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Abstract

This paper addresses the problem of mission control
of Unmanned Underwater Vehicles (UUVs) through the
Internet network. Its main focus is on the integration of
a Petri Net based mission control system developed by
the Instituto Superior Técnico using the CORAL
environment, with the control system of ROMEO, a
prototype ROV developed by the Robotics Department
of CNR-IAN. The system has been evaluated controlling
ROMEO’s missions directly from Lisbon in the
underwater virtual world (UVW) in the IAN lab and in a
pool in Genoa. |n particular, the reliability of the Internet
connection has been verified and the constraints
introduced by communication delays have been
examined. This research and development effort aims
at contributing to the development of reliable mission
control systems for the operation of robotic ocean
vehicles at distance, over communication channels that
may experience considerable delays. This is a subject
of great relevance, in view of the widespread interest
in the development of systems to allow a scientific
end-user to program, execute, and follow the state of
progress of robotic vehicle missions at sea from the
comfort of his/her laboratory.

{. Introduction

In the Nineties the requirements of unmanned
underwater vehicles {(UUVs) in terms of capabilities of
managing uncertainty and possibility of reducing
development and trial costs induced the development
of hierarchical intelligent control architectures (Byrnes
et al,, 1993; Le Rest et al., 1994; Pascoal et al., 1997,
Wang et al., 1993) and virtual environments for
underwater robots (Bono et al., 1997; Brutzman, 1995,
Leonard et al., 1995). The result was the
implementation of open, fiexible architectures for
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developing robotic techniques and fostering
co-operation between research groups, ultimately
promoting vehicle exploitation (Healey et al., 1996;
Coste-Maniére et al., 1996).

At the same time, numerous novel robotics systems
that employ the infrastructure of the Internet to extend
current human abilities have been developed (Paulos
and Goldberg, 1999), allowing remote interactions with
actual mobile robots connected to the VWeb.

The high level of maturity achieved by this technology
in space robotics applications (Backes et al., 1998),
together with the resolution of basic problems in UUVs
navigation, guidance and control (Fossen, 1994; Fryxell
et al.,, 1996; Healey and Lienard, 1993; Whitcomb et
al., 1999), has suggested its extension to the field of
underwater robotics in order to allow a scientific end-
user to program, execute, and follow the state of
progress of robotic vehicle missions at sea from the
comfort of his/her laboratory.

In order to allow Internet users to interact with places
far away from their home or test control algorithms on
a real robotic platform, mobile robots on the Web have
to satisfy some basic specifications (Siegwart and
Saucy, 1999): the robot system requires a high degree
of autonomy to face any large time delay; a minimal
data transfer should always indicate the instant status,
events and robot position; the control strategy of the
robot should be as intuitive as possible, and the update
rate of the transmitted video images should be as high
as possible to provide a good feeling to reality. It is
worth noting that autonomous underwater vehicles,
which can communicate with the human supervisor and/
or the mission controller through a very narrow-band
acoustic link satisfy the first three requirements, while
good quality video feedback can be guarantee by data
compression techniques in the case of Internet control
of a remotely operated vehicle.



In the research reported in this paper, a pool mission of
Romeo, the prototype ROV developed by the CNR-IAN,
has been controlled by a Petri Net based mission controller
developed by the IST-ISR using CORAL, through an
Internet link between Genoa and Lisbon. According to the
hierarchical control architecture paradigms, the ROMEO’s
control system provides a set of basic navigation, guidance,
and control task functions, which can be cocordinated and
activated by an automatic mission controller connected to
the vehicle surface network. Task activation and
coordination depend on the occurrence of external
discrete-events such as operator commands and events
triggered by sensor readings. This motivated the
development of a methodology for mission control that
builds on the theory of Petri nets, which are naturally
oriented towards the modeling and analysis of
asynchronous discrete-event systems with concurrency.
Mission control is thus performed by specifying mission
programs that are embodied in Petri net structures. A
mission control development environment named CORAL,
designed by IST, allows for graphically constructing the
required Petri nets and executing them in real-time on a
CORAL software Engine that runs on a PC. The operator
can visualize the state of progress of the mission by
observing the evolution of tokens in the corresponding Petri
net structure. CORAL allows the execution of mission
programs for general robotic vehicles. The only extra effort
required for a specific application is the definition of the list
of commands/replies to and from a given robotic system.
This was done in the case of ROMEO by defining the packet
format for commands/replies between CORAL and ROMEO
on the basis of the basic tasks adopted. Furthermore,
Romecq’s criginal control system was adapted by adding a
state machine capable of handling the command/reply
mechanism and of triggering the execution of specific tasks
in parallel, in order to exploit the Petri Net's capabilities in
concurrency management.

Romeo networked architecture and basic task functions
are described in section 2, while a short description of the
Petri Net-based CORAL mission controller is given in
section 3. The experimental setup, i.e. the physical
integration of Romeo control system and CORAL mission
controller, is described in section 4, where experimental
results are reported and discussed.

Il. ROMEO

Romeo's architecture basically consists of three Ethernet
LANs (surface, on-board and iab LAN), which can be
connected to the world-wide web for scientific cooperations.
The surface LAN connects a net manager computer (IPER)
and a multi-machine distributed Human Computer Interface
(HCI), which allows a number of different operators to
interact with the robot at various levels of the control system.
The conventional HC1 for scientific applications consists
of three interfaces for the pilot, who tele-operates the
vehicle, the supervisor, who supervises the plant behavior
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and resources’ allocation, and the marine scientist, who
examines real-time images and sensors data to detect
areas of interest. The IPER machine acquires all the vehicle
surface sensors, as, for instance, acoustic positioning
system, ship GPS and gyro-compass, and manages
communications from the human interfaces and the robot
control system on-board the vehicle, dispatching the
telemetry data and collecting, by solving conflicts, the user
commands. The surface LAN can also support the
connection of an external supervisory/mission control
medule, which automatically manages a vehicle mission,
as in the case of CORAL shown in Figure 1. In addition to
the computer running the vehicle contro! system, the
on-board LAN can also connect advanced end-user devices
carried by the vehicle. Furthermore, the lab LAN supports
the Underwater Virtual World simulation facilities (6 d.o.f.
vehicle dynamics, environment and sensors) and graphics
interfaces.

Coral | Romeo
Engine Remots
HCI ST y
] Ethernet LAN
Romeo
Surface Ethermet LAN e o
i I 1 | Ethernet LAN
Pilot Supervisor| | Sclentlst i
teer 1| hol Hel HCH || Underwater
HCH
Romeo
Tether —1 gt‘:’n:’o
. Simutator
Sub
Romao i Environment
T Onboard Ethemet LAN Simulator

Fig. 1. CORAL-ROMEO networked architecture

Romeo control system is based on a hierarchical dual-loop
architecture (Caccia et al., 1999) providing the human
operator/mission controller with a set of basic guidance task
functions performing auto-heading, auto-depth, auto-altitude
and automatic maneuvering on the horizontal plane. The.
sub-set of commands handling the task functions used in
the CORAL-ROMEOQO mission are reported in Table 1.
Algorithmic details about depth, heading and horizontal
maneuvering task functions ¢an be found in (Caccia et al.,
1999) and (Caccia et al., 1998) respectively. Here it is
sufficient to remark the meaning of the basic horizontal
maneuvering tasks:

¢ Short Range Maneuvering (SRM). the vehicle hovers
the target with the desired orientation;

* Long Range Maneuvering (LRM): the vehicle heads
the target;

*  Go to (GOTO): the vehicle moves to the target point
switching between LRM, medium range
maneuvering, i.e. car driver-like guidance, and SRM
according to the target range;




* Docking (DOCKING): go to the decking point,
recorded executing the GET_DOCK command

Depth control:

DEPTH (z*)

DEPTH? (z*, TIME_OUT)
Heading control:

HEADING (y*)

HEADING? (y* ,TIME_OUT)
Horizontal maneuvering:

LRM(x*,y*)

XY? (x*, y*, TIME_OUT)

SRM (x*, y*, y*)

GOTO(x*,y*, y¥*)

XYPSI? (x*,y*, y*, TIME_OUT)

DOCKING

DOCKING? (TIME_OUT)
Horizontal motion estimation:

FIX_XY()

GET_DOCK ()

X,y.Z: vehicle position
y: vehicle heading
Table 1. ROMEO task function commands

The ?-marked commands implement the space-trap
queries, which evaluate if the corresponding task
function has been executed by a specified time-out. A
suitable evaluation criteria is the following: indicating by

x®)(t) the k-th time derivative of the generic signal x(t),
«x(t) tracks  x (t)
‘E(k)(t)“i'(k)(t# <g, Vite [to ~T, tol, 0<ks<n, whers

||| represents the Euclidean-norm. Tracking of order 1

of order n» if

is usually adopted, except in the case of LRM tracking of
order 0.

Ill. The CORAL Development Environment.
Implementation issues

This section introduces CORAL as a software environment
for the design and implementation of Petri net structures
and explains its interfacing to the System Control level of
the CNR-IAN ROMEO vehicle. We assume the reader is
familiar with Petri Net theory; see (Cassandras, 1993) fora
lucid presentation of the subject. See also (Oliveira et al.,
1998) and the references therein for the development of
CORAL as a tool for mission programming and execution
tool for the MARIUS AUV.

The organization of CORAL can be explained in very simple
terms with the help of Figure 2, which illustrates how the
design of a subset of a generic Petri net is done, and how
the equivalent CORAL language description is obtained. in
order to understand the figure and the design methodology
adopted, two basic concepts are required:
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Figure 2: CORAL/System level Interface.

)  System Control Level Calling Header - The firing of a
generic transition will start the execution of a System Control
l.evel command, which is evoked through an header with

the structure
ROMEO(F,ype, fn,PD

where ROMEO specifies a System Control Level function
interface presented in the previous section, Ftype identifies
the type of function or particular algorithm to be executed,
and f, are the parameters of the function to be called. The
last calling parameter set P, indicates a finite set of places
in the Petri Net that will be marked depending on the type
of messages received from the ROMEO system control
level.

1) Wait Action and Signal keywords - to describe a Petri
net, the CORAL language uses three basic keywords: wait,
action, and signal. The formal equivalence between the
textual description of a Petri net using these keywords and
its underlying Petri net graph can be easily understood by
examining the input and output sets of a particular transition
tk. The following equivalence relationships follow
immediately:

|(tk) had wait{pOI'--r pj}v
O(t) ¢ action{ ROMEO(F e, fa, Pr)}
signal{p}.

where I(ty) and O(ty) are the input and output sets of places
to and from the transition ty, respectively. In this case, the
function called has only one output event, and its occurrence
will activate the marking of place pp: The extension to more
compiex Petri Net structures is obvious.

A CORAL Engine has been developed that accepts Petri
net descriptions and executes them in real-time. Figure 3
shows a schematic representation of the CORAL Engine
data structure and the communication mechanisms that
implement a Petri Net. The CORAL Engine accepts input
messages corresponding to the markings of the Petri net
being run, checks for the current set of enabled transitions,
and issues output messages that correspond to the new
markings determined by the firing of those transitions. In
practice, this is done by executing a CORAL Engine
synchronous loop described by the following sequence of
actions:
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Figure 3: CORAL Implementation Structure.

for each message in the input buffer,
(1) update the number of marks in the corresponding
place.
(2) for the current state, check for the set of enabled
transitions.
(3) choose one transition from the set of enabled
transitions.
(4) update the number of marks in the set of input

places

I(t) © (wait{...}).
(5) issue messages in order to update the number of
marks in the set of outputs places,

O(t,) < (action{...} signal{...}).

(6) repeat (2) through (5) until the set of enabled
transitions has been exhausted.

This cycle is repeated until the input buffer is empty.
IV. Experimental setup and results

The integration of the CORAL mission controller and
ROMEDO control system has been carried out in the lab
thanks to the IAN Underwater Virtual World facilities
(Bono et al., 1999). The execution of a set of real-time
hardware-in-the-loop virtua! missions allowed to verify
the communication protocol, and to check the
correctness of the events’ management in the actual
experimental conditions, including the communication
bandwidth constraints due to the 9600 bps mobile
phone serial data link between the ROV operating site
and the network in the IAN lab. Once the system set-up
was completed in the lab, the same set of missions has
been executed with the actual vehicle in a swimming
pool in Genoa, located at about 5 km from the IAN lab.
The research scientists in IST lab in Lisbon followed
the mission in real-time by means of a graphics
representation of the vehicle basic telemetry (position
and heading) sent through internet using datagram
BSD sockets. It is worth noting that for mission control
commands/acknowledges transmission, according to
the sequence shown in Figure 4, the more reliable
stream BSD sockets have been used.
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CORAL Mission Controller

(CMC)
CMC emd: mission
control command s sent
to RCS .
CMC  ack:  mission
control acknowledgment
Is racelived from RCS

CORAL Mission Controller

CMC ¢md

CMC ack

ROMEQ Control System
(RCS)

RCS ¢mad:
control command s
received from CMC
RCS ack: mission control

acknowladgment is sent
ROMEO Control System to CMC g

Figure 4. Right sequence of each mission control
command/acknowledge.

mission

RCS emd RCS ack
~~ s

The most significant mission consists of three phases:
1. go to operating site
Romeo reaches the operating depth and a suitable
orientation to initialize its horizontal position estimate
by sonar ranges from the pool walls, records its -
position to dock there at the end of the mission
and moves to the operating site;
2. way-point navigation
Romeo navigates through four way-points, placed
in the corners of a square, executing a long range
maneuvering guidance task;
3. docking
Romeo hovers the cperating site, moves to the
docking point and emerges.
The events’ sequence, including the corresponding
timestamps, has been recorded by both the Romeo
Supervisor HCI and CORAL engine machines. The
logged data have been merged off-line to analyze the
system performance. The starting time has been fixed
when the first command has been sent by CMC.

v T T
docking? === -~ fennes deneaen deaeenn
docking o
petDock
gote? |-
goto -
st b
m -
fix XY p--
y? f
heading? (- 4= +tenaen EEREE TR
heading
depth?
depth
wait
shutdown
init

RCS ack :.

] 50

Figure 5. Romeo and CORAL
pool mission events’ sequence

Defining t,°™ and t,°™ the instants, in the CMC clock
reference, when CMC sends and receives the «INIT»




command/ack, and t,*S and t,*¢S the instants, in the RCS
clock reference, when RCS receives and sends the «INIT»
command/ack, the time offset t.n. between the

CMC and RCS recorded events’ sequences has been

CMC _ tgmc t:1cs - t‘I]{CS

ty
2 2

The resuiting events’ sequence is pictted in Figure 5. The
Petri net corresponding to the «go to operating site» phase
is depicted in Figure 6, while the system behavior is reported
in Figure 7, where the parallel execution in the presence of
non-deterministic and time-varying delays of auto-depth and
auto-heading tasks before estimating the vehicle horizontal
position is pointed out.

approximated as tyg,; =

Pusssen

ROMEQINN, R oxs Pro_rad

Punon

ROMEO(KeopDopth, ... , B ou, Porral

Porox

ROMEO{IsHeading, ... , &ycons Puyrod ROMEQ{taDepth, ..., R p o, Pugrrdd

Puson Pupiox

ROMEO(FixPosition, B o Prused

Figure 6: Petri Net Mission bontrol Program (first phase)

Although the DEPTH and HEADING commands are sent by
CMC contemporaneously, the latter takes a longer time to
reach RCS (see the time interval between 0 and 10 seconds
inthe top picture). Anyway, the CORAL engine waits for the
successfully execution of both the tasks before sending the
FIX_XY command, which takes 10 seconds to be executed
in order to allow the correct initialization of the extended
Kalman filter for motion estimation (see the time interval
between 30 and 50 seconds in the top picture). At that time,
the GET_ DOCK command is executed in order to record
the point where to dock at the end of the mission. It is worth
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noting that, executing the GOTO task function, the ROV
maneuvers on the horizontal plane in order to approach the
target point with the desired orientation (see the bottom
picture after about 50 seconds).

CMC & RCS CORAL Log: Pool Miesian; "Ge To Operating Site”
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Figure 7. «go to operating site»: Romeo and CORAL
events' sequence and ROV telemetry

The system behavior during the «way-point navigation» phase
is reported in Figure 8, where remarkable network delays,
i.e, of about 7 seconds, in the transmission of the first two
LRM commands are visible. The maneuvering behavior
consisting in heading the target is shown by the Romeo
telemetry plots in the bottom picture.

Figure 9 shows the system behavior in the «docking» phase.
After hovering the target with the desired orientation, the
ROV reaches, with a complex maneuver, the docking
position and emerges. The jump in the vehicle x position
after more than 380 seconds (see the bottom picture) is due
to bad sonar measurements obtained when the sonar was
too close to the surface.

V. Conclusions

This paper described an experiment whereby a Petri Net
based mission controller developed by the Instituto Superior
Técnico using CORAL, was integrated with the control
system of ROMEO, a prototype ROV developed by the



Robotics Department of CNR-IAN. The systemwas evaluated
controlling ROMEQ's missions directly from Lisbon in the
underwater virtual world (UVW), in the |AN lab, and in a pool
in Genoa The relative simplicity with which an example
mission was jointly programmed and run demonstrates that
true inter-group cooperation on the subject of underwater
vehicle mission control is within reach. This example is but
a small step in the process of developing systems that will
allow scientific end-users to program, execute, and follow
the state of progress of robotic vehicle missions at sea from
the comfort of their laboratories.

CMC & RCS CORAL Log: Pool Misaion: "Wey-Points Navigation®
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Figure 8. «<way-point navigation»: Romeo and CORAL
events' sequence and ROV telemetry
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