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Abstract

This paper proposes a new methodology for inte-
grated design of guidance and control systems for au-
tonomous underwater vehicles (AUVs). The method-
ology developed leads to a systematic procedure for
the design of controllers for AUVs to accurately track
reference trajectories defined in an inertial reference
frame. The paper illustrates the application of this
procedure to the design of a tracking controller for the
AUV MARIUS. The design phase is summarized, and
the performance of the resulting controller is assessed
in simulation using dynamic models of the vehicle and
its sensor suite.

1 Introduction. Guidance,
Control and Navigation

In a great number of envisioned mission scenarios,
Autonomous Underwater Vehicles (AUVs) will be re-
quired to follow inertial reference trajectories accu-
rately [10]. To achieve that goal, the following sys-
tems must be designed and implemented on-board
AUVs: 1) navigation, to provide estimates of linear
and angular positions and velocities of the vehicle,
ii) guidance, to process navigation/inertial reference
trajectory data and output set-points for the vehicle’s
(body) velocity and attitude, and iii) control, to gen-
erate the actuator signals that are required to drive
the actual velocity and attitude of the vehicle to the
values commanded by the guidance scheme.

Traditionally, control and guidance systems are de-
signed separately, using well established design meth-
ods for control and simple strategies such as line of
sight (LOS) for guidance, see [6] and the references
therein. During the design phase, the control sys-
tem is usually designed with sufficiently large band-
width to track the commands that are expected from
the guidance system. However, since the two systems
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Figure 1.1: The vehicle MARIUS

are effectively coupled, stability and adequate perfor-
mance of the combined system about nominal trajec-
tories are not guaranteed. In practice, this problem
can be resolved by judicious choice of guidance law
parameters ( such as so-called visibility distance in
LOS strategy), based on extensive computer simula-
tions. Even when stability is obtained, however, the
resulting strategy leads to finite trajectory tracking
errors, the magnitude of which depends on the type
of trajectory to be tracked (radius of curvature, vehi-
cle’s desired speed, etc,).

This paper proposes a new methodology for the
design of guidance and control systems for AUVs,
whereby the two systems are effectively designed si-
multaneously. The key idea is to realize that for these
types of vehicles the equilibrium (also known as trim-
ming) trajectories are helices parameterized by the
vehicle’s body axis velocity, yaw rate and flight path
angle [4]. Furthermore, using a convenient coordinate
transformation, the linearization of the vehicle error
dynamics and kinematics about any trimming trajec-
tory can be shown to be time-invariant [11]. Thus, the
problem of designing integrated guidance/control sys-
tems to track inertial trajectories that consist of the
piecewise union of trimming trajectories, falls within
the scope of gain scheduled control theory [7]. Using
this approach, the vehicle’s body axis velocity, yaw
rate, and flight path angle play the role of schedul-
ing variables that interpolate the parameters of linear
controllers designed for a finite number of represen-
tative trimming trajectories. The results reported in
(7] on so-called D-implementation of gain scheduled
controllers can then be used to obtain a combined



guidance/control system such that the properties of
the linear designs are recovered locally, about each
trimming trajectory. This new approach guarantees
that the steady state tracking error about any trim-
ming trajectory condition is zero. Moreover, the D-
implementation method leads naturally to a struc-
ture where the only exogenous commands required
are the desired linear inertial position and yaw rate,
thus avoiding the need to feedforward the trimming
conditions for the remaining state variables. Due to
space limitations, the methodology used for the de-
sign of combined guidance/control is only briefly sum-
marized here. For complete details, see [11].

The paper is organized as follows: Section 2 intro-
duces the model of the AUV MARIUS and derives its
linearized equations of motion about trimming tra-
Jectories. Section 3 describes the structure of a gain
scheduled trajectory tracking controller for the vehi-
cle. Finally, Section 4 assesses the performance of
combined guidance and control in simulation.

2 Vehicle Dynamics.

This section describes the dynamic model of the
AUV MARIUS, depicted in figure 1.1. A complete
study of the AUV dynamics based on hydrodynamic
tank tests with a Planar Motion Mechanism (PMM)
[1] can be found in [5]. In what follows, {I} denotes
a universal reference frame, and {B} denotes a body-
fixed coordinate frame that moves with the AUV. The
following notation is required:

p = [z, y, z]' - position of the origin of {B}
expressed in {I};

v = [u, v, w]’ -linear velocity of the origin of
{B} relative to {I}, expressed in {B};

A= (¢, 0, ¢) - vector of Euler angles which de-
scribe the orientation of frame { B} with respect

to {I}

w =[p, ¢, r]’ - angular velocity of {B} relative
to {I}, expressed in {B};

R = R(A) - rotation matrix from {B} to {I}.

Q = Q(A) - matrix that relates A to w and sat-
isfies A = Q(A)w.

The symbol § := [64 ¢, 64,4, bc, 6r)’ denotes the vec-
tor whose entries correspond to deflections of the
ailerons (common and differential), elevator, and rud-
der, respectively and the symbol n denotes the pro-
peller rotational rate. With the above notation, the
dynamics of the AUV can be written in compact form
as

MRB& + CRB ((‘l)(.l = "'(‘iy da As 6! n)t (2'1)

where r denotes the vector of external forces, q =
[v',w'], and Mgy and Crp denote the rigid body
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inertia matrix and the matrix of Coriolis and cen-
trifugal terms, respectively. The vector # can further
be decomposed as

T(a, QA 8, n) = Trest(A) + Tadd(ii» ‘.l) (2'2)
+71i£1(Q, 8) + Toise(Q, 8) + Tprop(n),

where 7,.,; denotes the forces and moments caused
by gravity and buoyancy and 7444 is the added mass
term. The term 7;4; captures the effects of the lifting
forces generated by the deflecting surfaces, 74i;¢ con-
sists of the forces and moments caused by skin fric-
tion, and 7prop represents the forces and moments
generated by the main propellers. Using equation
(2.1) and the associated kinematic relationships, the
state space model for the AUV can be written as

{«'; = F(@,)) + G@H(@v)
G={p =Rv (2.3)

A =Qu,

where F, G and H are continuously differentiable
functions, v, w, p and A are state space variables,
and u = [§',n]’ is the vector of control inputs. An
equilibrium or trimming trajectory of (2.3) is defined
as a path P, = [qL,pL, Ac']’ such that

F(‘.lc, AC) + G(‘.IC)H(QG, uc) =0 (24)

for some constant vector uc. Notice that for simplic-
ity, the equations do not show the explicit dependence
on time.

From equation (2.1), it can be concluded that the
only possible trimming trajectories P, correspond to
helices defined by

) 0
AC= p ’ lj)C=b
Ye

where 9¢ is yaw rate, Vo, = [|vc]| is body linear
speed and v is so-called flight path angle. Thus, the
trimming trajectories can be parameterized by the
vector a. = [V, ¥c,7c] € R3.

Given a., the corresponding trimming values for
the state variables of (2.3) can be determined from an-
alytical and numerical computations, as follows. Let
G*(q) be the orthogonal complement of G() satis-
fying G*(4)G(q) = 0. Multiplying the first equation
of (2.3) by G+(q), it follows that

Vo, COS(?/:Jct)
Vo sin(¢et) |, (2.5)
sin(yc)

0 = G*(4c)F(de, Ac)
Pc = Reve (2.6)
Ac = Q¢ we

along a trimming trajectory, thus eliminating the con-
trol input u.. By requiring that §, . = 0 at trimming,
it can be shown that (2.6), together (2.5), provide a
set of equations that can be solved numerically to give
v,w, ¢, as functions of Vo, ,vc,¥c, thus concluding
the computation of all relevant state variables at trim-
ming. For complete details, the reader is referred to



{11]. In what follows, the symbol P.(c.) denotes a
path parameterized by «..

Let P.(a.) be a trimming trajectory for the vehicle,
and define the variables

Vg = V— V¢
Wp = W—WwWc¢

2.7
Ps = R (p-pc) @1
Az = Q-‘(A*Ac)a

which can be interpreted as the generalized error
vector between the vehicle state and the trajectory
P.(ac). Let ug = u — uc. By noticing that ve and
we are constant along trimming trajectories, straight-
forward computations show that

f(‘is, AE) + g(‘.la)ﬂ("la,us)
ve+ve—RZ'R ve - S(‘A.’sv‘f' We)Pe
wp +WwWe — Q-‘Qc we + Q-l Q AE,

T 28)

Pu———
> 0
6 n &
o

F(QE + ‘:lc,Q As + '\c)
G(4s + 4c)
H((.ls +d4c,ug + uc),

22

-

>
oo

H((.IE! u)

and S(w) is the skew-symmetric matrix defined by
S(w) = wx. It is now possible to prove that the
linearization of (2.8) about the error vector [0]5,,u%]’
is time-invariant and can be written in the form

04s = A (ac)dds + A (ac)dAs + B(ac)dug

5ps vy — S(we)bpe — S(ve)As

6AE = 6‘!’3 - S(‘ﬁ’c)&AE
where the matrices

A, = -;;[.7-'(.'::, y) + G(x)H(z, 2)],
B = 3[6(z,y)H(z, 2)],

are computed at equilibrium values. Throughout the
rest of the paper, the symbol Gi(a.) denotes the lin-

earized time-invariant system with realization (2.9)
determined by the parameter «a..

(2.9)

3 Guidance/Control System

Suppose that associated to each linearized system
Gi(a.) there is a linear time-invariant controller K(a.)
that stabilizes and achieves adequate performance for
the closed-loop system, as evaluated by some perfor-
mance criterion. Theoretically, it is then possible to
define a gain-scheduled controller C that recruits the
appropriate linear controller K(«) based on the mea-
sured value a of the parameter a,.

In practice, C is obtained by designing a family
of linear controllers for a finite number of systems
Gi(ac), and interpolating between these controllers to
achieve adequate performance for all linearized plants
in the regimes where the vehicle is expected to oper-
ate. During real time operation, the controller pa-
rameters are updated as functions of the scheduling

variable a = [V, 4,7} .
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3.1 Linear Controller Design

The methodology selected for linear control system
design was M, [3]. This method rests on a firm the-
oretical basis, and leads naturally to an interpretation
of control design specifications in the frequency do-
main. Furthermore, it provides clear guidelines for
the design of controllers so as to achieve robust per-
formance in the presence of plant uncertainty.

The first step in the controller design procedure
is the development of a synthesis model which can
serve as an interface between the designer and the

Hoocontroller synthesis algorithm. Consider the

J(e)

Wy r = — = = = e = e — e — — 1
v s LT : T
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] l !
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Figure 3.1: Synthesis model.

feedback system shown in figure 3.1, where Gi(a.)
is obtained from the linearized model of the AUV
and K(a.) is the controller to be designed. The cor-
respondence between the standard notation of figure
3.1 [2] and that introduced in Section 2 for incre-
mental variables will be clear form the context. The
block J(a.) within the dashed line is the synthesis
model, which is derived from the linearized model of
the plant by appending the depicted weights. In prac-
tice, the weights serve as tuning "knobs” which the
designer can adjust to meet the desired performance
specifications.

The signal w, corresponds to the vector of input
commands that must be tracked. In this design ex-
ample, it includes linear positions. The signal w, rep-
resents the noise inputs to each of the sensors, and
disturbance inputs to the states of the plant. The sig-
nal u corresponds to the control inputs to the system.
The signal z, represents the components of the state
vector that must track the input commands, while
the vector z, contains the remaining state variables
that must be weighed.

The outputs of Wy, W,, and W3 constitute the vec-
tor z. Since zero steady-state error in tracking the
step command for all variables in z, was required,
the weighting function W) was chosen as a diagonal
of integrators. The integrator gains were adjusted
to get desired command response bandwidths. The
weights Ws, Wy do not include any dynamics. In



order to drive §,  to zero in steady state, an integra-
tor was included in W;.The signal y includes all the
states of the plant Gi(a.), together with the appended
integrator states that correspond to integrators.

Given a design model, suppose that the feedback
system is well posed and let 7, denote the closed
loop transfer matrix from w to z. The Hy synthe-
sis problem consists of finding, among all controllers
that yield a stable closed loop system, a controller
K(a.) that minimizes the maximum energy gain of
the closed loop operator T,,, denoted ||7,w||co- This
problem was solved using the methodology exposed
in [8], see [11].

3.2 Non-linear Tracking Controller
Implementation

A set of controllers was determined for a finite
combination of values of V5,9 and 7, and their
parameters interpolated according to the schedul-
ing vector « in a fixed bounded domain, see [11].
The implementation of the resulting non-linear gain
scheduled controller was done by extending the D-
methodology described in [7], which guarantees the
following fundamental linearization property: the lin-
earization of the nonlinear feedback control system
about each equilibrium trajectory preserves the in-
ternal as well as the input-output properties of the
corresponding linear closed loop designs.

Surprisingly, this property is often not satisfied by
gain scheduled controllers proposed in the literature,
see [7] and the references therein. In practice, vio-
lation of that property may lead to degradation in
performance, or even instability, of the closed-loop
system.

The D-methodology is based on the key observa-
tion that linear controllers are designed to operate on
the perturbations of the plant’s inputs and outputs
about the equilibrium points. Proper blending of the
different controllers requires that they have access to
such perturbations, locally. This is achieved by differ-
entiating some of the measured outputs before they
are fedback to the gain scheduled controller. In order
to preserve the input-output behaviour of the feed-
back system, integral action is provided at the input
to the plant.

The gain scheduled controller implementation is de-
picted in figure 3.2, where K denotes the interpola-
tion of the linear controllers obtained in Subsection
3.1. Notice that the only external commands to the
trajectory tracking controller are pe and ., which
are easily available from the trajectory generator.

It is important to stress that the D-method pre-

sented above requires differentiating some of the
plant’s measured outputs. Except for the case where
some of the derivatives are available from dedicated
* sensors, this cannot be done in practice. In this case,
the differentiation operator may simply replaced by
a causal system with transfer function —%~, or by a
simple finite difference operator for discrete-time im-
plementation, see [7]. It is also important to remark
that the D-methodology would require that the time-
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Figure 3.2: Tracking controller implementation

— J()

K(a)

derivative of A s be computed on-line. However, from
the relations 4z = q and Ay = w — QAo it follows
that the derivative is simply computed as depicted
in figure 3.2. Thus, the method proposed avoids the
need to feedforward trimming conditions for the state
variables and inputs, except ps and de.

4 Simulation of Guidance and
Control.

This section assesses the combined performance
of guidance and control using dynamic models of the
vehicle and its sensors suite. The reader is refered to
[9] for the design of the multi-rate navigation system
of the AUV MARIUS, and for a description of its
navigation sensors. Measurements of linear position
and velocity are provided by a Long Baseline (LBL)
positioning system and a Doppler sonar, respectively.

In the simulations, the sensors for attitude estima-
tion were sampled at 50 Hz, the Doppler sonar at
0.2 Hz, and the transponders were interrogated each
second for linear position and velocity estimation and
the integrated control and guldance systems were dis-
cretized at 10H 2.

The reference for linear position in the  — y plane
is an § - shaped trajectory consisting of three straiglit
lines 50m long each, and two semicircumferences with
radii of 38m. The reference trajectory in the vertical
plane descends smoothly along the depth coordinate
z with a slope of —10 deg. In order to simplify the
interpretation of the simulation results, the trajectory
was generated with a constant velocity V, = 2.0m/s.

The desired and observed trajectories are depicted
in figure 4.1. The activity of some relevant state vari-
ables are condensed in figure 4.2. In this simulation,
the LBL system uses four transponders located in
positions {—40,0,160}, {130,0, 150}, {—40, 190, 170}
and {140, 190, 135} specified in meters.

At the beginning of the maneuver, the actuation
variables are essentially constant durmg the first 25s.
Upon entering the circular path, the rudder deflects
to create a torque that will impart the desired rota-
tional speed to the vehicle. Once the desired speed is
reached, the rudder deflects slightly in the opposite
direction to stabilize the rotation. This maneuver is
characteristic of vehicles that are unstable in yaw.

At the middle of the first turn, the vehicle shows
a pronounced rotation in pitch in order to converge
rapidly to the desired vertical inclination of —10 deg.
This rotation is achieved by deflecting the ‘common
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Figure 4.1: Reference and observed trajectory - hori-
zontal and vertical planes.

aileron 8, . and the elevator §, in opposite directions,
80 as to generate a pure torque. When the vehicle
reaches the desired orientation, 8, . and 8, decrease.
However, their values don’t tend to zero, since they
must counteract the restoring torque due to the com-
bined effects of buoyancy and gravity.

When the vehicle reaches the end of the first turn,
there is a strong deflection in the rudder to drive the
velocity of rotation to zero. Similar comments apply
to the remaining part of the trajectory.

It is important to remark that the thrust activity
rises during maneuvers that require large deflection
of the control surfaces. This is required to counteract
the increase in drag, which tends to slow down the
vehicle.
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