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Abstract

A new approach to the supervision of fuzzy controllers
is presented. The supervision loop intends to overcome
some problems still unsolved, such as time-varying plants,
high non-linear plants or fine tuning of the linguistic terms
given by the expert in a fuzzy controller. The supervision
concept is based on the continuous adjustment of the math-
ematical functions used for the definition of the linguistic
terms which describe the actions of the rules. The amount
of adjustment is the result'of a weighted combination of the
results using two features observed in the control system
output — the rise time and the overshoot.

1 Introduction

The fuzzy set theory has been successfully applied to
automatic control, in the last fow years [6].

Complex industrial plants such as cement kilns or chem-
ical processes are the best suited for fuzzy control, due to
the lack of easy to use and robust mathematical models.

In order to overcome the difficulty of designing a pro-
cess controller from an high order, non-linear, time varying
model (if there is one) fuzzy rule based methodologies have
been proposed by several authors [2,3,4].

A fuzzy controller consists of a set of linguistic rules
expressing the control policy of the process operator. The
validity of this method is supported on the fact that the
control of some processes by an human operator achieves
better results than the controllers based on mathematical
models.

However, some problems remain unsolved. Even though
a fuzzy controller can achieve good performance in the con-
trol of non-linear systems, high non-linearities demand for
some kind of adaptiveness of the controller, namely if the
working point of the process is time varying.

In fuzzy controllers the fine tuning of control rules is
important. Incorrect control actions are usually the result
of ill-designed mathematical functions for the description
of the linguistic terms used by the controller, or due to
the existence of slightly incorrect premises for the control
rules.

This paper describes a new approach to the supervision
of fuzzy controllers. The supervision concept is based on

the contimous adjustment of the mathematical functions
used for the definition of the linguistic terms which describe
the actions of the rules.

A brief overview of the most important results of the
fuzzy sct theory and of its application to control is pre-
sented, in order to introduce a nomenclature and concepts.
In section 3 and 4, the proposed architecture for the fuzzy
adaptive controller and its detailed implementation are de-
scribed. Simulation results of the application of this con-
troller to several systems are displayed and compared with
non-supervised fuzzy controllers and PI controllers.

Finally, conclusions and future developments are dis-
cussed.

2 Fuzzy control theory and concepts

A fuzzy subset A of an universe of discourse (support
set) U is characterized by a membership function i (z) :
z € U — [0,1], representing the grade of membership of x
in A [7].

Each word or linguist term in a natural language can
be viewed as a label for a fuzzy subset A of a universe of
discourse U. This language assigns atomic and composite
labels describing words, phrases and sentences to subsets
of U [7].

A fuzzy linguistic variable is a variable whose values are
linguistic terms used as labels of fuzzy sets. For instance,
the fuzzy subset labels high, medium, low and ok can be
regarded as values of the fuzzy variable temperature.

The three basic operations among fuzzy sets (comple-
mentation, union and intersection) are described in terms
of the membership functions for the intervening sets. They
are related to negation not of labels and to connectives be-
tween labels or and and, respectively:

* complementation: s 4(z) =1 — 1ea(z)

e union: jiyup(z) = mazlj(z), pp(z))
e intersection: psnp(z) = min(pa(z), ng(z))

A controller can be interpreted as a mapping from an in-
put to an ontput. A fuzzy conditional statement describes
this mapping in a way related to the knowledge represen-
tation by production rules.

For a controller with two inputs and one output, a typ-
ical fuzzy conditional statement (or fuzzy rule) is:
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IF Vi is Ty and V,is T, THEN V, is T,
where
Vi, t = 1,2, is the linguistic variable for the input 2;
T: ,i=1,2, is one of the linguistic terms assumed by V;;

Voo, are respectively the linguistic variable and one of its
possible linguistic terms for the output.

Given the fuzzy subsets A C U and B C V, a fuzzy
conditional statcment R of the form: IF A THEN B, is
defined by the bivariate membership function

pr(z,y) = minfps(2), ua(y),z € U,yeV (1)

Now, if R is a fuzzy relation from U to V, and A’ a

fuzzy subset of U, the fuzzy subset B’ of V inferred from
A’ given R has the membership function

pe(y) = maz min(pa(e), pa(z,y)] ()
z

as a result of the application of the compositional rule
of inference(CRI) [7].

In this work, controller input values are crisp rather
than fuzzy sets. Then, the CRI can be simplified by the
interpretation of an input zo as a fuzzy input set A’ with

#A'(z)={ (1) z# 0

T =2Z
yielding

e (y) = minfpa(zo), na(y)] = pr(zo,y) (3)

for the fuzzy rule r [2].

The fuzzy controller is composed by a set of rules with
the form described before. Then, the final output fuzzy
set, resulting from an input zo and an inference cycle over
all the rules, is given by

ne(y) = maz minfus(zo), ua(y)] 4)
r
As with the input values, the output must be a crisp
value. The centroid method has been chosen for this
defuzzification operation:

_ Jue(y)ydy
" Tup(y)dy 5)

3 Architecture of a fuzzy controller and
supervisor

The overall architecture of the fuzzy controller and
supervisor is presented in figure 1. It is essentially a two
loop hierarchical system where the basic loop is the control
loop and the higher level loop is the supervision loop.

The control loop with the fuzzy controller is similar to
those found in the literature [2,4]. Usual controller inputs
are the error (error(t) = reference(t) — output(t)), the
change in error (Aerror(t) = error(t) — error(t — 1)), the

overshoot | Foatures
Supervisor K———— t——
I Tise time | EXUractor
reference . error | fyzy u v
+ Controller Plant
N

Figure 1: Architecture of the fuzzy controller and supervisor

integral of error or other process features.
The fuzzy controller is composed by four different ele-
ments.
¢ The input fuzzy encoder consisting of a set of analog
membership functions, describing the input linguistic
terms, and is designed by the human operator.

o The linguistic control rules, initially provided by an
operator, in the form IF premises THEN actuation.
Here, the premises are described by the input linguis-
tic terms (one for each input variable) and the actua-
tion by the output linguistic terms.

o A defuzzifier, which converts the output from the en-
tire set of rules (determined by maz-min fuzzy infer-
ence method) to a crisp control action.

e An integral action — the actuation is incremental, i.
e., each sampling time the controller outputs the de-
sired increment to the plant input.

No restrictions are made about the SISO plant to be
controlled, except that the operator has some knowledge
about its behaviour.

Decisfon: Augment Mosl Imp. Rules: 1,2,5
Rulei: IFEis PB and C_e is PB THEN Control is PB
Rflle 2: IF E is PB end C_e is ZE THEN Control is PM

I%ule S: IF € {s ZE and C_e is ZE THEN Control is ZE
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Figure 2: Example of actuation of the supervisor.
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The supervision loop intends to overcome some prob-
lemns still unsolved, associated with time-varying plants,
high non-linear plants or fine tuning of the linguistic termns
given by the expert in a fuzzy controller.

From the point of view of the fuzzy controller, given
the system performance and a desired performance index,
expressed by output features of the system, the supervisor
performs a fine-tuning procedure. The chosen features are
overshoot and rise time. Others could be used, related with
control activity or output offset.

Due to. the characteristics of the fuzzy inference pro-
cedure, a choice of only the most important rules fired is
done. Those are the rules that the supervisor, based on
the comparison between determined and desired features,
will change.

Based on the result of the comparison, a decision to
decrement or increment the central value of the output
membership function is made (fig. 2). However, some re-
strictions must be considered.

e If a linguistic term is changed, its symmetrical linguis-
tic term must also change.

o The linguistic term ZERO (ZE) must always be cen-
tered at 0. )

e For comsistency, the central values of POSITIVE_BIG
(PB), POSITIVE.MEDIUM (PM) and POSITIVE.-
SMALL (PS) must satisfy:

PB. > PM. > PS, > ZE,

Thesc restrictions intend to provide a "natural” change
of the rules actuation preserving their linguistic meaning
and close relation to operator actions.

4 Implementation

The implemented fuzzy controller has two inputs ~
the error and the change in error.

Three linguistic terms are defined for each of the input
variables: POSITIVE.BIG (PB), ZERO (ZE) and NEGA-
TIVE-BIG (NB) (figs. 3 and 4). Each linguistic term is
described by the membership function 2-==%) where a is
its central value and z ranges in the universe of interest.

The initial control protocol, a set of nine rules, can be
seen in table 1, where for instance the rule 1 can be read
as:

IF
error is POSITIVE_BIG and
change in error is POSITIVE_BIG
THEN
- controlis POSITIVE_BIG

This protocol agrees with some constraints related with
symmetry and stability [1]. The outputs of the table are
the seven linguistic terms associated with the control (fig.
5).
The defuzzification is done by the simplified centroid
formula:

zZE
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Figure 3: Input membership functions of variable Error.
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Figure 4: Input membership functions of variable Change in error.

Change in error
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Error | PB PB PM NS
ZE PM ZE NM
NB PS NM NB

‘Table 1: Rules protocol
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Figure 5: Output membership functions.

_ YLz controlespiss(control,.)
Y2z Bez(controls,)

where control,, is the central value of the membership
function zz.

Some results obtained with this fuzzy controller are pre-
sented in the next scction.

The features chosen as supervisor inputs are:

e The overshoot.

Yo (6)

e The rise-time percentage error (related to an estimated
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delay of the system output).

The set of most important rules during the last consid-
ered period is also required.

Different options were considered in order to choose the
supervisor actuation instants:

o Constant supervision sampling time (greater than sys-
tem sampling time).

¢ Variable supervision sampling time, related to the ref-
erence input.

e Variable supervision sampling time, given by a delay
after output stabilization.

The last option has been chosen, because it is the most
closely related with the instants when new information.
about feature values is obtained.

In each of the actuation instants, the samples of the fea-
ture values and the most important rules during the last
time interval are considered. Then, a decision of displace-
ment for the central value of the output function is taken
for every rule in the supervisor input set. The decision is
based on the overshoot and rise-time percentage error val-
ues. The amount of displacement is given by those values
and by an adaptation parameter - €.

control,, = control,.(1 — e.Overshoot)

control.. = control,.(1 + e’.Rise_time)

The displacement decisions fulfil the restrictions pre-
sented in the last section. The value of ¢ is important,
because there is a compromise between speed of conver-
gence and oscillation in convergence. High €’s give rapid
convergence with oscillations. Low €’s do not present os-
cillations but the convergence time increases.

5 Results
5.1 Methodology

Simulation of minimum and non-minimum phase 2nd.
order discrete systems was done. The response to a se-
quence of positive and negative steps was tested for the
two systems. '

A PI controller was designed for the minimum-phase
system with the goal of achieving the best rise-time with-
out overshoot (£ = 1). In one of the experiments an arbi-
trary change in the dynamics of the system has been made
at the middle of the simulation, without changing the PI
gains. The PI performance and the fuzzy controller with
and without supervision were compared for the system,
with changed and unchanged dynamics.

The equations describing the two systems are:

¢ Minimum phase system
y(t) = 1.06y(t—1) - 0.22y(t — 2) +
1.99E — 2u(t — 1) + 1.99E - 2u(t —~ 2)
e New minimum phase system, after change in dynamics
y(t) = 0.9y(t—1)-0.22y(t —2) +

1L.99E — 2u(t ~ 1) + 1.99E ~ 2u(t — 2)
e Non-minimum phase system
y(t) = 1.2y(t—1)-0.35y(t — 2) —
u(t — 1) + 2u(t - 2)
and the PI was implemented by

t
u(t) = Kp(error(t) + Ki Y _ error(k)) Ki=0.5,Kp=1
k=ty
The same ¢ has been used for all the simulations.

5.2 Comments

Figure 6 a), b) and c) show the results obtained for
the minimum phase system, respectively applying P, fuzzy
and adaptive fuzzy controllers.

In the latter, the membership function central values
were initially set to incorrect values. This enhances the
adaptation process of the output to the desired perfor-
mance. It can be seen that approximately after 800 simula-
tion steps, and 14 interventions of the supervisor, the adap-
tive fuzzy controller reaches the results for the PI controller
and for the fuzzy controller without supervision. This one
has carefully tuned central values for the membership func-
tions.

It must be pointed out that, at the end of the simulation,

a small overshoot can sometimes be observed. This is due
to the oscillatory nature of the sequence (sce 4). A smaller
€ would solve this, at the cost of a slower convergence.

The results for the same system but with a change in
the dynamics are presented in figure 7.

The PI (with fixed gains) can not cope with the change
in the dynamics, and its action upon the modified system
results in a slow response. In the other hand, the super-
vised fuzzy controller can adapt the response of the new
system, with better results than its unsupervised version.
The latter achieves similar results to those of the PI, in
what concerns the sensibility to changes in the dynamics.

For the non-minimum phase system, results for the PI
and fuzzy controller with and without supervision are pre-
sented in figure 8 a), b) and c).

The initial central values for the membership functions
in these controllers were displaced from its correct val-
ues, providing generally higher actuations in response to
high error and change in error. This explains the bad per-
formance of the unsupervised version. Due to the non-
minimum phase characteristics of the controlled system,
the initial step response error and change in error are big,
resulting in an initial large actuation with overshoot.

The supervised controller, however, achieves good re-
sults after only a few simulation steps, which corresponds
to fewer supervision cycles. Its action tends to reduce the
central values of the membership functions, as it was ex-
pected.
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6 Conclusions and future trends

A new strategy for supervision of fuzzy controllers
was prescnted. It consists of a continuous adjustment of
central values for the membership functions describing the
actuation linguistic terms for the most intervening rules in
each supervision cycle. This differs from other approaches
to fuzzy supervision [1,5} in the sense that the linguistic
meaning of the rules and its relation to initial operator
actions are preserved. The amount of adjustment is the
result of a weighted combination of the results using two
features obscrved in the control system output - the rise
time and the overshoot.

The results of this strategy were compared with those
obtained from the application of a PI controller and an
unsupervised fuzzy controller. Equal or better results were
achieved in cach case, with the adaptation reached in only
a few supervision steps.

At the present, every intervening rules classified among
the most important ones is adjusted by the same amount.
In the future, displacements weighted by the relative im-
portance of the rules will be implemented. Also, an heuris-
tic rather than algorithmic approach to the superviser will
be considered.
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