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Navigation System Design using Time-Varying Complementary Filters *

A. Pascoall?

Abstract

The paper introduces a new methodology for the de-
sign of time-varying complementary filters and de-
scribes its application to the problem of estimating the
position and velocity of autonomous vehicles.

1 Introduction

Currently, there is considerable interest in the develop-
ment of navigation systems to provide robotic vehicles
with the capability to perform complex missions au-
tonomously. See [1, 10, 13] and the references therein
for in depth presentations of navigation systems for air-
craft and [5, 8, 14] for an overview of similar systems
g.gedarelated research issues in the underwater robotics

Traditionally, navigation system design is done in a
stochastic setting using Kalman-Bucy filtering theory
[2]. In the case of nonlinear systems, design solutions
are usually sought by resorting to Extended Kalman
filtering techniques [2]. The stochastic setting requires
a complete characterization of process and observation
noises, a task that may be difficult, costly, or not suited
to the problem at hand. This issue is argued at great
length in [3], who points out that in a great number
of practical applications the filter design process is en-
tirely dominated by constraints that are naturally im-
posed by the sensor bandwidths. In this case, a design
method that explicitly addresses the problem of merg-
ing information provided by a given sensor suite over
distinct, yet complementary frequency regions is war-
ranted.

Complementary filters have been developed to address
this issue explicitly. See for example [3, 10] for a con-
cise introduction to complementary filters and their
applications. In the linear time-invariant setting, filter
design is ultimately reduced to the problem of decom-
posing an identity operator into stable low and high
pass transfer functions that operate on complementary
sensor information. The bandwidth of the low pass
transfer function becomes a tuning parameter aimed
at matching the physical characteristics of the "low
frequency” sensor. Therefore, the emphasis is shifted
from a stochastic to a deterministic framework, where
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the main objective is to shape the filter closed-transfer
functions. :

This paper extends complementary filter design and
analysis techniques to a time-varying setting and offers
a solution to the problem of estimating the linear posi-
tion and velocity of a vehicle using time-varying com-
plementary filters. The time-dependence is imposed by
the fact that some of the sensors provide measurements
in inertial coordinates, while other measurements are
naturally expressed in body axis. To merge the infor-
mation from both types of sensors - while being able
to compensate for sensor biases - requires that the ro-
tation matrix from inertial to body axis be explicitly
included in the navigation filters. The resulting fil-
ters are bilinear and time-varying, but the time depen-
dence is well structured. By exploiting this structure,
the problem of filter design and analysis can be con-
verted into that of determining the feasibility of a set
of Linear Matrix Inequalities (LMIs) that arise in the
theory of linear differential inclusions [4]. As a conse-
quence, the stability of the resulting filters as well as
their ”frequency-like” performance can be assessed us-
ing efficient numerical analysis tools that borrow from
convex optimization techniques [4, 9].

The paper is organized as follows. Section 2 reviews
some basic mathematical background on linear time-
varying systems, induced operator norms, and poly-
topic systems. Section 3 sets the motivation for the
sections that follow: a simple filtering problem is for-
mulated, and its solution in terms of complementary

linear time-invariant filters is described. Section 4 de-
scribes the navigation problem addressed in this paper

and formulates it mathematically in terms of an equiv-
alent time-varying filter design problem. Section 5 pro-
vides the main theoretical tools for linear time-varying
filter design and analysis using the theory of linear ma-
trix inequalities. Finally, Section 6 describes a practi-
cal algorithm for complementary filter design and illus-
trates the performance of the new filtering structure in
simulation.

Due to space limitations the proofs of all the results
are omitted. The reader is referred to [12] for complete
details.

2 Mathematical background

The objective of this section is twofold: i) describ-
ing numerical algorithms for the computation of in-
duced operator norms for linear time-invariant and
time-varying polytopic systems, and ii) introducing the
key concepts of low and high pass linear systems in a
linear time-varying (LTV) setting. See {15] for the no-
tation and basic results.



2.1 Linear polytopic systems. Induced opera-

tor norms.

The symbol L, denotes the Hilbert space of Lebesgue
measurable functions from Ry to RP endowed with
the usual operator norm, while Lo, denotes the corre-
sponding extended space. An input-output system G
is identified with an operator G : Ly — Lg.. A causal
system G : Ly — Ly is (finite-gain) stable if the L,
induced operator norm ||G||2,; (abbv. ||G||) is finite. In

what follows we restrict ourselves to the class of LTV
systems § with finite-dimensional state-space realiza-

tions Xg = {A(¢), B(t),C(t)} of bounded, piece-wise
continuous matrix functions of time. Often, we will
use the same symbol G to denote both an LTV sys-
tem and its particular realization ¥g, as the meaning

will become clear from the context. We assume the
reader is familiar with the concept of exponential sta-

bility of LTV systems. To simplify the exposition, we
will henceforth refer to an exponentially stable system
as internally stable, while a (finite-gain) stable system
will be simply called stable. If G : Lo — Lo, has
an internally stable realization, then G defines a stable
operator from Ly — L.
Let G be a stable linear time invariant (LTI) system
with a minimal realization $g := {4, B,C}, and let
G(s) = C(sI — A)~'B denote the corresponding trans-
fer matrix. Then, the induced operator norm ||g||
equals the Ho, norm of G, denoted ||G||co, Where
[|Glloo = sup{omaz(GT (—jw)G(jw)) : w € R} and
Omaz(.) denotes the maximum singular value of a ma-
trix. Given a positive integer v > 0, then ||G|| < v
if and only if there exists a positive definite matrix P
that satisfies the matrix inequality [4]
T T
[A P+§Tx‘%3+CC_Pv§I]<O (1)

The above matrix inequalities are linear matrix in-
equalities (LMIs) in the matrix variable P. Checking
for the existence of P > 0 is easily done by resort-
ing to widely available numerical algorithms [9]. In
this paper, we will also deal with linear time-varying
systems with realizations {A(t), B(¢),C(t)} € Q :=
CO{{Al, Bl, 01}, cery {AL, BL, CL}} where

L
CoS =D NAil A € S, M+ .+ A =1}

i=1

is the convex hull of the set S := {Aj,..., Ay }. These
systems are usually referred to in the literature as poly-
topic differential inclusions [4]. It can be shown that
given a polytopic system G, then ||G|| < v if there ex-
ists a positive definite matrix P such that

ATP + PA;, +CFC; PB;

BTP Y <0;i=1,...,1{2)

Again, checking that such a P exists can be done quite
efficiently using highly efficient numerical algorithms.
2.2 Low and high pass filters.

The concept of low pass and high pass filters is well un-
derstood in the case of linear time-invariant systems.
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We now extend these concepts to the class of linear
time-varying systems. The new concepts will play a
major role in assessing the performance of the linear
time-varying complementary filters that will be intro-
duced later.
Definition. Low pass property. Let G be a linear,
internally stable time-varying system and let W} be
a low-pass, linear time-invariant Chebyschev filter of
order n and cutoff frequency w. The system G is said
to satisfy a low pass property with indices (e,n) over
[0,we] 3 [[(G - DWE | <€
Definition. Low pass filter with bandwidth w,.
A linear, internally stable time-varying system G is said
to be an (e, n) low pass filter with bandwidth w, if

e lim, o ||(G —I) W2|| is well defined and equals 0.

o we:=sup{w : |[(G§ — I)W2|| < €}, i.e. G satisfies
a low pass property with indices {(e,n) over [0, w]
for all w € {0, w,.) but fails to satisfy that property
whenever w > w,.

e For every § > 0, there exists w* = w*(d) such that
[1G(I — W] <6 for w > w*.

Definition. High Pass Filter with break fre-
quency w.. A linear, internally stable time-varying
system G is said to be an (e,n) high pass filter with
break frequency w, if (I —§G) is an (e,n) low pass filter
with bandwidth w,.

The conditions in the definition of low pass filters gen-
eralize the following facts that are obvious in the lin-
ear time-invariant case: i) the filter must provide a
gain equal to one at zero frequency, ii) there is a finite
band of frequencies over which the system behaviour
replicates very closely that of an identity operator, and
iii) the system gain rolls-off to zero at high frequency.
Notice the role played by the weighting operator W7,
which was arbitrarily selected as a Chebyschev filter.
In practice, the order of the filter can be made arbi-
trarily large so that the filter will effectively select the
?low frequency components” of the input signal.

3 Complementary filters: basic con-

cepts and definitions.

Complementary filters arise naturally in the context
of signal estimation based on measurements provided
by sensors over distinct, yet complementary regions of
frequency. Brown [3] was the first author to stress
the importance of complementary filters in navigation
system design. Since then, this subject has been stud-
ied in a number of publication that address theoretical
as well as practical implementation issues; see for ex-
ample [1, 10, 11, 13] and the references therein. The
key ideas in complementary filtering are very intuitive,
and can be simply introduced by referring to the ex-
ample of Figure 1. The figure captures the practical
situation where it is required to estimate the heading
1 of a vehicle based on measurements r,, and v, of
r = 1) and 1) respectively, provided by a rate gyro and
a fluxgate compass. The measurements are corrupted
by disturbances r4 and 4. Let ¢(s) and r(s) denote
the Laplace Transforms of ¢ and r, respectively. Then,
for every k > 0, ¥(s) admits the stable decomposition

b(s) = S8 () = Tu(s)p(s) + Ta(s)w(s),  (3)

s+k
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Figure 1: Process model.

where T1(s) = k/(s + k) and Ty(s) = s/(s + k) satisfy
the equality T4 (s) + T2(s) = I. Using the relationship
r(s) = s1)(s), it follows from the above equations that
P(s) = Fyp(s)¥(s) + F,(s)r(s) where Fy(s) = Ti(s) =
k/(s+k) and F,.(s) = 1/(s+ k). This suggests a com-
plementary filter with the structure 7,2 = Fyp¥m+Frrm
where Fy, and F, are linear time-invariant operators
with transfer functions Fy(s) and Fr.(s), respectively.
Clearly, the filter admits the state space realization

Y = —k + kv + 1o = T + k(¥ — ) that is rep-
resented in figure 2. Let 77 and 72 denote linear time-
invariant operators with transfer functions 73(s) and
T»(s), respectively. Simple computations show that

= (T + T2)¥ + Fybq + Frrq, that is, the estimate ¢
consists of an undistorted copy (71 + 72)¥ = 9 of the
original signal v, together with corrupting terms that
depend on the measurement disturbances ¥4 and ry.
Notice the following important properties:

e Ti(s) is low-pass: the filter relies on the infor-
mation provided by the compass at low frequency
only.

o Ty(s) = I-Ti(s): the filter blends the information
provided by the compass in the low frequency re-
gion with that available from the rate gyro in the
complementary region.

o the break frequency is simply determined by the
choice of the parameter k.

The frequency decomposition induced by the comple-
mentary filter structure holds the key to its practical
success, since it mimics the natural frequency decom-
position induced by the physical nature of the sensors
themselves: compasses provide reliable information at
low frequency only, whereas rate gyros exhibit biases
and drift phenomena in the same frequency region and
are therefore useful at higher frequencies. Complemen-
tary filter design is then reduced to the computation
of the gain k so as to meet a target break frequency
that is entirely dictated by the physical characteristics
of the sensors. From this point of view, the empha-

sis is _shifted from a stochastic framework that relies
heavily on a correct description of process and mea-

surement noise [3] and the minimization of filter errors
- to a deterministic framework that aims at shaping
the filter closed-transfer functions.

As convincingly argued in [3], the latter approach is
best suited to tackle a large number of practical situ-
ations where the characterization of process and mea-

surement disturbances in a stochastic context does not
fit the problem at hand, the filter design process be-

ing entirely dominated by the constraints imposed by
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Figure 2: Complementary filter.

sensor bandwidths. Once this set-up is adopted, how-
ever, one is free to adopt any efficient design method,
the design parameters being simply viewed as ”tuning
knobs” to shape the characteristics of the closed loop
operators. In this context, filter design can be done
using Hy or Hy, design techniques [2, 6, 7, 11]. Filter
analysis is easily carried out in the frequency domain
using Bode plots. In the simple case described here,
the underlying process model can be written as

1:[) = Tm —Td

U = Y+
where r4 and 14 play the roles of process and measure-
ment disturbances, respectively. Notice the important
fact that t,, (the measured value of 1) is an input
to the system. In an Hj, setting, the objective is to
minimize the estimation error ¥ — ¢ for given values
of the covariances of 14 and rg. The optimal solution
to this problem has the complementary filter structure
described before. The covariances of 14 and r; are
simply viewed as design parameters to vary the break
frequency.
In practice, the simple complementary structure de-

scribed above can be modified to meet additional con-
straints. For example, to achieve steady state rejection

of the rate gyro bias, the filter must be augmented with
an integrator to obtain a new complementary filter
structure. See [12] for details. In view of the discussion
above, we henceforth adopt a deterministic framework
for complementary filter design and analysis where the
objective is to shape the filter transfer functions to ob-
tain desired bandwidths. Furthermore, in preparation
for the sections that follow, it is convenient to formally
introduce the definition of a complementary filter for
the underlying process model (4) (with rq = ¢4 = 0)
in a state-space framework, see figure 1.
Definition. (r,v) Complementary Filter.
sider the process model

_[¥ =7
{i 29

m

and a filter ¥ with realization
= Ax+ B,rym + Bytm

¢ = Cx
Then, F is said to be a complementary filter for M,
if
e F it is internally stable
e For every any initial conditions %(0) and x(0)

limy oo {1(t) — (1)} = 0.

(4)

Con-

(5)

(IRITl



e F satisfies a bias rejection property, that is,
limi oot = 0 when ¥, = 0 and 7, is an arbi-
trary constant.

e The operator Fy : ¥ — 9 is a finite bandwidth
low pass filter.

4 Navigation system design: problem
formulation

This section describes the navigation problem that is
the main focus of the paper and formulates it mathe-
matically in terms of an equivalent filter design prob-
lem. For the sake of clarity, we first introduce some
basic notation and summarize the kinematic equations
for a general vehicle.

4.1 Notation. Vehicle kinematics: a summary.

Let {Z} be a reference frame, and let {B} denote a
body-fixed frame that moves with the vehicle. The
following notation is required: p = [z y 2]T - position
of the origin of {B} measured in {Z}; Iv = [& ¥ 2T
- linear velocity of the origin of {B} measured in {T};
v = [u v w]T - linear velocity of the origin of {B} with
respect to {Z}, resolved in {B}; w = [p ¢ r]7 - angular
velocity of {B} with respect to {Z}, resolved in {B};
A = [¢ 0 ¥]T - vector of roll, pitch, and yaw angles
that parametrize locally the orientation of frame {B}
with respect to {Z}.

Given two frames {A} and {B}, 4R denotes the rota-
tion matrix from {B} to {A}. In particular, LR (ab-
breviated R) is the rotation matrix from {B} to {Z},
parametrized locally by A, that is, R = R(\). Since R
is a rotation matrix, it satisfies the orthonormality con-
dition RTR = I. Given the angular velocity vector w,
then A = Q(A)w, where Q(A) is a matrix that relates
the derivative of A with w. The following kinematic
relations apply: p =! v =Rv and R = RS(w), where
S§(w) is a skew symmetric matrix. It is well known that
S satisfies the relationship S(a)b = a X b, where a,b
are arbitrary vectors and x denotes the cross product
operation. Furthermore, ||S(w)|| = ||w]].

4.2 Time-varying complementary filters. Nav-
igation problem formulation.

We now extend the basic concepts of complementary
filtering to the time-varying setting. The motivation
for this work can be simply described by considering
the example where one is interested in estimating the
position p and velocity v of a vehicle based on mea-
surements p,, and v,, of p and v, respectively. In
the case of an ocean surface vehicle, p,, is provided
by a Differential Global Positioning System (SGPS),
whereas v,, is provided by a Doppler sonar. In the
case of a fully submerged underwater vehicle, p,, can
be provided by a Long Baseline System.

It must be stressed that due to the physical charac-
teristic of the Doppler sonar the measurement v,, is
naturally expressed in body-azis, that is, in the refer-
ence frame {B}. Furthermore, Doppler bias effects are
also naturally expressed in {B}. This is in contrast

1102

Model - M
fy sk 4
v, —4—0< rp’ "J )

>

<§’§

Filter - F

Figure 3: Process model.

with the measurements p,,, which are directly avail-
able in the reference frame {Z}. These facts impose
important constraints on the class of complementary
filters for position and velocity estimation, as will be-
come clear later. The underlying process model M,
is depicted in figure 3, where F is a dynamical system
(filter) that operates on the measurements p,, and V.,
to provide estimates p of p. In the figure, py and vy
are measurement disturbances. As in the last section,
we study the situation where pg = 0 and vg = vapo
where vg is the Doppler bias. This set-up is all that
is required for the design of complementary filters from
a "frequency-like” domain point of view. Notice that
the process model M,,, is time-varying due to the pres-
ence of the rotation matrix R(t). However, the entries
of R(t) and their derivatives are not arbitrary func-
tions of time but exhibit bounds that depend on each
specific vehicle mission under consideration. We now
introduce the following definitions.
Definition. Process Model M,,.
model M, is given by

Mpv = { gm

We further assume that the matrix R and its deriva-
tive R are constrained through the inequalities |¢(t)]| <
Pmaz, |0()] < Omaz, [P(E)| < Prmazs |9(t)] < Gmag, and
{7(t)] < Tmas for all t € R,. Notice in the definition
above that there are constraints on the roll and pitch
angles ¢ and 6 respectively, but not on the yaw angle
. This is due to the fact ocean vehicles are designed
to undergo arbitrary maneuvers in yaw, but pitch and
roll excursions are restricted by vehicle construction.
Definition. Candidate complementary filter.
Consider the process model M, in (6) with vgo an
arbitrary constant, and let F be a linear time-varying
filter with realization

Fi={X
TP

Then, F is said to be a candidate complementary filter
for My, if

e F is internally stable

The process

v

e

(6)

p
R+ vao

A(t)x + Bp(t)pm + By (t)vim

C(t)x. (7)

Il

e For every initial conditions p(0) and =x(0),
limy 00 {p(t) — H(t)} = 0.

e F satisfies a bias rejection property, that is,
lim; yeo P = 0 when v = 0.
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Definition. Complementary filter with break
frequency w.. Let F be a candidate complementary
filter for M,,, and let F, denote the corresponding
operator from p,, to p. Then, F is said to be an (e, n)
complementary filter for My, with break frequency w,
if 7, is an (e,n) low pass filter with bandwidth w..
The discussion in the previous sections leads directly
to the following filter design problem.

Problem formulation. Given the process model My,
in (6) and positive numbers w., n, and ¢, find an (e, n)
complementary filter for My, with break frequency w..

5 Complementary filter design. Main

results.

This section introduces a specific candidate comple-
mentary filter structure for M, and derives sufficient
conditions for the existence of a complementary filter
with the structure adopted that meets required band-
width constraints.

5.1 Candidate complementary filter structure.
Figure 4 depicts the candidate filter structure for M,
that will be adopted in the paper. Notice the presence
of an extra integrator that was inserted to estimate the
rate gyro bias. The filter includes explicitly the rota-
tion matrix R(¢), which we assume is available from
an attitude reference system. The following result is

obtained.
Theorem 5.1 Consider the process model My, and

the time-varying filter

X1 = Rv, + Rxy + K1(pm — x1)
Fi=1 %3 = R'Ka(pm — %1) (8)
P =X

Suppose the filter F is internally stable. Then, F is a
candidate complementary filter for Mp,.

Notice that the state xz of the appended integrator
tends asymptotically to —vg4 0. Thus, x2 provides an
estimate of the Doppler bias in the body frame. This
result makes perfect sense form a physical point of view
since the bias is constant in the body frame (not in the
reference frame 7).
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5.2 The candidate complementary filter: suf-
ficient conditions for stability and guaran-
teed break frequency.

The next result establishes sufficient conditions for
the existence of fixed gains K; an 5 such that

the candidate filter is internally stable and has a
guaranteed break frequency of at least w., where w,
is a design parameter. In preparation for that re-
sult we let w, pr g 7 |T = Rw and de-
fine S, := S(w,) = S(Rw). Given the original de-
sign bounds on ¢(¢), 6(¢), p(t), q(t), and r(t) it is pos-
sible to compute positive upper bounds p;",q;, and
rt such that |p,| < pi,la.] < gflre] < 7. Let
py = —pr,q7 = —¢F, 77 = —rF and construct the

set {wl,i={1,..,8}}, where
[pj}
+ .
rf

1 Py 2 pj:' 8
Wy =g W= G ey
r?‘ T

—
Then w, € Co{wi,i = {1,.,8}} and S, € Co{S;
S(wt); i ={1,..,8}}.

Theorem 5.2 Consider the linear time-varying filter
(8) and assume that the bounds p;}, g, and r on w,
apply. Given n and w, let W2 := {Aw,Bw,Cw}
be a minimal realization for the weighting Chebyschev
filter introduced in Section 2.2. Further let

r

F:[g 5(51)]; i=1{1,.8), H=[-1I0].

Suppose that given ¢ > 0 3 M € R53, P ¢
RO*6 P, € REX6 Py > 0, P, > 0 such that the linear
matrix inequalities

[ Q1 Q O ]
%1 Qs Qu < 0,
0 QF —€r1

are satisfied, where Qy = FX P, + HTMT + PiF; +
MH + H'H, Q3 = MCw + H ' Cw, Qs = P,A+
ATP, + CL Cw, and Q4 = PyBw . Then, the constant
gains
K|l _ p-1
[ ]=rrim

make the filter F internally stable. Furthermore, the
operator Fp : p — P satisfies a low pass property with
indices (e,n) over [0,w,], that is, |[(Fp —I) WJ}CH <e.
The reader will find in [12] the details of converting
the above analysis result into a synthesis method that
builds on numerical algorithms that are available with
the LMI Toolbox for Matlab [9].

6 Filter Design: a practical algorithm.
Simulation results.

The previous section introduced the mathematical
tools that are required to design a candidate comple-
mentary filter with a guaranteed break frequency. No-
tice, however, that the outcome of the design process
may very well be a filter with an effective bandwidth
that is greater than the one required. Clearly, the set
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Figure 5: Actual and estimated vehicle trajectory.

of possible solutions must be further constrained so
that the designer have an extra design parameter at
his disposal to select one solution (if it exists) that
meets the required break frequency criterion. This sit-
uation is identical to what happens in the case of filter
design using Kalman-Bucy theory, where the noise co-
variances play the role of ”tuning knobs” to shape the
filter characteristics.

In the linear time-invariant case, a simple analysis of a
Bode diagram indicates that an expedite way of setting
an upper bound on the break frequency is to make the
filter "roll-off” sufficiently early in the frequency. In
the time-varying setting, this corresponds to making
[|Fp(I — W2)|| sufficiently small for adequate choices
of wy and n;, which play the role of ”tuning parame-
ters”. These considerations lead directly to a practi-
cal algorithm for complementary filter design whereby

thegrem 5.2 is used with the additional constraint in-
troduced above, which can be easily cast as a Linear

Matrix Inequality. It is then up to the system designer
to select appropriate values of the tuning parameters
to try and meet all the criteria that are required for a
complementary filter.

To illustrate the performance of the new complemen-
tary filtering structure, a simple filter design exercise

was carried out for an autonomous surface vehicle un-
dergoing rotational maneuvers in the horizontal plane.

In this case, the navigation system is required to pro-
vide accurate estimates of the vehicle’s position based
on position and velocity measurements provided by
a DGPS and a Doppler sonar, respectively. In the
scenario adopted the vehicle progresses at a constant
speed of 2m/s while it executes repeated turns at a
maximum yaw rate of 3rad/s. The Doppler sonar
is assumed to introduce a constant bias term vgo =

[0.1m/s, 0.2m/s]T. The selected break frequency for
the complementary filter was w. = 0.1rad/s. Fig-
ure 5 shows the actual and estimated vehicle posi-
tion when the initial state of the filter was set to
x; = [10m, 20m]? and x2 = [0m/s, Om/s|T. Figure
6 captures the evolution of the first component of the
Doppler bias estimate. It can be concluded from the
figures that the filter provides good tracking of the ac-
tual inertial trajectory and rejects the bias introduced
by the Doppler unit in the body-axis.
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