 and ∀ρ ∈ Q

limt→∞x(t) = 0.

and ‖GFρ‖2,i < γ.
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The extension of these definitions to the case where the operator inputs and outputs belong

to the space of essentially bounded functions of time is immediate, and can be found in [76].

A system GFρ : L2 → L∞ described by equation (7.2.2) is said to be finite-gain stable if its

‖GFp‖2,∞ induced norm defined as

‖GFp‖2,∞ = sup
ρ∈Q

‖Gρ‖2,∞ = sup
ρ∈Q

sup{
‖Gρw‖∞
‖w‖2

: w ∈ L2, ‖w‖2 6= 0}

is well defined and finite.

The GFp2,∞ induced norm is also referred to as generalized H2 norm (in an analogous way as

in chapter2). See [68] for the computation of ‖GFρ‖2,∞ by resorting to linear matrix inequalities,

as presented in the next result:

Theorem 7.2.2 [68] Consider the LPV system GFρ : W → Z with realization (7.2.1) and let

α > 0. Suppose that ρ(t) ∈ Q for all t ≥ 0 and that there exists a positive definite, symmetric

matrix Y ∈ Rn×n such that for all ρ ∈ Q

AT (ρ(t))Y + Y A(ρ(t)) + Y B(ρ(t))BT (ρ(t))Y < 0, and (7.2.4)

Y −
CT (ρ(t))C(ρ(t))

α2
> 0, (7.2.5)

then ‖GFρ‖2,∞ < α.

The following result, giving an upper bound on the L∞ norm of the output signal of an LPV

given a nonzero initial condition, completes the set of results that will be needed.

Theorem 7.2.3 [68] Consider the LPV system GFρ : W → Z with realization (7.2.1), with

w = 0 and β > 0. Suppose that ρ(t) ∈ Q for all t ≥ 0, and that there exists a positive definite,

symmetric matrix Z ∈ Rn×n such that for all ρ ∈ Q such that for all ρ ∈ Q

AT (ρ(t))Z + ZA(ρ(t)) < 0, (7.2.6)

Z −
CT (ρ(t))C(ρ(t))

β2
> 0 and (7.2.7)

xT (0)Zx(0) < 1, (7.2.8)

then ‖z‖∞ < β. Furthermore, x(t)→ 0 as t→∞.

Equipped with this set of results the tracking problem will be set and a solution will be

proposed and studied.
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Figure 7.3.1: Mission coordinate frames and notation.

7.3 Tracker design: problem formulation

This section describes the tracker problem that is the main focus of this chapter. For the

sake of clarity, we first introduce some basic notation and summarize the kinematic relations.

Next, the sensor suite is discussed for the envisioned mission scenario, as depicted in figure 7.3.1,

and the corresponding measurements are related according to the kinematics of the problem at

hand. Finally, the underlying non-linear tracker synthesis model is presented.

7.3.1 Notation

Let {I} be an inertial reference frame located in the pre-specified mission scenario origin,

at mean sea level, and let {S} and {U} denote body-fixed frames that move with the ASC and

AUV, respectively, as depicted in figure 7.3.1. The following notation is required:
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IpS := [ Ixs
Iys

Izs ]T - position of the origin of {S} in {I};

IpU := [ Ixu
Iyu

Izu ]T - position of the origin of {U} in {I};

p := [ x y z ]T - position of the origin of {U} relative to {S}, ex-

pressed in {I}, i.e., p = IpU −
IpS ;

IvS := [ I ẋs
I ẏs

I żs ]T - linear velocity of the origin of {S} in {I};

IvU := [ I ẋu
I ẏu

I żu ]T - linear velocity of the origin of {U} in {I};

λ := [ φ θ ψ ]T - vector of roll, pitch, and yaw angles that param-

eterize locally the orientation of frame {S} with

respect to {I};

ω := [ p q r ]T - angular velocity of {S} with respect to {I}, re-

solved in {S};

7.3.2 Vehicles kinematics and the sensor suite measurements

Given two frames {A} and {B}, ABR denotes the rotation matrix from {B} to {A}. In

particular, ISR(λ) is the rotation matrix from {S} to {I}, parameterized locally by λ. Since R

is a rotation matrix, it satisfies the orthogonality condition RT = R−1 or RTR = I.

Given the angular velocity vector ω, then

λ̇ = Q(λ)ω,

where Q(λ) is a matrix that relates the derivative of λ with ω. The following kinematic relations

for the ASC apply [15]:
d

dt
IpS = IvS =IS R(λ) S(IvS) and (7.3.1)

d

dt
I
SR(λ) =IS R(λ) S(ω), (7.3.2)

where S(IvS) is the ASC velocity relative to the inertial frame, expressed in S (i.e., the body-

fixed velocity) and where

S(ω) :=











0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0











(7.3.3)

is a skew symmetric matrix, that is, ST = −S. The matrix S satisfies the relationship

S(a)b = a × b, where a and b are arbitrary vectors and × denotes the cross product opera-

tion. Furthermore, ‖S(ω)‖ = ‖ω‖.
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It is assumed that the ASC is equipped with a set of sensors and its own navigation system,

as shown in detail in the design example described in chapter 4, that provides estimates on the

position and velocity of the body-fixed frame {S}, relative to the inertial frame {I}, IpS and

IvS , respectively. Estimates for the attitude λ are also available and, as a consequence, ISR(λ)

is assumed to be known.

The tracker design problem at hand will be cast in a structure similar to a complementary

filter (see chapter 3), based on measurements from a set of sensors installed on-board. The

sensor suite to be used and the available measurements will be discussed in the following. A

video camera pointing down, able to discriminate some artificial feature of the AUV such as a

strobe light, will be installed on-board the ASC. The camera position and orientation, IpC and

I
CR are given by (see figure 7.3.1)

IpC = IpS +IS R(λ) SpC (7.3.4)

and

I
CR(λ) =IS R(λ)SCR,

respectively, where the dependence on the position SpC and the orientation S
CR due to the

installation procedure is obvious. The coordinates of the AUV in the {I} and {C} coordinate

frames can be related by

IpU = IpC +IC R(λ)CpU . (7.3.5)

Using the relations (7.3.4) and (7.3.5), the coordinates of {U} in the camera frame {C} are

CpU =CS R
S
IR(λ)(IpU −

IpS −
I
S R(λ)SpC).

Assuming without loss of generality that CSR = I and SpC = 0, this relation degenerates into

CpU = [xc yc zc]
T =CI R(λ)(IpU −

IpS), (7.3.6)

which can be written in compact form as Cp =CI R(λ)p. Setting an artificial feature coincident

with the origin of {U} (such as a strobe light), processing the video images (i.e., threshold

detection) can be used to extract its 2D coordinates





uc

vc



 =





fxc/zc

fyc/zc



 , (7.3.7)



7.3. TRACKER DESIGN: PROBLEM FORMULATION 151

on the image plane, where f is the focal distance for the pinhole model of the imaging system.

This key relation in the computer vision area [36] corresponds to a non-linear mapping from R3

to R2, leading to an ambiguity in the coordinate measurements in the image plane. To solve

this ambiguity, an additional measurement on the AUV position is required, such as the depth

or the distance between the two vehicles. In what follows we assume that a depth cell is used1.

Assuming the ASC is at depth zero, the relative z coordinate (which equals the AUV depth)

is obtained from the third row of equation (7.3.6) as

z = −sin(θ)xc + cos(θ)sin(φ)yc + cos(θ)cos(φ)zc, (7.3.8)

where φ and θ are the Euler angles of roll and pitch, respectively. This relation assumes that

wave effects can be removed due to the existence of a navigation system on-board the ASC.

The measurement of this variable, performed in the AUV using a depth cell, should be sent to

the ASC via the communications channel or using the delay between two signals emitted from

the AUV (see [58], where this simplified communication method was used). As a cooperative

mission is envisioned for the two vehicles, the actual values should be sent to the ASC only

when some deviation from the original plan occurs. In this manner dependence on the acoustic

signals diminishes and the required bandwidth is reduced to a minimum.

In order to implement the desired estimator structure, the complementary measurement of

the AUV velocity relative to the ASC is required. A sensor that would measure this relative

velocity, based on the Doppler effect experienced by acoustic waves travelling between the two

vehicles, would be a possibility. However, this option requires sensors that are expensive or

difficult to implement and will therefore not be used in the proposed framework. Instead, an

approximate relation that is introduced next will be exploited along this work. The relationship

builds on the assumption that the AUV travels at constant velocity.

Consider the position of the AUV relative to the ASC (as depicted in figure 7.3.1), written

as

IpU = IpS +IC R(λ) Cp,

where Cp is the relative position, expressed in the camera frame {C}. The velocities of both

1In section 7.6, the problem at hand will be revisited supported by sonar ranging measurements of the relative

distance between platforms.
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Figure 7.3.2: Estimator model.

platforms can be related as

IvU = IvS +
d

dt
(ICR

Cp). (7.3.9)

Consider for the time being that the the velocity of the AUV is zero (this restriction will be

lifted shortly). Then,
d

dt
(ICR

Cp) = −IvS ,

i.e., the velocity of the AUV seen by the catamaran and expressed in the inertial frame {I} is

the same as the velocity of the catamaran in {I}, apart from a change in signal. Moreover, using

the fact that a Doppler Sonar log is installed on-board the ASC, this relation can be rewritten

using (7.3.1) as
d

dt
(ICR

Cp) = −ISR(λ)S(IvS).

The assumption above motivates the use of an estimator with a bank of integrators aimed

at estimating biases in the velocity measurements. The estimated biases corresponds to the

deviation in the estimated ASC velocity due to the actual AUV velocity, which is different from

zero.

7.3.3 Design Model

In the following, the underlying design model that plays a central role in the design of the

envisioned tracker is presented. The model is based on the kinematic relations presented above
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and the resulting system G has the realization

ΣG =



















ṗ = −ISR(λ) S(IvS)m + b+ wv

ḃ = 0

ym = hλ(
Cp) + wy,

(7.3.10)

where ym is the measurement of y = [uc vc z]
T , i.e., the column vector of the variables from

the sensors’ measurements and hλ(
Cp) : R3 → R3 is obtained by putting together relations

(7.3.7) and (7.3.8) for the camera model and depth measurement, respectively. Vector b denotes

velocity bias that must be estimated. The velocity of the ASC is considered as an input to the

model. The overall model structure is depicted in the block diagram of figure 7.3.2.

7.4 Tracker design and analysis

The problem at hand can be described as that of determining estimates of the relative position

and velocity of the AUV with respect to the ASC, based on the sensor package described above.

The filter design model is the one in figure 7.3.2. In this section, a structure for a non-linear

estimator is proposed and analyzed.

Consider that the orientation of the camera frame installed on-board the ASC is constrained

to be in the compact set given by

Λc = {λ = [φ θ ψ]T : |φ| ≤ φmax, |θ| ≤ θmax}, (7.4.1)

and that the relative position of the AUV relative to the ASC, expressed in {C}, is constrained

to be in

Pc = {
Cp = [xc yc zc]

T : x ≤ xc ≤ x, y ≤ yc ≤ y, 0 < z ≤ zc ≤ z}. (7.4.2)

Notice that the yaw angle ψ is not constrained, x . . . z can be chosen according to the mission

scenario and the expected vehicles dynamics, and zc is positive given the fact that we are dealing

with an underwater vehicle and the inertial frame origin {I} is located at mean sea level. Let

the estimates of the relative position Cp and velocity Cv be written as p̂c and v̂c, respectively.

It will be required that the relative position estimate Cp̂ lie in the compact set

P̂c = {
Cp̂ = [x̂c ŷc ẑc]

T : |x̂c − xc| ≤ x− x+ dx, |ŷc − yc| ≤ y − y + dy, |ẑc − zc| ≤ z − z + dz, },

where dx, dy, and dz are positive numbers and dz < z.
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The estimator structure proposed along this chapter builds on a key result that was intro-

duced in [64]. See also [37], where the same structure is used on a navigation system used to

assist on the automatic landing of an autonomous aircraft. This algebraic result, which relates

errors in the image plane with errors observed in the inertial frame, is stated in the following

lemma:

Lemma 7.4.1 [64] Let hλ(. . .) be the mapping function introduced in section 7.3. Then

hλ(
Cp̂)− hλ(

Cp) = L(Cp̂,C p)H(Cp̂)(Cp̂−C p), (7.4.3)

where

L(Cp̂,C p) =











ẑc/zc 0 0

0 ẑc/zc 0

0 0 1











,

and H(Cp̂) denotes the Jacobian of hλ(
Cp̂), with respect to Cp̂.

According to the definition of hλ(
Cp̂), the Jacobian is given by

H(Cp̂) =











f/ẑc 0 −fx̂c/ẑ
2
c

0 f/ẑc −fŷc/ẑ
2
c

−sin(θ) cos(θ)sin(φ) cos(θ)cos(φ)











and

and verifies

|H(Cp̂)| =
f

ẑ3c
z,

therefore is invertible in the compact set of positions where the missions will take place. As a

motivation to the structure of the estimator to be proposed, invert expression (7.4.3) to obtain

Cp̂−C p = H−1(Cp̂)L−1(Cp̂,C p)(hλ(
Cp̂)− hλ(

Cp)).

Assuming that ẑc/zc ≈ 1 yields L(Cp̂,C p) ≈ I, i.e.,

(Cp̂−C p) = H(Cp̂)−1(hλ(
Cp̂)− hλ(

Cp)). (7.4.4)

The importance of this non-linear relation is twofold: i) it can be used in the estimator as a way

to relate errors in the sensor measurements with state variable errors, and ii) it holds the key to

bring the estimator dynamics into the form of a LPV system.
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Figure 7.4.1: Non-linear tracker structure.

An alternative way to arrive at this relation is by expanding hλ(
Cp) in its first order Taylor

series, in the vicinity of Cp

hλ(
Cp) = hλ(

Cp̂) +H(Cp̂)(Cp−C p̂) +O(Cp−C p̂),

which for negligible residuals (O(Cp−C p̂) ≈ 0) becomes identical to relation (7.4.4). Note that

in the work of [37] a similar relation was used, based however on the transposed Jacobian. These

circle of ideas leading to alternative solutions are also discussed in the framework of robotics in

[66] and in the references therein.

7.4.1 Proposed solution

Motivated by the relation in (7.4.4), the solution proposed for the problem addressed in this

paper is the tracker with realization

ΣT =







˙̂p = −ISR(λ)S(IvS)m + b̂+K1
I
CR(λ)H−1(Cp̂)(hλ(

Cp̂)− ym)

˙̂
b = K2

I
CR(λ)H−1(Cp̂)(hλ(

Cp̂)− ym),
(7.4.5)

where p̂ is the relative position estimate, b̂ is the bias estimate, and K1 and K2 are gains to be

computed so as to meet adequate stability and performance criteria. The estimator structure
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is depicted in figure 7.4.1. The input, state and output vectors are three dimensional. Clearly,

this is an LPV system.

We now address the problems of regional stability and performance of the filter proposed,

referred to as P1 and P2 respectively, below.

P1 Regional Stability - Consider the design model and the estimator structure introduced

before. Further assume that wv = wy = 0. Given an envisioned mission scenario defined

by Pc, find a number α > 0 and observer parameters such that the estimates p̂ of p and

v̂ of v verify the relationships

a) Cp̂ ∈ P̂c for t > 0,

b) ‖p̂− p‖+ ‖v̂ − v‖ → 0 as t→ 0

whenever ‖[(p̂(0)− p(0))T , (b̂(0)− b(0))T ]T ‖∞ < α.

In order to be able to state a result on the stability of the proposed solution, some auxiliary

results are needed. First, some auxiliary mappings and some properties to be used later will be

introduced.

Lemma 7.4.2 [37] Let φ : R6 → R3×3 and φ1 : R3 → R3×3 be the operators defined by

φ(Cp̂,C p) = HT (Cp̂)L(Cp̂,C p)H(Cp̂), (7.4.6)

and φ1(
Cp̂) = HT (Cp̂)H(Cp̂). Then,

φ(Cp̂,C p) > 0, φ1(
Cp̂) > 0, ∀Cp ∈ Pc and

Cp̂ ∈ P̂c.

Lemma 7.4.3 Let φ2 : R6 → R3×3 be the operator defined by

φ2(
Cp̂,C p) = H−1(Cp̂)L(Cp̂,C p)H(Cp̂), (7.4.7)

Then,

φ2(
Cp̂,C p) > 0, ∀Cp ∈ Pc and

Cp̂ ∈ P̂c.
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Proof: If φ2 were not positive definite there would exist at least one eigenvalue λ∗ < 0 verifying

H−1(Cp̂)L(Cp̂,C p)H(Cp̂)v = λ∗v.

Pre-multiplying by H(Cp̂) and HT (Cp̂), consecutively, this expression becomes

HT (Cp̂)L(Cp̂,C p)H(Cp̂)v = λ∗HT (Cp̂)H(Cp̂)v,

but according with the results in lemma 7.4.2 both sides of this expression are positive. Therefore

λ∗ can not be negative.

In the following the error dynamics for the proposed estimator will be presented, with a

similar form to the dynamics introduced for a generic LPV system (7.2.1). Using the design

model (7.3.10) and the proposed estimator with realization (7.4.5), define the auxiliary estimator

error variables e1 = p̂− p and e2 = b̂− b. The error dynamics can be written as







ė1 = e2 +K1
I
CRH

−1(hλ(
Cp̂)− hλ(

Cp)− wy)− wv,

ė2 = K2
I
CRH

−1(hλ(
Cp̂)− hλ(

Cp)− wy),

where H−1 stands as an abbreviation for H−1(Cp̂). Using lemma 7.4.1 and writing the error

dynamics in vector form such that e = [eT1 eT2 ]
T and w = [wTy w

T
v ]
T , the previous expressions

becomes

ė =





K1
I
CRH

−1LHCIR I

K2
I
CRH

−1LHCIR 0



 e−





K1
I
CRH

−1 I

K2
I
CRH

−1 0



w,

where L stands as an abbreviation for L(Cp̂,C p). Let K = [KT
1 K

T
2 ]T , F =





0 I

0 0



, and

C = [I 0]. Using lemma 7.4.3, this relation can be written in a more compact form as

ė =
(

F +KI
CRφ2(

Cp̂,C p)CIRC
)

e−
(

F +KI
CRH

−1C
)

w, (7.4.8)

and z = Ce. Notice that the system describing the error dynamics is an LPV that depends on

Cp and on Cp̂.

The next theorem gives conditions under which P1 has a solution. See theorem 4.3 in [37]

for a similar result.

Theorem 7.4.4 Consider a mission scenario where the orientation and position variables are

constrained by (7.4.1) and (7.4.2) respectively, and let P̂c be given. Let α < min(x−x+dx, y−
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y + dy, z − z + dz) be a positive number and define rz = z−z+dz
z < 1. Further let

F :=





0 I

0 0



 (7.4.9)

and C = [I 0]. Suppose there exists a matrix P = P T ∈ R6×6 such that

P > 0, (7.4.10)

F TP + PF +





−2(1− rz)
2I 0

0 0



 < 0, (7.4.11)

P −max











1
(x−x+dx)2

,

1
(y−y+dy)2

,

1
(z−z+dz)2











CTC > 0, (7.4.12)

I

α2
− P > 0, (7.4.13)

Then the filter with realization (7.4.5) and parameters K = [KT
1 KT

2 ]T = −P−1(1−rz)C
T solves

the filtering problem P1.

Proof:

The results expressed in theorem 7.2.3 will be used in the proof that follows. Condition

(7.2.6) of theorem 7.2.3 is verified for the deterministic version of the error dynamics in (7.4.8)

if

F TP + CT
I
CRφ

T
2 (
Cp̂,C p)CIRK

TP + PF + PKI
CRφ2(

Cp̂,C p)CIRC < 0.

Setting K = −P−1(1 − rz)C
T as suggested in [37], and using lemma 7.4.3 this relation can be

simplified as

F TP +





−(1− rz)
I
CRH

TLH−T
C
IR 0

0 0



+ PF +





−(1− rz)
I
CRH

−1LHCIR 0

0 0



 < 0.

Using the fact that in the set S = {∀e : eTPe < 1}

L = I +











ẑc−zc
zc

0 0

0 ẑc−zc
zc

0

0 0 0











> (1− rz)I,
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the second and fourth terms can be rewritten, resulting in

F TP + PF +





−2(1− rz)
2I 0

0 0



 < 0

which implies condition (7.2.6). The second condition is guaranteed by the condition (7.4.12),

and the third condition of theorem 7.2.3 holds due to (7.4.13), with the assumption that α <

min(x− x+ dx, y − y + dy, z − z + dz).

Now, after deducing that the given LMIs imply theorem 7.2.3, we can conclude that ‖e1‖∞ <

min(x− x+ dx, y − y + dy, z − z + dz) and that e(t)→ 0 as t→∞. Furthermore, in this case

e2 = b̂− b→ 0 implies v̂→ v, which completes the proof proposition P1.

The stability of the deterministic version of the estimator error dynamics proposed to solve

the tracking problem at hand has been proven, however we now address the more complex

problem of filter performance in the presence of sensor noise. Notice how filter performance is

captured in terms of a bound on the induced norm of a suitably defined operator.

P2 Regional Stability and Performance - Consider a mission scenarion defined by Pc and

P̂c in (7.4.2). Consider also the design model (7.3.10), with w = [wTy w
T
v ]
T ∈ L2 and

‖w‖2 < 1. Given positive numbers γ > 0 and α > 0 find (if possible) the observer

parameters such that

a) ‖Tew‖2,∞ < γ, where e = [(p̂− p)T (b̂− b)T ]T and Tew : w → e;

b) Cp̂ ∈ P̂c for t > 0;

c) e(t)→ 0 as t→∞ when w = 0 and ‖[(p̂(0)− p(0))T , (b̂(0)− b(0))T ]T ‖∞ < α

The next theorem gives conditions under which P2 has a solution.

Theorem 7.4.5 Consider a mission scenario where the orientation and position variables are

constrained by (7.4.1) and (7.4.2) respectively, and let P̂c be given. Let α < min(x−x+dx, y−

y + dy, z − z + dz) be a positive number and define rz = z−z+dz
z < 1. Let

ε = min
p̂c∈P̂c

λmin(H
−1(Cp̂)H−T (Cp̂))

= min
p̂c∈P̂c

λmax(H(Cp̂)HT (Cp̂))

(7.4.14)
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Given γ, suppose there exists a matrix P = P T ∈ R6×6 such that

P > 0, (7.4.15)























FTP + PF +











I
γ2

−(1 − rz)
2(2 − ε)I

0

0 0











PF

FTP −I























< 0,

(7.4.16)

P − 4max











1
(x−x+dx)2 ,

1
(y−y+dy)2 ,

1
(z−z+dz)2











CTC > 0, (7.4.17)

I

α2
− P > 0. (7.4.18)

Then the filter with realization (7.4.5) and parameters K = [KT
1 KT

2 ]T = −P−1(1−rz)C
T solves

problem P2 if ‖[(p̂(0)− p(0))T , (b̂(0)− b(0))T ]T ‖∞ < α.

Proof: The proof for this theorem will be shown in the following steps:

1. Requirement a) of proposition P2 will be proven by resorting to the results presented in

theorems 7.2.2 and 7.2.3, for the generalized H2 induced norm and for the initial conditions

on the filter, respectively;

2. Requirement b) of proposition P2 will be proven by resorting to the result presented in

theorem 7.2.1;

3. The third and last requirement of proposition P2 follows as a consequence of the use of

theorem 7.2.3 in the proof of requirement a).

Step 1 Given the error dynamics (7.4.8) for the proposed estimator, and again using K =

−P−1(1− rz)C
T and lemma 7.4.3, condition (7.2.3) in theorem 7.2.1 is verified if

F TP + PF + PFF TP + CTC
γ2 +





−2(1− rz)
I
CRH

−1LHCIR+ (1− rz)
2I
CRH

−1H−T
C
IR 0

0 0



 < 0,
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where the explicit dependence of the Jacobian in Cp̂ and of the auxiliary matrix L in Cp̂

and Cp was suppressed. Using the fact that L > (1− rz)I in the set S = {∀e : eTPe < 1},

the previous relation can be further simplified, resulting in

F TP + PF + PFF TP+




I
γ2 − 2(1− rz)

2I + (1− rz)
2εI 0

0 0



 < 0.

Using Schur complements [14], this relation becomes

















F TP + PF +





I
γ2 − 2(1− rz)

2I + (1− rz)
2εI 0

0 0



 PF

F TP −I

















< 0,

which implies condition (7.2.3) of theorem 7.2.1. In this way, for all w ∈ L2, ‖Tew‖(2,i) < γ,

where e = [(p̂− p)T (b̂− b)T ]T and Tew : w → e.

Step 2 Requirement b) in proposition P2 will be proven taking into consideration that (7.4.8)

is an LPV system. Therefore its solution will be composed of two terms as given by the

variation of constants formula, one due to the initial conditions and another driven by the

stochastic input. According to the definition, the output z = Ce is z = p̂− p. Moreover,

the norm of the output can be written as

‖z‖∞ ≤ ‖p̂− p‖∞|e(0)=0,‖w‖2<1
+ ‖p̂− p‖∞|w=0,‖e(0)‖∞<α

and each of the two terms in this inequality can be bounded by the same quantity, without

loss of generality, with the result

‖p̂− p‖∞|e(0)=0,‖w‖2<1
<

1

2
min(x− x+ dx, y − y + dy, z − z + dz) (7.4.19)

and

‖p̂− p‖∞|w=0,‖e(0)‖∞<α
<

1

2
min(x− x+ dx, y − y + dy, z − z + dz). (7.4.20)

To prove the relation in (7.4.19) we will use the result presented in theorem 7.2.2. Given

the estimator error dynamics (7.4.8) and the gain K = −P−1(1 − rz)C
T as above and
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using lemma 7.4.3, condition (7.2.4) is verified if

F TP + PF + PFF TP+




−2(1− rz)
I
CRH

−1LHCIR 0

0 0



+





(1− rz)
2I
CRH

−1H−T
C
IR 0

0 0



 < 0.

Using Schur complements [14], this relation becomes

















F TP + PF +





−2(1− rz)
2I + (1− rz)

2εI 0

0 0



 PF

F TP −I

















< 0,

which clearly is guaranteed if the LMI in (7.4.16) is feasible, as required in Step 1.

To obtain the bound on (7.4.20), the result presented in theorem 7.2.3 must be used in a

similar way to that presented in theorem 7.4.4.

In conclusion, if the LMIs (7.4.15), (7.4.16), (7.4.17), and (7.4.18) are observed, proposition

P2 is true for the proposed estimator.

Theorems 7.4.4 and 7.4.5 are the tools that allow for the design and analysis of the proposed

estimator, with complementary filter properties, for the envisioned tracker problem. Moreover,

according to theorem 4.5 of [37], the LMI in (7.4.16) is equivalent to computing

γ2 >
1

(1− rz)2(2− ε)
,

which is a lower bound on the ‖Tew‖2,∞.

7.5 Experimental results

This section summarizes the design and analyzes briefly the performance of a non linear

tracker with the structure proposed in (7.4.5) for a simulated mission scenario that requires the

concerted operation of the AUV and the ASC.

The nominal trajectories performed by the ASC and the AUV are square shaped in the hori-

zontal plane, with constant nominal velocities S(IvS) = [1.500]Tm/s and U (IvU ) = [1.000]Tm/s,
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Figure 7.5.1: ASC and AUV inertial coordinates on the horizontal plane.

respectively. The ASC remains at the sea surface (Izs = 0m) and the AUV starts the mission

at a depth of Izu = 30m. From time t = 60 s until t = 80 s the AUV changes its depth with a

constant vertical velocity of I żu = 0.25m/s.

The envisioned missions are naturally constrained by the ability of the video camera installed

on-board the ASC to detect artificial features on the AUV. This impacted on the choice of the

parameters for the compact sets Pc and P̂c, as shown in table 1. The value of γ in theorem 7.4.5

has a lower bound of γ2 > 55.8, which is a lower bound on the induced norm ‖Tew‖(2,i).

From the LMIs introduced in theorems 7.4.4 and 7.4.5 and from the aforementioned param-

eters, the value for the estimator gains are K1 = 0.74 I3×3 and K2 = 0.30 I3×3, respectively.

In the first experiment, additive gaussian noise with zero mean and a standard deviation of

0.1m for the depth sensor was considered. The relative z coordinate was initialized at 35m when

the nominal value was 30m. The results for the relative position p are depicted in figure 7.5.2,

which shows very small estimation errors. A stronger impact of depth sensor noise on the AUV

vertical velocity estimate can be observed in figure 7.5.3, due to the structure of the estimator

chosen. However, the vertical velocity changes are accurately estimated. Finally, the coordinates

on the camera plane, after compensation for the focal length frame and without taking into

consideration the resolution of the sensing system, are depicted in figure 7.5.4 (continuous line).

A second experiment was conducted to evaluate the overall performance of the tracker in the
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Parameter Value

Λc φmax 5◦

θmax 5◦

Pc x = y −20m

x = y 20m

z 20m

z 38m

P̂c dx 0.1m

dy 0.1m

dz 0.1m

Theorems 7.4.4 and 7.4.5 α 18.1m

rz 0.905m

Theorem 7.4.5 ε 0.0132

Table 7.5.1: Non-linear tracker design parameters.
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Figure 7.5.2: Relative position coordinates p (dashed) and estimates p̂ = [x̂ ŷ ẑ]T .
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T (dashed) and respective

estimates I ˆ̇xu,
I ˆ̇yu and I ˆ̇zu.
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Figure 7.5.4: Camera plane coordinates after compensation for the simulated camera parameters.

Exact knowledge of the camera position and orientation in the first experiment (continuous line)

and misplaced and misdirected (dashed line).
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Figure 7.5.5: Relative position coordinates p (dashed) and estimates x̂, ŷ and ẑ.
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Figure 7.5.6: AUV velocity in the inertial frame {I} IvU = [I ẋu
I ẏu

I żu]
T (dashed) and respective

estimates I ˆ̇xu,
I ˆ̇yu and I ˆ̇zu.
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presence of a more realistic vision sensor. To that purpose, a resolution grid was set so that a

1 m displacement at a distance of 40 m, in the plane parallel to the camera, corresponded to one

pixel. Moreover, an installation error on the camera, corresponding to a rotation on roll, pitch,

and yaw angles of 0.1 rad and a misplacement of 0.1m in all axes was set. The camera plane

coordinates are also depicted in figure 7.5.4 (dashed line). The impact of such disturbances on

the tracking system can be observed in figure 7.5.5. Notice that though the estimates on the

relative position becomes biased the tracker exhibits stable characteristics. The performance on

velocity estimates is very poor due to the structure of the tracker, where the bank of integrators

used to estimate the velocity bias is now also being used to absorb errors due to finite resolution

of the video sensor.

7.6 Non-linear tracker revisited

This section introduces a tracker based on an alternative sensor suite, composed of a video

camera, a Doppler log, and a sonar ranging system. The last sensor can be implemented using a

pinger, located on the ASC, emitting an interrogation acoustic wave that a transponder, located

on the AUV, detects and answers to with a signal recognizable by the pinger unit. In this way

the round trip travel time corresponds to twice the distance between the two vehicles in the

joint oceanic mission, assuming negligible velocities for both vehicles when compared with the

speed of sound in the water. This type of acoustic ranging sonar systems is common in Long

Baseline positioning systems and is commercially available. The algebraic relations as well as

their properties and the results introduced in section 7.4 will be revisited and written for this

alternative sensor suite.

Let us assume, without loss of generality, that the acoustic transducers of the pinger and

the transponder are installed in the origin of the frames S and U , respectively. From the round

trip acoustic travel time and assuming a constant (known) velocity for the acoustic waves in the

water vsound, the distance between both vehicles can be computed as

d =
τvsound

2
=
√

(Ixu − Ixs)2 + (Iyu −
Iys)

2 + (Izu − Izs)2,

where τ is the total round trip travel time of the acoustic waves. Using the notation previously

introduced for the position of the ASC and the AUV and using the identity I
CR(λ) CIR(λ) = I,
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this expression can be written as

d =
√

(IpU −
IpS)

T I
CR(λ) C

IR(λ) (IpU −
IpS) =

√

CpU
T CpU . (7.6.1)

We will work with the square of the distance, the advantages being evident in what follows.

The measurements from the video camera and from the sonar ranging sensor to be used by the

tracker are stacked together resulting in hλ(
Cp) : R3 → R3:

hλ(
Cp) =











uc

vc

d2











=











fxc/zc

fyc/zc

x2c + y2c + z2c











. (7.6.2)

Motivated by the alternative way to obtain the key algebraic relation presented in section 7.3,

based in the Taylor series expansion, the expression for the square of the distance in (7.6.1) can

be expanded in the exact second order Taylor series around the point Cp̂, i.e.

d2 = d̂2 +∇fT (Cp̂)(Cp−C p̂) +
1

2
(Cp−C p̂)TH(Cp̂)(Cp−C p̂),

where ∇f(Cp̂) =
[

2x̂c 2ŷc 2ẑc

]T
is the gradient and H(Cp̂) = 2I3×3 is the constant Hessian

matrix. Note that this equality precludes the amplification of the noise that could be added due

to the use of the square of distance.

The modified key algebraic relation is now presented along with the matrices relating the

relevant qualities.

Lemma 7.6.1 Let hλ(. . .) be the mapping function introduced in (7.6.2), then the following

relation holds:

hλ(
Cp̂)− hλ(

Cp) = (L(Cp̂,C p)H(Cp̂) +M(Cp̂,C p))(Cp̂−C p), (7.6.3)

where

L(Cp̂,C p) =











ẑc/zc 0 0

0 ẑc/zc 0

0 0 1











,

H(Cp̂) denotes the Jacobian of hλ(
Cp̂), with respect to Cp̂ and

M(Cp̂,C p) =











0

0

(Cp̂−C p)T










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accounts for the Hessian term of the last row, corresponding to the sonar ranging sensor.

According to the definition of hλ(
Cp̂), the Jacobian is given by

H(Cp̂) =











f/ẑc 0 −fx̂c/ẑ
2
c

0 f/ẑc −fŷc/ẑ
2
c

2x̂c 2ŷc 2ẑc











,

with a determinant |H(Cp̂)| = 2f2d2/ẑ3c that allows one to conclude that it is invertible in the

compact set of positions where the missions will take place.

As discussed earlier, this relation can be used in the estimator as a way to relate errors in

the sensor measurements with state variable errors and it is a non-linear relation that makes

the estimator dynamics an LPV system. Therefore, in this case the underlying design model is

also given by the relations in (7.4.5) which corresponds to a structure as depicted in figure 7.4.1.

Lemmas 7.4.2 and 7.4.3 are also true for the relation obtained (please refer to section 7.4 and

to [37]).

In the following the error dynamics for the proposed estimator using the present sensor suite

will be presented in a similar form to the dynamics introduced for the LPV estimator in (7.4.8).

Using the design model (7.3.10), the proposed estimator with realization (7.4.5), and lemma

7.6.1, the error dynamics can be written as

ė =





K1
I
CRH

−1(LH +M)CIR I

K2
I
CRH

−1(LH +M)CIR 0



 e−





K1
I
CRH

−1 I

K2
I
CRH

−1 0



w,

where H, L and H−1 are the same abbreviations as before and M is an abbreviation for

M(Cp̂,C p) introduced in lemma 7.6.1. Let K = [KT
1 K

T
2 ]T , F =





0 I

0 0



, C = [I 0], and

using lemma 7.4.3, this relation can be written in a more compact form as

ė =
(

F +KI
CRφ2(

Cp̂,C p) CIRC +KI
CRH

−1M C
IRC

)

e−
(

F +KI
CRH

−1C
)

w, (7.6.4)

with z = Ce. Notice that the system describing the error dynamics is again an LPV that

depends on Cp and on Cp̂ and that a new term appears in the system dynamics matrix.

For the system at hand it is also important to proof that propositions P1 and P2 are verified.

To achieve that purpose two theorems similar to theorems 7.4.4 and 7.4.5 will be presented, with

only a partial demonstration due to the similarity of the two cases.
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Theorem 7.6.2 Consider a mission scenario where the orientation and position variables are

constrained by (7.4.1) and (7.4.2), respectively and let P̂c be given. Let α < min(x−x+dx, y−

y + dy, z − z + dz) be a positive number, let rz = z−z+dz
z < 1, and let δ < −(x − x + dx + y −

y + dy + z − z + dz)/2.

Suppose there exists a matrix P = P T ∈ R6×6 such that

P > 0, (7.6.5)

F TP + PF +





−2(1− rz)
2I − 2(1− rz)δI 0

0 0



 < 0, (7.6.6)

P −max

(

1

(x− x+ dx)2
,

1

(y − y + dy)2
,

1

(z − z + dz)2

)

CTC > 0, (7.6.7)

I

α2
− P > 0, (7.6.8)

with F and C as defined above. The filter with the realization given by (7.4.5) solves the filtering

problem expressed in proposition P1.

Proof:

The proof of this theorem follows along the lines of theorem 7.4.4. The only difference is the

fact that the system dynamics equation has a new term. Condition (7.2.6) of theorem 7.2.3 is

verified for the deterministic version of the error dynamics in (7.6.4) if

F TP + PF +





−2(1− rz)
2I 0

0 0



+





−2(1− rz)
I
CRH

−1MC
IR 0

0 0



 < 0.

Using the fact that in the set S = {∀e : eTPe < 1}

H−1M =











. . x̂c
2(x̂2

c+ŷ
2
c+ẑ

2
c )

. . ŷc
2(x̂2

c+ŷ
2
c+ẑ

2
c )

. . ẑc
2(x̂2

c+ŷ
2
c+ẑ

2
c )





















0 0 0

0 0 0

xc − x̂c yc − ŷc zc − ẑc











verifies

H−1M > −
1

2
(x− x+ dx+ y − y + dy + z − z + dz) I,

the new terms can be rewritten, with the result that (7.6.6) implies condition (7.2.6). The

remaining conditions are guaranteed using the same arguments as in theorem 7.4.4, concluding

the proof of proposition P1, for this case.
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Note that the extra term on this theorem can be understood as a bound on the added noise

due to the use of the square of distance, in the sensor package proposed. The next theorem states

the conditions when proposition P2 is satisfied. The proof follows along the lines of theorem

7.4.5 and the new term in the system dynamics has a similar impact as in the previous theorem.

Theorem 7.6.3 Consider a mission scenario where the orientation and position variables are

constrained by (7.4.1) and (7.4.2), respectively, and let P̂c be given. Let F , α, rz, and δ be

defined as above. Define

ε = min
p̂c∈P̂c

λmin(H
−1(Cp̂)H−T (Cp̂)) = min

p̂c∈P̂c
λmax(H(Cp̂)HT (Cp̂))

and for a given γ, suppose there exists a matrix P = P T ∈ R6×6 such that

P > 0, (7.6.9)

















F TP + PF +





I
γ2 − (1− rz)

2(2− ε)I − 2(1− rz)δI 0

0 0



 PF

F TP −I

















< 0, (7.6.10)

P − 4max

(

1

(x− x+ dx)2
,

1

(y − y + dy)2
,

1

(z − z + dz)2

)

CTC > 0, (7.6.11)

I

α2
− P > 0. (7.6.12)

Then the filter with realization (7.4.5) and parameters K = [KT
1 KT

2 ]T = −P−1(1−rz)C
T solves

problem P2 if ‖[(p̂(0)− p(0))T , (b̂(0)− b(0))T ]T ‖∞ < α.

Theorems 7.6.2 and 7.6.3 are again the tools that allow for the design and analysis of the

proposed estimator, with complementary filter properties, for the envisioned tracker problem at

hand and the sensor suite presented at the beginning of this section.

To assess the performance of the proposed structure the results of a simulation experiment

is reported, where the nominal trajectories are identical to those described in section 7.5.

The envisioned missions are naturally constrained by the visibility of the artificial feature

of the AUV by the video camera installed on-board the ASC. Therefore, the parameters for

the position compact sets Pc and P̂c were chosen accordingly, as described in table 2. From
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Parameter Value

Λc φmax 5◦

θmax 5◦

Pc x = y −15m

x = y 15m

z 20m

z 38m

P̂c dx 0.1m

dy 0.1m

dz 0.1m

Theorems 7.6.2 and 7.6.3 α 18.1m

rz 0.905

δ −39.15m

Theorem 7.6.3 ε 1.32× 10 − 4

Table 7.6.1: Non-linear tracker design parameters for the new sensor suite.
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Figure 7.6.1: Relative position coordinates p (dashed) and estimates x̂, ŷ and ẑ.
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Figure 7.6.3: Camera plane coordinates after compensation for the simulated camera parameters.
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the LMIs introduced in theorems 7.4.4 and 7.4.5 and from the aforementioned parameters, the

values for the estimator gains are K1 = 0.92 I3×3 and K2 = 0.22 I3×3, respectively.

During the simulation, an additive gaussian noise with zero mean and a standard deviation

of 0.1m for the sonar ranging sensor sensor was set. A delay of 2δvsound was also introduced

in the measurements of the aforementioned sensor. The results for the relative position p are

depicted in figure 7.6.1, where minor impact on the performance of the tracker was observed in

the described conditions.

A stronger impact of the additive noise on the velocity estimate can be observed in figure

7.6.2, due to the structure of the estimator chosen, as was seen in the earlier experiment reported.

The coordinates on the camera plane, after compensation for the focal length frame and without

taking into consideration the resolution of the sensing system, are depicted in figure 7.6.3. In

figure 7.6.4 the distance measured by the sonar ranging sensor and the corresponding estimated

value is depicted. In conclusion, the overall performance of the proposed non-linear tracker seems

to be promising for the problem at hand, though a set of field tests will need to be performed

to assess the viability of such non-linear tracker in realistic oceanic conditions.
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7.7 Conclusions

A non-linear tracker structure was proposed to solve a specific tracking problem resulting

from the use of autonomous vehicles in oceanography. However, nothing precludes the applica-

tion of the methodology followed along this chapter to other generic tracking problems such as

hovering and feature-based navigation. Moreover, the approach consisting of designing feedback

systems in the sensors’ coordinates constitute a natural solution to a large class of estimation

and control problems in robotics.

The properties of the proposed non-linear trackers revealed as an interesting solution to the

problem at hand. A systematic methodology for the analysis and design of the resulting LPV

systems was presented. The simulation results provide confidence on the practical implemen-

tation of such non-linear estimators in a realistic setup, on-board a small autonomous surface

craft.

Due to the discrete-time nature of the measurements available from the sensor package to

be used, the development of a discrete-time version of such tracker is of utmost importance.

Moreover, since data from the sensors to be used is made available at different rates, the study

of a multi-rate version of such non-linear tracker should be further investigated. The time

independence of the key algebraic relation used to solve the tracker design problem at hand

along this chapter is a major feature toward achieving these goals.
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Chapter 8

Conclusion

This thesis started by reviewing a recently introduced framework for the characterization of

classical concepts in systems and control theory - Linear Matrix Inequalities (LMIs). Concepts

such as dissipativity of linear systems, stability of non-linear and linear systems, theH∞,H2, and

the generalized H2 norms computation of finite-dimensional, linear, time-invariant systems were

reviewed and formulated using LMIs, both in continuous and in discrete-time setups. Convex

constraints on regional placement of the eigenvalues of the systems at hand in terms of LMIs

were also presented. Moreover, two setups for closed loop estimation were introduced and a

discussion of the solutions obtained was outlined. The results obtained are easily implementable

in commercially available packages such as the MATLAB LMI Optimization Toolbox and they

pave the way for the design of estimators with multiple constraints.

Chapter 3 reviewed a methodology for the design of estimators, rooted on classic work done

by Wiener - Complementary Filters (CFs). The framework proposed, based on a stationary

stochastic characterization of the signals under consideration and on linear time-invariant sys-

tems, leads to a linear time-invariant solution resorting to spectral factorization techniques. This

approach is simpler than the stochastic setting proposed by Kalman, which requires a complete

characterization of process and observation noises. In real applications this a task that may be

difficult, costly, or not suited to the problem at hand. In a great number of practical applications

the filter design process is entirely dominated by constraints that are naturally imposed by the

sensor bandwidths as shown in a motivating example presented in the chapter. Moreover, the

relation between complementary filters and Wiener and Kalman filters was discussed.

177
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The study of periodic and multi-rate systems was one of the main thrusts of this thesis. To

that purpose, in chapter 4 the synthesis of periodic estimators for periodic and multi-rate systems

was described in detail. The definition of multi-rate systems as periodic systems was presented

and the description of linear systems as operators was introduced, with an emphasis on the

properties of linear, periodically time-varying systems. New theoretical results on the H2 norm

computation of periodic systems were deduced. The estimators structure introduced previously

was revisited and the solutions obtained were discussed in detail, based on the new results for this

subclass of systems. The methodology proposed, resorting to convex optimization procedures, is

based on minimization of the H2 and/or H∞ norms from auxiliary inputs to auxiliary outputs,

constrained by the norms of other input/output signals. This new synthesis methodology was

successfully applied to the design of a periodic navigation system, validated with simulation

results and during sea trials with an autonomous surface craft. The results obtained with this

powerful new methodology pave the way for the use of such a framework in periodic feedback

control and multi-rate filter design, which will be subject of future work.

Chapter 5 addressed the analysis problem for periodically time-varying linear systems, com-

plementing the previous chapter. Classically, the isomorphic properties of the z transform in the

case of linear, time-invariant systems have been commonly used to understand the frequency-

response for a given system. However, in the case of linear, periodically time-varying systems

the notion of frequency-response is not so clear. Some classical methods were reviewed with

emphasis on the difficulties in interpretation. Based on the results presented in the previous

chapter, a new methodology was presented, using the computation of the H∞ norm of a dif-

ference between two signals. The close relation to the classical frequency-response computation

(the Bode plot) and the broad class of systems that can be analyzed are the the main advan-

tages of the proposed approach. In order to get insight to the proposed method, the periodic

estimation problem solved in the previous chapter was analyzed. Finally, direct incorporation

of the frequency domain properties led to formulating a non-convex optimization problem.

Chapter 6 extended the theory of complementary filtering to the time-varying setting. In

particular, the frequency domain interpretations of complementary filters were extended by

resorting to the theory of linear differential inclusions and by converting the problem of weighted

filter performance analysis into that of determining the feasibility of a related set of Linear

Matrix Inequalities (LMIs). Using this setup, it was shown how the stability of the resulting
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filters as well as their “frequency-like” performance can be assessed using efficient numerical

analysis tools that borrow from convex optimization techniques. The cases of complementing

position information with that available from on-board Doppler sonar and accelerometers were

also considered. The resulting design methodology was successfully applied to a design example.

Future work will aim at extending these results to the discrete-time, multi-rate case.

A non-linear tracker structure was proposed in chapter 7 to solve a specific target tracking

problem resulting from the use of autonomous vehicles in oceanography. The approach, con-

sisting of designing estimators on the sensors’ coordinates, constitutes a natural solution to a

large class of estimation and control problems in robotics. Sufficient conditions for stability and

performance of the proposed non-linear target trackers were found, resulting in an interesting

solution to the problem at hand. A systematic methodology for analysis and design of the re-

sulting LPV systems was presented. The simulation results provide confidence on the practical

implementation of such non-linear estimator in a realistic setup, on-board a small autonomous

surface craft. Due to the discrete-time nature of the measurements available from the sensor

package to be used, the development of a discrete-time version of such tracker is of major impor-

tance and will be the subject of further development in the near future. Moreover, since data

from the sensors to be used is made available at different rates, the study of a multi-rate version

of such non-linear tracker should also be further investigated. The time independence of the key

algebraic relation used to solve the tracker design problem at hand in this chapter will be a major

feature in achieving these goals. Further, nothing precludes the application of the methodology

outlined here to other generic tracking problems such as hovering and feature-based navigation

problems.
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