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Abstract. This paper describes an estimator architecture for a For-
mula Student Prototype, based on data from an inertial measurement
unit (IMU), a global positioning system (GPS), and from the underlying
dynamic model of the car. A non-linear dynamic model of the car and
realistic models for the sensors are presented. The estimates of attitude,
rate-gyro bias, position, velocity and sideslip are based on Kalman filter-
ing techniques. The resulting system is validated on a Formula Student
prototype and assessed given ground truth data obtained by a set of
differential GPS receivers installed onboard.
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1 Introduction

Formula Student is an university competition that challenge students from
around the world to build a single-seat racing car. Along the years the com-
petition has been evolving with the implementation of new materials and tech-
nologies, always looking to follow the world evolution of automotive technol-
ogy. Recently it has approach the driverless cars starting a new parallel com-
petition for these vehicles, which associated with electric independent all-wheel
drive already used by the teams, opens a door for countless control approaches.
Control strategies like vehicle stability control and torque-vectoring [1] depend
widely on a sideslip observer to assure that the vehicle stays in a stable route.
This observer is especially needed when there are significant differences between
the model and the true vehicle, something that usually happens when working
with road vehicles and tires.

This paper undertakes the implementation of an architecture proposed in [2]
for a Formula Student prototype to estimate the sideslip of the vehicle. During
a test day, data was acquired from an inertial measurement unit (IMU) con-
sisting of an accelerometer a magnetometer and a gyroscope, all of them with
3 axis, a global positioning system (GPS) and a steering encoder. These sen-
sors were already part of the vehicle. In order to verify the results obtained
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from the estimators, a secondary system using a differential global positioning
system (DGPS) was attached to the car. This one gives the heading and the
velocity components, values required to calculate the sideslip angle of the car.
Both systems, the DGPS and the car sensors are completely independent. The
acquired values are then processed in offline to skip implementation issues. In
this document, the models and estimators are briefly explained in Sects. 2 and 3
respectively, with only the more important equations presented, their deduction
can be found in [2,3]; followed by a closer look to the test platform (Fig.1), its
technical characteristics, and the sensors are explored in Sect. 4; Sect. 5 illustrates
the results obtained in each estimator and a comparison is performed with the
values from the DGPS; Finally, Sect. 6 outlines some remarks and future work.

2 Car Model

This section presents the general non-linear equations for the vehicle model from
where the linear car model is obtained. These equations and their deduction are
explored in detail by [2], and as such, in this work only the resulting equations
are exposed.

The following model is named a planar model since it considers that no
pith (8) or roll (¢) rotations exist, being these the major assumptions, which
also implies that no load transfer occurs. Besides this limitation, aerodynamics
forces acting on the car are neglected. This restricts all the forces to the tires,
as can be seen in Fig. 2(a), where each one produces a longitudinal and a lateral
force respectively F, and F,, with the indexation Front Left (FL), Front Right
(FR), Rear Left (RL) and Rear Right (RR). And where ¢ defines the wheel
steer angle, v is the velocity vector, 3 is the car sideslip angle, a is the distance
between the centre of gravity (CG) and the front axle, b the distance between the
CG and the rear axle, and tr is the length of the axle, where both are considered
equal. The resulting equations of this model are described by (1), where r is the



Sideslip Estimation 411

(b)

Fig. 2. (a) Forces applied on the Car; (b) Tyre angles and frames. Images from [2]

angular velocity around the z-axis, m is the mass of the car plus the driver and
I, is the moment of inertia around the z-axis.
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The longitudinal force F,, on the car is assumed to be a direct input, without
considering the tires limitations. The lateral forces F, on the tires are given by
a cornering stiffness approximation expressed by (2), where C,, is the cornering
stiffness constant, and «; is the slip angle of the tyre i, defined as o; = 5; — 9,
as seen in Fig. 2(b).

Fy = —CaOéi (2)

The sideslip angle of the wheel (3;) is the projection of the sideslip angle 3 of
the car in the wheel by v; = Bv + Br x Br;, where Br; is the vector of distance
between the CG and the wheel 7. This cornering stiffness approximation contains
several assumptions that are explained in detail in [2].

2.1 Linear Car Model

The car model used in the estimator is an approximation of the Egs. (1) and (2)
for small angles and the assumption of a constant longitudinal velocity (v, =
const), which has been widely used in the literature [4-6]. With the small angle
approximation is possible to define the wheel slip angle as:

S <W> P 3)

Vg
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Using a different cornering stiffness for front and rear wheels, respectively
Coy and Cy,, is then possible to rewrite (1)—(3) in a state space form:

Cas+Car —aCas+bCar
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3 Estimator Architecture

In this section, the proposed architecture for the estimation of the sideslip is
exposed. As depicted in Fig.3, the estimation process is composed of three
sequential filters. An Attitude Complementary Filter (ACF), a Position Com-
plementary Filter (PCF), and a Car Estimation Model (CEM).
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Fig. 3. Flowchart of Filter Scheme where m,, w,, a., p, and §, are respectively the
reading from the magnetometer, gyroscope, accelerometer, GPS and steering encoder.
Grey boxes represent required data processing before use in filters.

The ACF is used to correct the yaw reading from the magnetometer and to
estimate the bias of the gyroscope. The yaw is then used in the rotation matri-
ces inside the PCF, which uses the accelerometer and the GPS to estimate both
velocity components in the body reference frame. The CEM is used to include
the car dynamics in the sideslip estimation using the velocity components, the
corrected yaw rate and the steering angle. The three filters are implemented
using discrete Kalman Filter [7,8], where the CEM is discretized from a contin-
uous state space model. Both complementary filters are explained in more detail
in [2,3].

3.1 Attitude Complementary Filter

The ACF combines the yaw readings with the angular velocity around the z-axis
to give a more accurate yaw value and a bias estimation for the angular velocity
to correct the gyroscope signal. This assumes that the yaw rate 1/1 = wy } reading
is affected by random white noise (w,,, 1) as well as a constant bias (b ):

wWrk = Wk + bk + W, k
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With this, is then possible to write the discrete Kalman Filter in a state space

form as:
[;ﬁ:l] - B _ﬂ {giﬂ - m wrg + {2] (yx — )

gk:i)ka yk:wr,k'f'vk

where the index k defines the instant in time ¢ = kT being T the sampling
time interval. The gyroscope reading is wy, and the yaw reading from the
magnetometer is 1, ;, which is corrupted with random white noise v;. The values
K7 and K, are the Kalman gains associated to each state.

3.2 Position Complementary Filter

The PCF combines the readings of the accelerometer with the ones from the
GPS to give an estimate of the velocity components in the vehicle body frame
which in this case are unobservable states. Since the GPS uses a global reference
frame as the opposite of the accelerometer and the needed velocity components,
the yaw estimation from the ACF is used to convert between reference frames
using a rotation matrix defined as Rj. The equations that rule the PCF are the
motion equations:
2
Pi+1 =Pk +1TVi + 7731@51@
Vit1 = Vi + TRa

where p, v, a are respectively the vectors of position, velocity and acceleration.
Is then possible to write the PCF system as:

Dit1 | _ I TRy, 37 n
BYpiq 0 I B
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where I € R? is the identity matrix, a; is the readings from the accelerometer,
Pr is the GPS readings of position that are corrupted with random white noise
vpi- The values K and Ky are 2 x 2 diagonal matrices with the Kalman gains
identified with a linear time-invariant system based on the above, explored in
[2,3]. The subscript B indicates the components in the vehicle body frame.

3.3 Car Estimator Model

The Car Estimator Model is based on system (4), which depends on two state
variables [vy 7“]. This system is time variant due to v,, which can generate com-
plications if the longitudinal velocity is zero, or close to zero due to numeric
problems. The CEM uses the velocity components estimations of the PCF, the
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gyroscope reading corrected with the bias from the ACF, and the steering angle
of the wheel. The system for the filter is given by:

é _CaftCar —aCqy+bCar " Cos KK
Yy Vem Vem z Yy n m 5 n 1y 1r ( R )
= L — Yl
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where v, and v, are the noises associated to each measurement and the Kj;
gains are the Kalman gains that relate the error of measured and estimated
data to each state variable.

4 Test Platform

In order to test the proposed estimation architecture, a real test was conducted.
At the time, these algorithms weren’t already implemented in a hardware capable
of real-time processing, so all the data was logged, and processed offline after
the test. The test platform was FST06e (Fig.1), an electric Formula Student
Prototype. This vehicle is propelled by two independent 50 kW motors at the
rear, one motor per wheel, with a single fixed gear with no clutch. With a
weight of 280 Kg and a distance between axis of 1.59m, is capable of achieve
0-100km/h in 2.9, and a top speed of 150 km/h. The remaining parameters of
the car needed for the models and estimators are presented in Table 1.

Table 1. FST06e Parameters

Description Var | Variable Units
Front and rear track — 1.24 m
Mass of the Car + Driver |m | 356 kg
Yaw Inertia I, 120 l’cg.m2
Weight distribution — 145.1-549 % -%
Static load at front wheels | ¥ F, | 787.5 N
Static load at rear wheels | ®F, | 958.7 N
Cornering Stiffness front | Cyy | 1.527 x 10* | N/rad
Cornering Stiffness rear Cor | 1.995 x 10* N/rad

The car relies on a distributed electronic circuit for all the monitoring, con-
trols and acquisition. This circuit spreads all along the car, and consists in several
modules interconnected by a CAN-BUS line working at 1Mbit/s. For this test
3 modules were essential, the GPS, the Steering and IMU, and the log unit.
Each of these modules has one dedicated micro-controller, a dsPIC30f4013 from
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Texas Instruments, working at 30 MHz in a self-developed board. The GPS mod-
ule incorporates a SkyTraq S1216F8 chip configured to an update rate of 25 Hz
. The Steering and IMU module consists of a GY-80 IMU that includes a 3-axis
accelerometer (ADXL345), a 3-axis gyroscope (L3G4200D) and a 3-axis magne-
tometer (HMC5883L). The steering encoder is a 3-turn rotational potentiometer
used as a voltage divider with a 12bit ADC, that is attached to the steering col-
umn. The log unit simply reads one message at the time in the CAN-BUS line
and writes it to a file in an SD card.

In order verify the estimated data, a second independent system was used.
This one, wasn’t connected to the car’s previous system, and had a separated log
system. This system consisted of two GPS antennas placed on the front and rear
of the car separated by 2.5m as seen in Fig. 4. The antennas were connected to
an Ashtech MB100 board that can deliver the heading angle and velocity com-
ponents needed to calculate the sideslip angle of the car. This data was logged
at 10Hz.

The acquisition was made during a track day at the university campus using
a parking lot limited to an asphalt area of approximated 60 m x 25 m. The tra-
jectory of the car consisted in several circles in both ways, and turns after a long
straight.

DGPS
Acquisition
Car IMU and system
Steering
Car GPS encoder DGPRear
antenna

antenna

DGPS Front
antenna

Fig. 4. FST06e Acquisition system with DGPS. In orange are the sensors belonging to
the car, and in blue the elements of the DGPS.

5 Results

This section presents the results from the different filters and estimators during
the test run using the FST06e with the DGPS (Fig.4). Is also explained the
processing done to each signal before the filters.

For this test, the car was stripped of all aerodynamic elements, to better
correspond to the models, and for the antennas to have a clean view of the sky.
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5.1 Attitude Complementary Filter

To feed the Attitude complementary filter, the data from gyroscope and the
magnetometer are required. Before the use of this data, a calibration to align
the axis of the IMU with the vehicle axis is done using the accelerometer with
data from a static acquisition. This calibration is used in the three sensor units
(accelerometer, gyroscope and magnetometer), and kept for all the filters. The
yaw angle is computed from the magnetometer after a 3-dimensional calibration
is done to correct hard and soft non-linearities [9]. The yaw angle is also corrected
from the magnetic declination, to match the position referential.

The ACF is fed with this data resulting in a corrected yaw angle of the
vehicle as can be seen in Fig. 5. The angle must be in a continuous or cumulative
form, since discontinuities in the transition from 0° < 360° or —180° < 180°
generate problems in the ACF. In Fig. 5, is possible to see the estimated heading
angle of the car, side by side with the raw value from the magnetometer. Besides
the yaw angle, also the bias of the gyroscope’s z-axis is estimated. In Fig. 6,
an overlapping of several responses to different initial conditions are presented,
showing a convergence after some seconds. From the analysis of the raw data
of the sensor, an offset of —0.62°/s was expected for a stationary measurement,
something that is verified in the graph.

4000
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2500

2000

1500

Heading Angle [deg]

1000

500

150 200 250 300
Time [s]

Fig.5. ACF heading angle result and raw heading measurement from the
magnetometer.

Analysing Fig. 6, is possible to see that around the 160s, the bias starts to
oscillate. This is when the vehicle started to move. One of the assumptions made
at the start is that no roll or pitch happens, but in the real vehicle this isn’t true.
Although small, these rotations exist and influence the IMU that is attached to
the car. Besides that, the track isn’t perfectly flat containing a slight tilt in one
side. These unpredicted rotations can justify the oscillations when the car is
moving.

5.2 Position Complementary Filter

The position complementary filter relies on three major sources, the GPS, the
accelerometer and the corrected yaw angle or heading of the car from the ACF.
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Fig. 6. Bias result from the ACF, and a overlapping of several responses for different
initial conditions

A GPS receiver doesn’t give the required X and Y position coordinates, so a
transformation is done from ECEF (Earth-Centred, Earth-Fixed) coordinates to
ENU (East North Up) coordinates, using as origin a point along the track. The
East is defined as the X coordinate, and North the Y coordinate, the Up or Z
is not used. Also, a correction is performed to the location of the GPS antenna,
this was considered necessary since the distance between the antenna and the
centre of gravity was substantial (= 1m). The correction was performed using
(5) where dgps is the vector with the distance from the GPS antenna to the
centre of gravity, and 1 is the yaw angle from the ACF.

Teg| | Tgps cosy —siny|
[ycg} - [ygpj + {sinip cos ] dgps (5)

The GPS only has a 25 Hz acquisition frequency compared with the 100 Hz
of the remaining sensors, this was overcome by using an interpolation for the
missing points to match the general frequency, and was only possible because
processing was done offline. For an online application, a multi-rate solution must
be implemented, or the global frequency reduced to match the smallest frequency
available.

The accelerometer kept the axis calibration explained in the ACF section, and
was corrected from offsets in the readings. It was also implemented a correction
from the influences of angular velocities due to the distance between the IMU
and the centre of gravity using Eq. (6) where A;,,, is the vector of accelerations
of the reading, Acg is the vector of accelerations in the centre of gravity, @ is
the vector of angular velocities, and dj,y,,, the distance vector from the IMU to
the centre of gravity.

Ay = Ay + @ X (0 X dipny) (6)

The results of the PCF using the values of position acceleration and yaw
angle can be seen in Fig.7. This graph presents an overlapping of the veloc-
ity components acquired from the DGPS, and the estimates from the PCF. It
must be noticed that the PCF doesn’t use in anyway the data from the DGPS,
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Fig. 7. Velocity components estimations resulting from the PCF compared with the
ones from the DGPS.

being the two signals completely independent one from the other. The noise is
clearly higher in the estimation, this is due to the sensor signals, specially the
accelerometer. Since the accelerometer is corrected with the gyroscope unfiltered
data using (6), the combination of both signals results in a very noisy signal.
An example is the time window between [225 s;250 s], where the vehicle was
performing several turns at constant radius and speed, and the resulting lateral
acceleration from (6) has a mean value of 10.2m/s? and a standard deviation
o = 1.8m/s?. In the overall, even with the noise, the estimation of both velocity
components is considerably close to the results from the DGPS with small errors.

5.3 Car Estimation Model

For this estimator, is necessary the velocity components from the PCF, the
steering angle of the front wheels, and the corrected gyroscope reading. The
steering encoder mentioned before doesn’t read the ¢ value of the wheel, but the
steering wheel angle, besides that, the encoder to achieve a greater resolution
relies on a gear ratio to convert the steering wheel range to make a better use
of the 3-turn encoder. Due to Ackerman geometry [10] both wheels rarely have
the same angle, and the ratio between the steering wheel angle and the wheel
angle isn’t linear, but for the sake of simplicity this angle is assumed linear and
equal. The linear car estimator, uses Eq. (4) where the transition matrix relies
on the longitudinal velocity v,. For values equal or close to 0, some problems
arise since some of the elements are dividing by zero. To overcome this situation,
is assumed that the longitudinal velocity used in the transition matrix of (4),
has a lower saturation of v, = 3m/s.

A similar problem arises computing 8 = tg™! (v, /v,) when the velocities are
very close to zero, any small noise can generate huge angles. To get around this
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Fig. 8. Sideslip angle (8) estimation from the CEM compared with the one given by
the DGPS

situation a rule was implemented that when v, < 3m/s then v, = 0m/s, which
means that for small velocities (under 3m/s) no sideslip occurs. Note that 3m/s
was just a value that seems small enough to not induce a great error, and worked
well during the tests.

The results obtained using the car model estimator for the sideslip angle
are presented in Fig.8, as well as the sideslip angle measured by the DGPS.
This last one didn’t use any signal treatment, and is acquired at only 10 Hz.

Position Y [m]
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-5 0 5 10 15 20
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Fig. 9. Graphic representation of the results obtained from the estimators with the car
represented by a triangle with the heading orientation, and a blue vector representing
the velocity vector.
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The resulting signal is a bit noisy due to the input signals, in this case the
velocity components from the PCF, as seen previously. Once again, the estimator
doesn’t use any value from the DGPS. Analyzing both signals is possible that
the estimative is a little more conservative in terms of amplitude of the angle.
With some simple changes in the gains is possible to increase this amplitude,
but with the consequence of an increase in the noise. The presented result is a
compromise between accuracy and noise. It’s also important to remember that
one of the assumptions in this filter is the small angle approximation, which from
the DGPS values, was clearly exceeded. Even with some differences the estimator
keeps up with all the variations registered by the DGPS. In Fig.9 is possible to
see a graphical representation of the car during a part of the track ([221 s; 227 s]),
where the car is simplified by a red triangle align with the heading angle. A blue
arrow represents the velocity vector of the car at the centre of gravity. The [,
is the angle between the heading and the velocity vector. It’s a well-known fact,
among all the drivers of this car, that it suffers a lot from understeer, something
visible in Fig. 9, where is possible to see that the velocity vector always points to
the inside of the curve in relation to the heading, showing that behaviour. This
situation was also clearly visible during the data acquisition.

6 Conclusion

The estimation architecture explored was validated on a Formula Student pro-
totype. The Attitude Complementary Filter was implemented with interesting
results of heading and an estimate that corresponds to the expected bias. The
results of the Position Complementary Filter were close to the ground truth
given the low-cost sensors used. The Car Estimation Model was able to pro-
duce a sideslip estimation close to the values acquired from the DGPS, and
the observed during the field tests. The final results were similar to the values
from the DGPS. Thus, the estimation architecture proposed is capable to pro-
duce the intended results. This architecture paves the way for the next stages of
the projects, namely control system design and driverless competition prototype
development, by providing an observer for the sideslip.
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