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Abstract

This paper presents the use of the software program-
ming environments PROLOG and CORAL for the im-
plementation of the Strategic Level of the NPS Phoenix
vehicle. Whereas PROLOG provides a rule based mission
control specification language, CORAL builds on a graphi-
cal interface to describe mission programs using Petri nets.
The paper describes the interfacing of CORAL with the
Tactical level of the vehicle, and details the programming
and execution of a vehicle mission that was run in the
NPS test tank.

1 Introduction

This paper describes ongoing work between the
Naval Postgradute School (NPS) and the Instituto
Superior Técnico (IST) of Lisbon, as part of the
joint US/Portuguese activity on the subject of au-
tonomous,/semiautonomous underwater vehicle mission
control. The NPS has designed and operates the research
testbed Phoenix vehicle. The IST has led the team that
designed and built the MARIUS vehicle, which has un-
dergone extensive tests at sea. Both vehicles have similar
shapes and Execution level controllers implemented in a
GESPAC M68030 based architecture running the OS-9
real time operating system. Different approaches, how-
ever, have been taken in the design of the higher level
mission controllers for the vehicles.

A Phoenix mission program is specified by a set of PRO-
LOG rules that reflect Mission and Vehicle doctrines, and
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are executed as specified. The PROLOG inference engine
cycles through the predicate rules to manage the discrete
event logical aspects of mission related decisions. It tran-
sitions states, and generates commands to the Tactical
level of the vehicle, which is in charge of implementing
basic ’vehicle primitives’ [8].

Mission control of MARIUS can be achieved by speci-
fying a mission program that is embodied in a Petri net
structure. A software programming environment named
CORAL allows for graphically constructing the required
Petri nets, and executing them on a CORAL software En-
gine that is implemented on the vehicle’s computer net-
work [11].

In the summer of 1995, an experiment was conducted
to evaluate the difficulties and fundamental differences
in performing mission control using the two different ap-
proaches. A common mission was agreed on, and the NPS
Phoenix vehicle was used as an experimental platform
for evaluation of both mission control concepts. In the
experiment, the CORAL programming environment was
used to implement the Strategic level of the vehicle, thus
effectively replacing the existing PROLOG implementa-
tion. No Execution or Tactical level software needed to
be changed. Only the interfacing functions between the
Phoenix Tactical level and the CORAL calls to 'vehicle
primitives’ had to be brought into line.

The paper describes the CORAL software environment
for mission programming, and the interfacing that was
necessary to link it with the Phoenix Tactical level soft-
ware. Since the Phoenix control system runs with two
processors (SUN and GESPAC) and two different operat-
ing systems (Unix and OS-9), the first issue was to ensure
that the CORAL code - generated through the graphical
development of a Petri net specification - would correctly
open socket communications between the two processors
and initialize the Phoenix vehicle correctly. Later issues
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described in the paper dealt with the correct sequencing of
the 'vehicle primitive’ control functions: the starting and
stopping of filters, the issuing of control function set points
and, finally, the orderly shutdown of the control networks.
Mission specification Petri nets for a mission example will
be described and compared against the equivalent PRO-
LOG specification.

The organization of the paper is as follows. Section 2
describes the NPS Phoenix vehicle and its Mission Control
System, and reviews the use of PROLOG as a tool for mis-
sion control specification. Section 3 introduces CORAL
as an alternative framework for Mission Control specifica-
tion using Petri net theory, and describes the interfacing
of CORAL with the Tactical level of the vehicle. Finally,
Section 4 details the programming and execution of a sim-
ple tank mission using CORAL and PROLOG. The paper
ends with the conclusions in Section 5.

2 The NPS Phoenix Vehicle. Mis-
sion Control Specification using
PROLOG

For several years, the Naval Postgraduate School (NPS)
has been engaged in research and development of ad-
vanced control technology for unmanned underwater vehi-
cles. As part of that development effort, the NPS has built
the research testbed vehicle named NPS Phoenix. The ve-
hicle is equipped with eight plane surfaces and two propul-
sion motors for flight control. Two vertical thrusters
provide for heave and pitch control, and two transverse
thrusters for heading and lateral movement control. A
free flooded fiber glass dome supports two forward-looking
sonar transducers, a downward-looking sonar altimeter, a
water speed flow meter, and a depth pressure cell. Mo-
tion sensors mounted internally are used to measure angles
and rates for roll, pitch and yaw, respectively. The vehicle
has a length of 2.13 meters and a dry weight of 175 kg.
Sufficient energy storage (1100 Wh) is provided by 4 lead
acid gel batteries for approximately 3 hours of operational
testing.

2.1 Mission Control System Organization

With the objective of building an ever increasing level of
automatic capability into the vehicle, a tri-level software
control architecture comprising Strategic, Tactical, and
Execution levels has been developed. The architecture
provides for mission control capabilities, and eases the re-
configuration of control software code as missions become
more complex or vehicle capabilities change. The three
levels separate the software into easily modularized units
encompassing a wide range of functions from intense dis-

crete state transitions to the interfacing of asynchronous
data updates with the real time synchronized controllers
that stabilize the vehicle motion in response to commands.

The Strategic level uses PROLOG as a rule based mis-
sion control specification language. Its inference engine
cycles through the predicate rules to manage the discrete
event logical aspects of mission related decisions. It tran-
sitions states, and generates the commands that drive the
vehicle through its mission. Error recovery procedures
from failures in the mission tasks or the vehicle subsys-
tems are included as transitions to ’error’ states that ul-
timately provide commands to the servo level control for
appropriate recovery action.

The Tactical level, currently written in C, is a set
of functions that interface with the PROLOG predi-
cates, returning TRUE/FALSE in response to commands
and queries. The Tactical level is also interfaced to
the real time Execution level controller through asyn-
chronous communications using script type message pass-
ing through a non-blocking socket.

The Execution level commands the vehicle subsystems
to activate 'behaviours’ that correspond to those com-
manded. Communication from the Tactical level to the
Execution level takes place through a single socket. By
the design of this hierarchical control system, the Tacti-
cal level runs asynchronously and retains the mission data
file and the mission log file in global memory. It sends the
command scripts to the Execution level, and requests data
for the evaluation of state transitions.

2.2 Mission Control Implementation

The Mission Control System of the Phoenix vehicle, il-
lustrated in Figure 1, is currently implemented in hard-
ware using three networked processors. All Execution
level software is written in C and runs on a GESPAC
MC68030 processor in a separate card cage inside the
boat. Connected in the same card cage is an ethernet
card and an array of real time interfacing devices for com-
munications to sensors and actuators. The execution level
code containing a set of functions in a compiled module
is downloaded first and run to activate any mission. It
starts the communications socket on the GESPAC side,
and waits for the higher level controller to start.

The Strategic level PROLOG rules are compiled and
linked together with the supporting Tactical level C lan-
guage functions into a single executable process called
‘mission control’, that is run in a SUN Sparc 4 laptop
computer and linked through ethernet and a non-blocking
socket to the GESPAC processor. Upon starting, it first
opens the SUN side of the communications socket, initi-
ating the ethernet link between both SUN and GESPAC
processors, then sending sequenced control commands to
the vehicle. All vehicle control functions, with the excep-
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Figure 1: Outline of the Phoenix Networked Controller.

tion of the transmission of sonar imaging data, commu-
nicate using a message passing mechanism through that
socket.

A second SUN process called the 'Sonar Manager’ is
opened which runs asynchronously in the SUN and with
equal priority to the 'Mission Control’. This process is
linked through a separate socket to the GESPAC for the
purpose of the reception and handling of sonar imaging
data. This process is activated if and when sonar is acti-
vated by the the Strategic level rules. The ’Sonar Man-
ager’ captures data that is sent out from the Execution
level as soon as it has been acquired, and then processes
and passes the data to be displayed on an IRIS Graphics
workstation for visualization purposes.

3 Mission Control using CORAL

The Strategic Level of the Phoenix vehicle generates
messages that trigger the execution of a number of Tacti-
cal level functions. The conditions that determine the oc-
currence of those events are dictated by the logical struc-
ture of the mission being performed - as embodied in a
set of PROLOG rules - and by the types of messages re-
ceived from the Tactical Level. Clearly, this motivates an
alternative approach to the implementation of the Strate-
gic Level using Petri nets, which are naturally oriented
towards the modeling of asynchronous, discrete event sys-
tems with concurrency. This approach has been pursued
at IST in the course of developing a Mission Control Sys-
tem for the MARIUS AUV [1], leading to a software en-
vironment named CORAL for the design and implemen-
tation of Petri net structures [11].

This section describes the use of CORAL as an alterna-
tive software environment for the programming of under-
water vehicle missions. For the sake of completeness, the
section starts with a review of the necessary background

material on Petri Net theory. The nomenclature and the
style of the presentation have been strongly influenced by
the material in the textbooks of Cassandras [3] and Pe-
terson [12], which contain excellent introductions to the
subject.

3.1 Petri Net Theory

A Petri net is a device that manipulates events ac-
cording to well-defined rules. Since rules can be arbitrar-
ily complex, Petri nets are naturally suited to represent a
very large class of discrete event systems. In the theory of
Petri nets, events are referred to as transitions. In order
for a given transition to occur, a set of enabling conditions
must be satisfied. Information related to those conditions
is stored in elements called places. Places associated with
the conditions required for a transition to occur are viewed
as inputs to that transition. Other places, with condi-
tions that are affected by the occurrence of a transition,
are viewed as the outputs of that transition. In what fol-
lows, P = {p1,p2,...,Pn} denotes a finite set of places,
T = {t1,t2,...,tm } denotes a finite set of transitions, A is
a set of arcs that consists of a subset of (P x T)U (T x P),
and w: A — Z, is a weight function that assigns a posi-
tive integer (weight) to an arc.

To be of practical use, a Petri net requires a mechanism
indicating whether the conditions under which events can
occur are met or not. This is done by assigning tokens to
places. If a token appears in one place, this means that the
condition described by that place is satisfied. The way in
which tokens are assigned to places in a Petri net is defined
by a marking function p : P — N™, which maps the set
of places P to the n-tuple x = [z(p1), z(p2), ..., x(pn)]’ of
nonnegative integers, where z(p;) denotes the number of
tokens in place p;. A Petri net is formally defined as a
five-tuple

(P7 T7 ‘Av w, Xo),

where x¢) is the initial Petri net marking. The following
additional notation is required: the symbol I(t;) = {p; :
(pi,t;) € A} denotes the set of input places to transition
t;, while O(t;) = {p; : (t;,p:) € A} is the set of output
places from transition ¢;.

Associated with a Petri net, there is a Petri net graph
consisting of two types of nodes: circles representing
places, and bars representing transitions, see figure 1.
The arcs that connect places and transitions represent el-
ements of the arc set A. Each arc is shown together with
an integer representing its weight. The absence of an inte-
ger means that the weight is 1. Clearly, if there is an arc
directed from p; to t;, then p; € I(t;). Similarly, an arc
directed from ¢; to p; means that p; € O(¢;). When using
Petri net graphs, a token assigned to place p; is indicated
by a dark dot positioned in that place.
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Figure 2: Example of a Petri net

Since the execution of a Petri net is controlled by the
number and distribution of tokens in the net, it is natural
to identify the state X of a Petri net with its marking x.
It follows from the above definitions that the state space
x of a Petri net with n places consists of all n-dimensional
vectors with nonnegative integer entries. A transition ¢; €
T in a marked Petri net is said to be enabled if z(p;) >
w(p;, t;) for all p; € I(t;), that is, if the number of tokens
in each input place p; to the transition ¢; is at least as
large as the weight of the arc connecting p; to t;.

If enabled, a transition may fire and change the state
of a Petri net by removing tokens from its input places
and creating new tokens which are distributed to its out-
put places. The motion of tokens through the net is
specified by a state transition function ¢ : X x T — X
defined, for each enabled transition ¢;, by xx4+1(p;) =
zk(pi) — wips, t;) + w(ty, pi),i = 1,2,...,n, where zx(p;)
and 41 (pi) denote the number of tokens in place p; be-
fore and after ¢; fires, respectively.

The study of the logical or qualitative behaviour of Petri
nets can be carried out by resorting to rigorous analysis
methods that build on the concepts introduced above, see
[3, 12, 9] and the references therein. This issue has been
addressed in [11], in the context of formal mission verifi-
cation [5, 6].

At their inception, Petri nets were first used to formally
study the mechanisms of communications between asyn-
chronous components of a computer system. Since then,
they have found widespread use in the design and anal-
ysis of real-world systems in the areas of manufacturing,
networking and software engineering, as well as in robotic
applications, see for example [3, 12, 14, 9].

3.2 The CORAL Development Environ-
ment. Implementation issues.

This section introduces CORAL as a software envi-
ronment for the design and implementation of Petri net

structures, and explains its interfacing to the Tactical level
of the NPS Phoenix vehicle. The development of CORAL
for the MARIUS AUV is documented in [11]. The reader
will easily recognize the modifications that were needed to
interface it to the Tactical level software.
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Figure 3: CORAL/TACTIC level Interface.

The organization of CORAL can be explained in very
simple terms with the help of Figure 3, which illustrates
how the design of a subset of a generic Petri net is done,
and how the equivalent CORAL language description is
obtained. In order to understand the figure and the design
methodology adopted, two basic concepts are required:

i) Tactical Level Calling Header. - The firing of a generic
transition will start the execution of a Tactical Level com-
mand, which is evoked through an header with the struc-
ture

TACTIC(Fiypes fn, Pm)

where TACTIC specifies a Tactical Level function inter-
face that will be detailed later, Fyp. identifies the type of
function or particular algorithm to be executed, and f, is
the specific name of the function to be called. The last
calling parameter set P, indicates a finite set of places in
the Petri Net that will be marked depending on the type
of message received from the tactical function.

i) Wait, Action and Signal keywords - to describe a
Petri net, the CORAL language uses three basic keywords:
wait, action, and signal. The formal equivalence between
the textual description of a Petri net using those keywords
and its underlying Petri net graph, can be explained by re-
ferring to Figure 3, and examining the input and output
sets of a particular transition ¢x. The following equiva-
lence relationships follow immediately:

I(ty)
O(tx)

< wait{po, ..., P;j }
< action{TACTIC(Fiype, fnDr)}

stgnal{p}.
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In this case, the tactical level function called has only
one output message, and its occurrence will activate the
marking of place p,. The extension to more complex Petri
Net structures is obvious.

messages (marks)
input buffer

[ P
i o
place structure Py
lI t
I ty
transition structure t]
wait{.} | action{.}' signal{.}
I() &{0)

T,
[ CORAL/Tactical Level Interface |

Figure 4: CORAL Implementation Structure.

A CORAL Engine has been developed that accepts
Petri net descriptions and executes them in real-time. Fig-
ure 4 shows a schematic representation of the CORAL En-
gine data structure and the communication mechanisms
that implement a Petri Net. The CORAL Engine accepts
input messages corresponding to the markings of the Petri
net being run, checks for the current set of enabled transi-
tions, and issues output messages that correspond to the
new markings determined by the firing of those transi-
tions. In practice, this is done by executing a CORAL
Engine synchronous loop described by the following se-
quence of actions: for each message in the input buffer,

(1) - update the number of marks in the corresponding
place.

(2) - for the current state, check for the set of enabled
transitions.

(3) - choose one transition from the set of enabled tran-
sitions.

(4) - update the number of marks in the set of input
places I(tx) & (wait{.}).

(5) - issue messages in order to update the number
of marks in the set of outputs places, O(tx)
(action{...} signal{...});

(6) - repeat (2) through (5) until the set of enabled tran-
sitions has been exhausted.

This cycle is repeated until the input buffer is empty.
The CORAL Engine is complemented with a set of soft-
ware design tools that allow editing and generating a Mis-
sion Library containing the description of the Petri nets for
each phase of a given mission, see Figure 5. The Mission

CORAL
Compiler

Graphics to

Text Translator

Mission

CORAL
Engine

messages

| "~ CORAL/Tactical Level Interface ]

B Loader Library

Figure 5: CORAL Development Environment

Library can be constructed by using a Graphical Editor
to describe the structure of each mission phase, and gen-
erating the corresponding textual CORAL language de-
scriptions. Mission execution is achieved by loading suc-
cessively each mission phase from the Mission Library into
the CORAL Engine, and running it [11]. Figure 6 shows
the graphical interface for Mission Library editing.

Window Zoom Connect Help

PHASE_1.SUB

Figure 6: CORAL Graphical Editor

To complete the software tools that are required to
implement the Strategic level, an interface between the
CORAL Engine and the Tactical level was specified that
reflects the constraints imposed by the existing software
architecture. The following classes of functions were iden-
tified:

TACTIC(EXEC, function, place) - starts an Execution
level function. A place will be marked after the func-
tion has been executed.

TACTIC(ASK, predicate, place_1, place-2) - asks for the
logical value of a predicate. Place_1 (resp. place_2)
will be marked if the predicate is true (resp. false).
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TACTIC(REPORT, string) - the Strategic level reports
a string (message) to the operator console.

TACTIC(OOD, function, place) - The OOD is com-
manded to execute a function. A place will be
marked after the function is executed.

4 A Mission Example

INITIAL.SUB
PHASE_1.SUB
PHASE_2.5UB

PHASE_3.5UB

SURFACE.SUB

TERMINATE.SUB

Sub Petri Net.

Figure 7: Mission Program using CORAL

This section illustrates the use of PROLOG and
CORAL to run a simple mission with the NPS Phoenix
vehicle. As shown in Figure 8, the difference between the
two approaches lies on the implementation of the Strategic
level of the vehicle.

The mission selected has an initialization phase, a phase
where the vehicle submerges below the water surface to get
away from surface suction effects, a submerge to depth
phase, and a return to the surface. The mission is simple,
yet it serves the purpose of illustrating that the software
environments for Strategic level implementation may be
changed as long as the ’vehicle primitive’ calls are com-
mon.

Figure 7 depicts the global Petri net for the mission,
with each mission phase being implemented as a sub Petri
net. Due to lack of space, only the sub Petri net of phase
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Figure 8: Strategic Level Implementation using PROLOG
and CORAL.

two will be described here, which should be compared
against the original PROLOG rule set of Figure 10. The
initial stage of this phase consists of reading the next set-
point for depth from the mission data file, starting the
depth filter, and sending the vehicle command to use ver-
tical thrusters to submerge to the depth set point begin-
ning the submerge maneuver . While submerging, a timer
is started with a pre-defined timeout in order to limit the
duration of the maneuver. During the maneuver, the Tac-
tical level is continuously asked to check if the commanded
depth has been reached, the pre-defined timeout has ex-
pired, and if a system problem has occurred. In case the
answer to the first question is affirmative, this phase of
the mission is successfully completed and the mission can
proceed. Otherwise, the emergency surface maneuver is
activated and the mission is aborted.

The mission described was programmed using the
CORAL Graphical interface described in section, and ran
in the SUN Workstation devoted to Strategic level im-
plementation. During mission execution, the Graphical
interface allowed for the display of the state of the Petri
nets being run, by showing the evolution of their marking
sequences on the screen.

5 Conclusions

This paper described an experiment whereby the
CORAL programming environment developed by IST was
interfaced to the Tactical level of the NPS Phoenix ve-
hicle. No Execution or Tactical level software needed
to be changed. Only the interfacing functions between
the Phoenix Tactical level and the CORAL calls to ’'ve-
hicle primitives’ had to be designed. The relative sim-
plicity with which an example mission was jointly pro-
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grammed and run paves the way for future joint activi-
ties, and demonstrates that true inter-group cooperation
on the subject of underwater vehicle mission control is
within reach.
module Phase_2()
TACTIC

(EXEC, NextSetptPoint, NEXTPOINT)
NEXTPOINT

StartDepthFilter.sub

TACTIC
(EXEC, Submerge, SUBMERGING)

TACTIC
(EXEC, SturtTimer, TIMER_STARTED)

CTIC
(EXEC, Sleep_One,SLEEP_DONE)

IC
(REPORT,"Problem™)

Surface.sub

DEPTH_REACHED

TACTIC
(REPORT,"Success")

Phase_Completc

Figure 9: Mission phase 2 in CORAL

131

done:- current_phase(mission_abort),
ood(’shutdown_network’,X).

% Dive to starting depth using thrusters
execute_phase(2) :- exec_next_setpt_data(X),
start_depth_filter, exec_submerge(X),X==1,
exec_start_timer(X), repeat, phase_completed(2).

start_depth_filter:- ask_depth_filter_off(X),
X==1, exec_start_depth_filter(X),
exec_sleep(1,X).

start_depth_filter.

phase_completed(2):- exec_sleep(1,X),
ask_depth_reached(X), X==1, asserta(complete(2)).

phase_completed(2):- ask_time_out(X),X==1,
exec_surface(X), repeat, ask_surface_reached(X),
==1, asserta(abort(2)).

phase_completed(2):- ask_system_problem(X), X==1,
exec_surface(X), repeat, ask_surface_reached(X),
==1, asserta(abort(2)).

next_phase(2):- complete(2),
retract(current_phase(2)),
asserta(current_phase(3)).

next_phase(2):- abort(2),
retract (current_phase(2)),
asserta(current_phase(mission_abort)).

Figure 10: Mission phase 2 in PROLOG
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