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a b s t r a c t

This paper proposes a globally exponentially stable (GES) observer for attitude estimation based on a
single time-varying reference vector, in inertial coordinates, and corresponding vector, in body-fixed
coordinates, in addition to angular velocity readings. The proposed solution is computationally efficient
and, in spite of the fact that the observer does not evolve on the Special Orthogonal Group SO(3), an
explicit solution on SO(3) is also provided, whose error is shown to converge exponentially fast to zero
for all initial conditions. The distinct roles of the inertial and the corresponding body-fixed vectors on
the observability of the system are also examined and simulation results are shown that illustrate the
performance of the proposed attitude observer in the presence of low-grade sensor specifications.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Attitude estimation has been a hot topic of research in the
past decades, see e.g. Batista, Silvestre, and Oliveira (2009),
Mahony, Hamel, and Pflimlin (2008), Metni, Pflimlin, Hamel, and
Soueres (2006), Rehbinder and Ghosh (2003), Sanyal, Lee, Leok,
and McClamroch (2008), Tayebi, McGilvray, Roberts, and Moallem
(2007), Thienel and Sanner (2003), Vasconcelos, Cunha, Silvestre,
and Oliveira (2010) and the references therein. The reader is
referred to Crassidis, Markley, and Cheng (2007) for a survey on
the topic. However, only recently has attitude estimation been
studied based on time-varying reference vectors and, in particular,
single vector observations, see Kinsey andWhitcomb (2005, 2007),
Lee, Leok, McClamroch, and Sanyal (2007), and Mahony, Hamel,
Trumpf, and Lageman (2009). In Akella, Seo, and Zanetti (2006),
an explicit solution on SO(3) is proposed with almost globally
asymptotically stable error dynamics.

This paper presents a novel theoretical attitude estimation
framework based on single vector observations. Applications
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include, e.g., attitude estimation of unmanned vehicles that depend
on electromagnetic or acoustic feedback of direction vectors of
known landmarks. For space applications, it is interesting e.g. in
attitude estimation in orbits with gravity gradient effects or
even using magnetometers and sun sensor readings, as the
corresponding inertial vectors are slowly time-varying. Alternative
applications include sensor calibration, see e.g. Kinsey and
Whitcomb (2005) and Kinsey and Whitcomb (2007). Dual to the
topic of attitude estimation is attitude stabilization, see e.g. Wen
and Kreutz-Delgado (1991), Campolo et al. (2009), and Sanyal,
Fosbury, Chaturvedi, and Bernstein (2009) and the references
therein. An interesting separation principle can be found in
Maithripala, Berg, and Dayawansa (2006) and Maithripala, Berg,
and Dayawansa (2005).

The main contribution of this paper is the development of
a novel attitude observer based on single vector observations
with globally exponentially stable error dynamics. Central to the
observer design is the construction of a set of auxiliary reference
vectors (and corresponding vectors in body-fixed coordinates) and
the derivation of sufficient observability conditions, which result
in appropriate persistent excitation conditions that also allow for
norm changes, including null vectors for some time. The proposed
design is computationally efficient and the stability analysis builds
on well-established Lyapunov results and linear systems theory.
Unlike prior contributions that resort to local coordinates, the unit
quaternion, or Lie group techniques, the approach followed in this
paper consists in the embedding of SO(3) into R9, considering the
problem in anunconstrained fashion. As such,widely known issues
such as singularities, unwinding phenomena, slow convergence
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near unstable equilibrium points or topological limitations for
achieving global stabilization using smooth feedback on SO(3) do
not apply, see Bhat and Bernstein (2000), Chaturvedi, Sanyal, and
McClamroch (2011), Sanyal et al. (2009) and Wen and Kreutz-
Delgado (1991) and the references therein. As the observers do
not explicitly evolve on SO(3), an explicit solution on SO(3) is also
provided resorting to a projection operator, an approach that has
been employed previously in the design of interpolation methods
on SE(3), see Belta and Kumar (2002). The error of this solution
is shown to converge exponentially fast to zero for all initial
conditions.

The paper is organized as follows. The attitude kinematics and
some preliminary definitions are given in Section 2, while the
problem addressed in the paper is described in Section 3. The
design and stability analysis of the attitude observer is presented
in Section 4. In addition, the roles of the inertial and body-
fixed vectors are discussed, as well as some refinements to the
proposed solution. Simulation results that illustrate the achievable
performance are presented in Section 5 and, finally, Section 6
summarizes the main contributions and conclusions of the paper.

1.1. Notation

Throughout the paper, the symbol0denotes amatrix (or vector)
of zeros and I an identity matrix, both of appropriate dimensions.
A block diagonal matrix is represented as diag(A1, . . . ,An). For
x, y ∈ R3, x × y represents the cross product.

2. Preliminaries

Let {I} be an inertial reference frame, {B} a body-fixed reference
frame, and R(t) ∈ SO(3) the rotation matrix from {B} to {I}. The
attitude kinematics are given by Ṙ(t) = R(t)S[ω(t)], whereω(t) ∈

R3 is the angular velocity of {B}, expressed in {B}, and S(.) is the
skew-symmetric matrix such that S(x)y = x × y. The angular
velocity is assumed to be a continuous bounded signal, available
for observer design purposes.

The following definitions are useful in the sequel.

Definition 1. A continuous norm-bounded vector a(t) ∈ R3 is
called persistently non-constant if there exist α > 0, ϵ > 0, and
δ > 0 such that, for all t ≥ t0 and d ∈ R3, ∥d∥ = 1, it is true that
∥a(t)∥ > ϵ and t+δ

t
∥a(σ ) × d∥dσ ≥ α.

Definition 2. A set of N piecewise continuous norm-bounded
vectorsA = {ai(t) ∈ R3, i = 1, . . . , N} is called persistently non-
collinear if there exist α > 0 and δ > 0 such that, for all t ≥ t0,
there exist l and m such that t+δ

t
∥al(σ ) × am(σ )∥dσ ≥ α.

Definition 3. A set of N piecewise continuous norm-bounded
vectors A = {ai(t) ∈ R3, i = 1, . . . , N} is called persistently
non-planar if there exist α > 0 and δ > 0 such that, for all t ≥ t0
and d ∈ R3, ∥d∥ = 1, there exist l,m, and n such that t+δ

t
∥M(σ )d∥dσ ≥ α,

where M(t) := [al(t) am(t) an(t)]T ∈ R3×3.
3. Problem statement

Consider a persistently non-constant reference vector r1(t) ∈

R3, expressed in inertial coordinates, and the corresponding vector
v1(t) ∈ R3, expressed in body-fixed coordinates, that satisfies

r1(t) = R(t)v1(t). (1)

Suppose that the angular velocityω(t) is continuous and bounded.
The problem of attitude estimation considered in the paper is that
of designing an observer for the rotation matrix R(t) with globally
exponentially stable error dynamics based on v1(t), r1(t), andω(t).

4. Observer design and stability analysis

The attitude observer proposed in the paper follows by
embedding SO(3) in R9, discarding the topological structure of
the Special Orthogonal Group SO(3). In order to simplify the
derivation, consider a column stacking of R(t) given by x(t) =

[zT1(t) zT2(t) zT3(t)]
T

∈ R9,where

R(t) =

zT1(t)
zT2(t)

zT3(t)

 , zi(t) ∈ R3, i = 1, . . . , 3.

It is straightforward to show that ẋ(t) = −S3[ω(t)]x(t), where
S3(x) := diag(S(x), S(x), S(x)) ∈ R9×9, x ∈ R3. An attitude
observer for a persistently non-planar set of reference vectors
is derived in Section 4.1. The observer for single vectors follows
in Section 4.2 by constructing a persistently non-planar set of
reference vectors in inertial coordinates (and corresponding body-
fixed vectors) from a single persistently non-constant reference
vector. The solutions provided by these observers converge
asymptotically to SO(3) but do not necessarily evolve on SO(3). In
Section 4.3, an explicit solution on SO(3) is provided and examined,
while the distinct roles of the reference vectors and body-
fixed vectors are analysed in Section 4.4. Finally, in Section 4.5,
additional discussion on the proposed observers is offered.

4.1. Persistently non-planar reference vectors

Consider a set of vectors V = {vi(t) ∈ R3, i = 1, . . . , N}

expressed in body-fixed coordinates associated with a set of
vectors R = {ri(t) ∈ R3, i = 1, . . . , N} expressed in inertial
coordinates, such that ri(t) = R(t)vi(t), i = 1, . . . , N. Then, it
is straightforward to show that v(t) = C(t)x(t), where v(t) :=

[vT1(t) . . . vTN(t)]T ∈ R3Nand

C(t) :=

r11(t)I3 r12(t)I3 r13(t)I3
...

rN1(t)I3 rN2(t)I3 rN3(t)I3

 ∈ R3N×9,

with ri(t) = [ri1(t) ri2(t) ri3(t)]T ∈ R3, i = 1, . . . ,N.

Consider the attitude observer given by

˙̂x(t) = −S3[ω(t)]x̂(t) + CT (t)Q[v(t) − C(t)x̂(t)], (2)

where Q = QT
∈ R3N×3N is a positive definite matrix, and define

the error variable x̃(t) := x(t) − x̂(t). Then, the observer error
dynamics are given by

˙̃x(t) = A(t)x̃(t), (3)

where A(t) := −(S3[ω(t)] + CT (t)QC(t)).
The following theorem is the main result of this section.



390 P. Batista et al. / Automatica 48 (2012) 388–395
Theorem 4. Suppose that the set of vectors R is persistently non-
planar and consider the attitude observer (2), whereQ ≻ 0 is a design
parameter. Then, the origin of the observer error dynamics (3) is a
globally exponentially stable equilibrium point.

Proof. Let V (t) :=
1
2∥x̃(t)∥

2 be a Lyapunov candidate function. As
S3(.) is skew-symmetric, it follows that V̇ (t) = −x̃T (t)CT (t)QC(t)
x̃(t), which can be written as V̇ (t) = −x̃T (t)CT (t)C(t)x̃(t),
where C(t) := Q

1
2 C(t). Clearly, 1

2∥x̃(t)t∥
2

≤ V (t) ≤
1
2∥x̃(t)∥

2

and V̇ (t) ≤ 0. If, in addition, the pair (A(t), C(t)) is uniformly
completely observable, then the origin of the linear time-varying
system (3) is a globally exponentially stable equilibrium point, see
Khalil (2001, Example 8.11). The remainder of the proof amounts
to show that this is the case. For any piecewise continuous,
boundedmatrixK(t), of compatible dimensions, uniform complete
observability of the pair (A(t), C(t)) is equivalent to uniform
complete observability of the pair (A(t), C(t)), with A(t) :=

A(t) − K(t)C(t), see Ioannou and Sun (1995, Lemma 4.8.1). Now,
notice that,withK(t) = −CT (t), it follows thatA(t) = −S3[ω(t)].
Therefore, it remains to show that there exist positive constants ϵ1,
ϵ2, and δ such that

ϵ1I ≼ W (t, t + δ) ≼ ϵ2I (4)

for all t ≥ t0, where W (t0, tf ) is the observability Gramian associ-
ated with the pair (A(t), C(t)) on [t0, tf ]. Since the entries of both
A(t) andC(t) are continuous and bounded, it is trivial to show that,
for any positive δ, there always exists a positive ϵ2, depending on
δ, such that the right side of (4) is verified. Therefore, it remains to
show that there exist positive constants δ and ϵ1 such that the left
side of (4) holds. It is straightforward to show that the transition
matrix associated with A(t) is given by

φ(t, t0) = diag(RT (t)R(t0),RT (t)R(t0),RT (t)R(t0)).

Let d = [dT
1 dT

2 dT
3]

T
∈ R9, di ∈ R3, i = 1, 2, 3, be a unit

vector. Then,

dTW (t, t + δ)d =

 t+δ

t
dTφT (τ , t)CT (τ )QC(τ )φ(τ , t)ddτ

for all t ≥ t0 and δ > 0. As Q is positive definite, it follows, using
the Rayleigh–Ritz inequality, that

dTW (t, t + δ)d ≥ c1

 t+δ

t
∥C(τ )φ(τ , t)d∥

2dτ , (5)

where c1 is theminimumeigenvalue ofQ, which is strictly positive.
It is straightforward to show that

C(τ )φ(τ , t)d =

RT (τ )R(t)[d1d2d3]r1(τ )
...

RT (τ )R(t)[d1d2d3]rN(τ )

 .

As RT (τ )R(t) ∈ SO(3), it follows that

∥C(τ )φ(τ , t)d∥ =


[d1d2d3]r1(τ )

...
[d1d2d3]rN(τ )




and therefore it is possible to rewrite (5) as

dTW (t, t + δ)d ≥ c1

 t+δ

t


[d1d2d3]r1(τ )

...
[d1d2d3]rN(τ )



2

dτ .
As the set of vectors R is assumed persistently non-planar, it
follows, from Lemma 8 (see Appendix A), that there exist positive
constants c2 and δ such that

 t+δ

t


[d1d2d3]r1(τ )

...
[d1d2d3]rN(τ )



2

dτ ≥ c2

for all t ≥ t0, which allows to write dTW (t, t + δ)d ≥ α, for
all t ≥ t0 and all ∥d∥ = 1, with α := c1c2. Therefore, the pair
(A(t), C(t)) is uniformly completely observable, which concludes
the proof. �

4.2. Persistently non-constant reference vector

This section presents an attitude observer for a persistently
non-constant reference vector. First, the following theorem is
introduced, which allows to derive a persistently non-planar set
of reference vectors and corresponding vectors in body-fixed
coordinates based on a single reference vector and corresponding
vector in body-fixed coordinates.

Theorem 5. Consider a persistently non-constant reference vector
r1(t) ∈ R3 for which there exist α > 0 and δ > 0 such that, for
all t ≥ t0 and d ∈ R3, with ∥d∥ = 1, it is true that t+δ

t
∥r1(σ ) × d∥dσ ≥ α, (6)

corresponding to a vector in body-fixed coordinates v1(t) ∈ R3

such that (1) holds. Suppose that the angular velocity ω(t) is
continuous and bounded. Define the set of reference vectors R :=

{r1(t), r2(t), r3(t)} , where

r2(t) := r1(ti), ti ≤ t < ti+1, i ∈ N0, (7)

with ti := t0 + iδ, i ∈ N0, and

r3(t) := r1(t) × r2(t) ∈ R3. (8)

Define also the corresponding set of vectors in body-fixed coordinates
V := {v1(t), v2(t), v3(t)}, where v2(t) is the piecewise continuous
vector
v2(ti) := v1(ti)
v̇2(t) = −S[ω(t)]v2(t), ti ≤ t < ti+1

i ∈ N0, (9)

and

v3(t) := v1(t) × v2(t) ∈ R3. (10)

Then,

(i) the set of reference vectors R is compatible with the set of body-
fixed vectors V , i.e.,

ri(t) = R(t)vi(t), i = 1, 2, 3; (11)

and
(ii) the set of reference vectors R is persistently non-planar.

Proof. First, notice that, by assumption, (11) is verified for i =

1. From (9), it is straightforward to show that v2(t) = RT (t)
R(ti)v2(ti), ti ≤ t < ti+1, i ∈ N0. By definition, v2(ti) = v1(ti) =

RT (ti)r1(ti), i ∈ N0 which allows to write

v2(t) = RT (t)R(ti)RT (ti)r1(ti) = RT (t)r1(ti) (12)

for all ti ≤ t < ti+1, i ∈ N0. Now, substituting (7) in (12) imme-
diately gives that (11) is verified for i = 2. As (11) is verified for
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i = 1 and i = 2, it is trivial to show, from (8) and (10), that it is also
verified for i = 3,

v3(t) = [RT (t)r1(t)] × [RT (t)r2(t)] = RT (t)r3(t),

which concludes the first part of the proof. Next, it is shown that
the set of vectors {r1(t), r2(t)} is persistently non-collinear. By
assumption, there exist positive constants α and δ such that (6)
holds. Let δ′

:= 2δ. Then, t+δ′

t
∥r1(σ ) × r2(σ )∥dσ =

 ti+1

ti
∥r1(σ ) × r2(σ )∥dσ

+

 ti

t
∥r1(σ ) × r2(σ )∥dσ

+

 t+δ′

ti+1

∥r1(σ ) × r2(σ )∥dσ (13)

for all t ≥ t0, where i corresponds to the smallest integer such that
ti ≥ t . Since all terms are positive, it follows from (13) that t+δ′

t
∥r1(σ ) × r2(σ )∥dσ ≥

 ti+1

ti
∥r1(σ ) × r2(σ )∥dσ (14)

for all t ≥ t0. Now, notice that, by definition, r2(t) is constant on
[ti, ti+1[. Therefore, it is possible to write, from (14), t+δ′

t
∥r1(σ ) × r2(σ )∥dσ ≥

 ti+δ

ti
∥r1(σ ) × r2(ti)∥dσ

≥ ∥r2(ti)∥
 ti+δ

ti

r1(σ ) ×
r2(ti)

∥r2(ti)∥

 dσ (15)

for all t ≥ t0. Now, applying (6) to (15) gives t+δ′

t
∥r1(σ ) × r2(σ )∥dσ ≥ α∥r2(ti)∥ (16)

for all t ≥ t0. Substituting (7) in (16), and from the fact that,
by assumption, r1(t) is persistently non-constant and therefore
bounded from below (and above), it follows that the set of
reference vectors {r1(t), r2(t)} is persistently non-collinear. Now,
notice that the set of vectors R corresponds to the set of vectors
{r1(t), r2(t)}, which is persistently non-collinear, augmented with
the vector r1(t) × r2(t). Therefore, it immediately follows, using
Proposition 9 (see Appendix A), that the augmented set R is
persistently non-planar, which concludes the second part of the
proof. �

The following theorem is the main result of the paper.

Theorem 6. Let r1(t) ∈ R3 be a persistently non-constant vector,
expressed in inertial coordinates, and v1(t) ∈ R3 the corresponding
vector expressed in body-fixed coordinates. Consider two sets of
vectorsR andV derived according to Theorem 5, whereR is the set of
reference vectors and V is the corresponding set of vectors expressed
in body-fixed coordinates. Further consider the attitude observer (2),
where Q ≻ 0 is a design parameter. Then, the origin of the observer
error dynamics (3) is a globally exponentially stable equilibrium point.

Proof. As the augmented set of reference vectors R was chosen
according to Theorem 5, it follows that it is a persistently non-
planar set of reference vectors. In addition, the augmented set
of body-fixed vectors V is coherent with the definition of the
reference vectors, i.e., (11) is satisfied. Therefore, straightforward
application of Theorem 4 yields the desired result. �
4.3. Solution on SO(3)

The attitude observers previously proposed yield estimates of
the rotation matrix R(t) given by

R̂(t) =

ẑT1(t)
ẑT2(t)

ẑT3(t)

 , ẑi(t) ∈ R3, i = 1, . . . , 3,

where x̂(t) = [ẑT1(t) ẑT2(t) ẑT3(t)]
T

∈ R9. However, R̂(t) is not
necessarily a rotation matrix as there is nothing in the observer
structure imposing the restriction R̂(t) ∈ SO(3). In fact, if this
restriction is imposed, it is actually impossible to achieve
continuous global asymptotic stabilization due to topological
limitations, see Bhat and Bernstein (2000). Nevertheless, the
estimation error of the proposed observer converges globally
exponentially fast to zero and therefore the corresponding rotation
matrix restrictions are verified asymptotically. When the observer
error is sufficiently small, one orthogonalization cycle suffices, as
given by

R̂o(t) =
1
2
(R̂(t) + [R̂T (t)]−1),

to obtain an estimate sufficiently close to an element of SO(3),
see Bar-Itzhack and Meyer (1976). In spite of the fact that
orthogonalization cycles are an extremely efficient method to
obtain an estimate of the rotationmatrix that is very close to SO(3),
it may happen that an explicit solution on SO(3) is required. This is
established in the following theorem.

Theorem 7. Consider the estimate R̂(t) obtained from the attitude
observer (2), under the conditions of Theorem 4 (or Theorem 6), with
GES error dynamics. Further suppose that the initial estimate satisfies
R̂(t0) ∈ SO(3) and define a new attitude estimate R̂f (t) of the rotation
matrix R(t) asR̂f (t) = arg min

X(t)∈SO(3)
∥X(t) − R̂(t)∥, ∥R̂T (t)R̂(t) − I∥ ≤ ϵ

˙̂Rf (t) = R̂f (t)S(ω(t)), ∥R̂T (t)R̂(t) − I∥ > ϵ,

where ϵ > 0. Then,
(i) R̂f (t) ∈ SO(3);
(ii) there exists ts such that ∥R̂T (t)R̂(t) − I∥ ≤ ϵ for all t ≥ ts and

therefore R̂f (t) corresponds to the projection on SO(3) of R̂(t)
for all t ≥ ts; and

(iii) the error R̃f (t) := ∥R(t) − R̂f (t)∥ is bounded and limt→∞

∥R̃f (t)∥ = 0. Moreover, the convergence is exponentially fast.

Proof. The first part of the proof, that R̂f (t) ∈ SO(3), follows
by construction, which in turn gives that ∥R̃f (t)∥ is bounded as
∥R̃f (t)∥ ≤ ∥R(t)∥ + ∥R̂f (t)∥ ≤ 2. Define R̃(t) := R(t) − R̂(t).
As x(t) and x̂(t) are column representations of R(t) and R̂(t),
respectively, and as x̃(t) converges globally exponentially fast to
zero, it follows that limt→∞ ∥R̃(t)∥ = 0. This mean that, for every
ϵ1 > 0, it is possible to choose t∗ ∈ R such that, for all t ≥ t∗, it is
true that

∥R(t) − R̂(t)∥ < ϵ1, (17)

or, equivalently,

∥RT (t)R̂(t) − I∥ < ϵ1. (18)

Now, notice that

R̂T (t)R̂(t) − I = RT (t)R̂(t) − I + [R̂(t) − R(t)]T R̂(t)

= RT (t)R̂(t) − I + R̃T (t)[R̃(t) − R(t)] (19)
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and, using simple norm inequalities in (19) allows to write

∥R̂T (t)R̂(t) − I∥ ≤ ∥RT (t)R̂(t) − I∥ + ∥R̃(t)∥2
+ ∥R̃(t)∥. (20)

Given ϵ > 0, choose ϵ1 > 0 such that ϵ2
1 + 2ϵ1 ≤ ϵ. Then, using

(17) and (18) in (20) immediately allows to conclude the second
part of the theorem. To show that the error ∥R̃f (t)∥ converges to
zero notice that, for all t ≥ ts, R̂f (t) corresponds to the projection
on SO(3) of R̂(t) and therefore, for all t ≥ ts and X(t) ∈ SO(3), it
is true that ∥R̂f (t) − R̂(t)∥ ≤ ∥X(t) − R̂(t)∥. In particular, with
X(t) = R(t) it follows that

∥R̂f (t) − R̂(t)∥ ≤ ∥R(t) − R̂(t)∥ (21)

for all t ≥ ts. Simple norm inequalities allow to write

∥R(t) − R̂f (t)∥ ≤ ∥R(t) − R̂(t) + R̂(t) − R̂f (t)∥

≤ ∥R(t) − R̂(t)∥ + ∥R̂f (t) − R̂(t)∥. (22)

Substituting (21) in (22) gives

∥R(t) − R̂f (t)∥ ≤ 2∥R(t) − R̂(t)∥ (23)

for all t ≥ ts. As the error of the observer ∥R̃(t)∥ converges ex-
ponentially fast to zero, it follows from (23) that so does ∥R(t) −

R̂f (t)∥, which concludes the proof. �

Remark 1. The projection on SO(3) of R̂(t) is well known and it is
readily obtained from the Singular Value Decomposition (SVD) of
R̂(t), see e.g. Belta and Kumar (2002) for more details.

Remark 2. Notice that Theorem 7 does not violate any of the re-
sults presented in Bhat and Bernstein (2000) for global asymptotic
stabilization on SO(3) as the solution provided by Theorem 7 is not
guaranteed to be continuous for t ≤ ts. However, for t > ts the
solution is guaranteed to be continuous in the absence of noise.
In the presence of noise, appropriate bounds on ϵ, dependent on
the noise characteristics, must be imposed in order to guarantee
the existence of ts such that the second result of Theorem 7 holds.
This will be detailed in future work.

4.4. Roles of the reference and the body-fixed vectors

This section clarifies the roles of the reference vector in iner-
tial coordinates and the corresponding vector in body-fixed coordi-
nates. First, it is shown that, even though a reference vectormay be
persistently non-constant, which allows for the application of The-
orem 6, the corresponding vector in body-fixed coordinates may
not be persistently non-constant. Let r1(t) ∈ R3 be a persistently
non-constant reference vector, in inertial coordinates, and v1(t)
be the corresponding vector in body-fixed coordinates, which sat-
isfies (1). Let the dynamics of the reference vector be given by
ṙ1(t) = −S[ωr(t)]r1(t) + ur(t)r1(t), where ur(t) ∈ R is a contin-
uous bounded function. Taking the time derivative of v1(t) gives
v̇1(t) = −S[ω(t)]v1(t) − RT (t)S[ωr(t)]r1(t) + ur(t)RT (t)r1(t)
which, using (1) and the fact that R(t) is a rotationmatrix, together
with cross product properties, may be rewritten as

v̇1(t) = −S[ω(t) + RT (t)ωr(t)]v1(t) + ur(t)v1(t). (24)

Now, notice that, with ω(t) = −RT (t)ωr(t), (24) reads as v̇1(t) =

ur(t)v1(t), which means that v1(t) has constant direction and
therefore it is not persistently non-constant. This shows that it is
possible to estimate the attitude even if the vector in body-fixed
coordinates is not persistently non-constant.

On the other hand, when the reference vector is not persistently
exciting, in the limit situation it has constant direction. It is
well known that, with just one constant direction in inertial
coordinates, it is impossible to recover the attitude matrix.
Nevertheless, the corresponding vector, in body-fixed coordinates,
may be persistently exciting, e.g., if ω(t) = ωv , where ωv is
orthogonal to v1(t0). This shows that it may be impossible to
estimate the attitude even though the vector observation, in body-
fixed coordinates, is persistently non-constant.

The previous discussion clarifies why the inertial vectors are
denoted as reference vectors in this paper. Even though it is
possible to express alternative conditions such that the observer
error dynamics are GES, the observability of the attitude is
fundamentally connected to the evolution of the inertial vector.
Naturally, the roles of the vectors would differ if the angular
velocity of {B} with respect to {I} was expressed in inertial
coordinates.

4.5. Further discussion

4.5.1. Lower bound on the norm of the reference vector
In the definition of a persistently non-constant vector, a lower

bound is set on the normof the vector. It turns out that it is possible
to generalize the observer design proposed in Section 4.2 to discard
this restriction. Essentially, this assumption allows to write (15),
where ∥r2(ti)∥ = ∥r1(ti)∥ is lower bounded. If this bound was not
assumed, it would be possible to have a persistently non-constant
vector r1(t) in Theorem 5 such that r2(t) = r3(t) = 0 for all
t , and therefore the set of vectors R would not be persistently
non-planar. However, an alternate time-varying scheme for the
definition of a set of reference vectors is possiblewhere δ is allowed
to increase for the update of the reference vector r2(t) such that
r2(t) is not a null vector for all t . The design is trivial and therefore
it is omitted.

4.5.2. Direction vs. norm of the reference vector
It is trivially shown that the persistent excitation conditions

expressed in the paper are essentially related to the direction of
the reference vectors, and the only condition that the norm has to
satisfy is not to be convergent to zero, whichwould lead to the loss
of excitation.

4.5.3. Observer design for persistently non-collinear sets of reference
vectors

Even though an observer for a persistently non-collinear
set of reference vectors is not presented in the paper, this is
straightforward and follows by building an augmented set that is
persistently non-planar, with the additional vectors resulting from
the cross product of existing reference vectors.

4.5.4. Speed vs. performance trade-off
The observer has essentially one tuning knob, the positive

definite matrix Q. The larger this is, the faster the error converges
to zero. However, as Q increases, the sensitivity of the estimates
to sensor noise increases. Two sets of gains may be employed,
one during start-up, and the other during steady-state, to achieve
faster convergence if needed while maintaining good steady-state
performance.

5. Simulation results

In order to evaluate the performance of the proposed observer,
simulations were carried out in a realistic setup environment,
considering a single persistently non-constant reference vector,
which results in a persistently non-coplanar set of three reference
vectors, as given by Theorem 5, where it was set δ = 10 s. The
evolution of the reference and body-fixed vectors is depicted in
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Fig. 1. Evolution of the reference vectors.

Fig. 2. Evolution of the body-fixed vectors.

Figs. 1 and 2, respectively. The initial attitude isR(0) = I. Although
a different reference vector could have been chosen, notice that
r1(t) does not satisfy the lower bound on the norm. However, as
discussed in Section 4.5, that does not affect the results and this
vector was chosen on purpose to illustrate this situation. The filter
parameterwas chosen asQ = 0.1I, while the initial rotationmatrix
estimate was chosen as R̂(0) = diag(−1, −1, 1).

Sensor noise was considered on the angular velocity readings
and the body-fixed vector observation. In particular, additive,
zero-mean, white Gaussian noise was considered, with standard
Fig. 3. Evolution of the Lyapunov function V (t) =
1
2 ∥x̃(t)∥2 .

deviation of 1°/s for the angular velocity and 0.01 for the body-
fixed vector observation. Notice that the specification for the
angular velocity corresponds to a very low-grade sensor, while
for the body-fixed vectors it corresponds to a standard deviation
of 0.5% of the range. It should be emphasized that, when the
norms of the body-fixed vectors are low, e.g. on the time interval
[20, 40]s, the noise of the vector observations is relatively very
large. Therefore, the present specifications correspond to a realistic
low-cost sensor suite.

The evolution of the Lyapunov function V (t) is depicted in
Fig. 3, where a logarithmic scale was employed for the y-axis. It
is clear that the observer enters steady-state in less than 60 s,
while the evolution of the error remains confined to a tight interval.
Although it is not shown in the paper due to the lack of space,
with the solution that resorts to the orthogonalization cycle the
orthogonality error ∥R̂(t)R̂T (t)− I∥ quickly reaches values around
10−4 with a single cycle and 10−8 with two orthogonalization
cycles, which are very good considering the very noisy setup.
Nevertheless, the solution provided in Theorem 7, instead of
the use of orthogonalization steps, completely eliminates the
orthogonality error, providing a solution on SO(3). In order to
evaluate the overall attitude performance, and for the purpose
of performance evaluation only, an additional error variable is
defined as R̃a(t) = RT (t)R̂(t), which corresponds to the rotation
matrix error. Using the Euler angle-axis representation for this new
error variable,

R̃a(t) = I cos(θ̃(t)) + [1 − cos(θ̃(t))]d̃(t)d̃T (t)

− S(d̃(t)) sin(θ̃(t)),

where 0 ≤ θ̃ (t) ≤ π and d̃(t) ∈ R3, ∥d̃(t)∥ = 1, are the angle
and axis that represent the rotation error, the performance of the
filter is easily identified from the evolution of θ̃ . Although it is not
depicted here due to the lack of space, after the initial transients
fade out, the angle error remains confined to a tight interval, in
spite of the low-grade specifications of the sensors. Themean error
is 0.68° which, considering the sensor suite specifications and the
fact that one single reference vector is available in order to build
the observer, consists in a very good and promising result.

Remark 3. The theoretical stability analysis that is presented
in this paper considers the nominal system dynamics, ignoring
sensor noise. Nevertheless, the simulation results presented
herein are extremely compelling regarding this issue. Indeed,



394 P. Batista et al. / Automatica 48 (2012) 388–395
the standard deviation of the noise that was considered for the
vector observations reached very large relative values and the
rate gyro noise is also very large, typical of the lowest grade
rate gyros. Nevertheless, even with these noise characteristics,
the observer achieved very interesting performances. The topic
of stochastic stability of the proposed observer, considering a
theoretical framework, will be the subject of future research.

6. Conclusions

This paper presented a novel set of attitude observers based on
time-varying reference vectors. The origin of the error dynamics
was shown to be a globally exponentially stable equilibrium point
under appropriate persistent excitation conditions and, as the
estimates of the observer converge only asymptotically to SO(3), an
explicit solution on SO(3)was derived, whose error also converges
exponentially fast to zero for all initial conditions. In addition,
the distinct roles of the inertial and the corresponding body-fixed
vectors on the observability of the system were also examined.
Finally, simulation results were shown that illustrate excellent
performance of the resulting attitude estimation solutions even
with very low-grade sensor specifications.
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Appendix A. Auxiliary results

Lemma 8. Let A = {ai(t) ∈ R3, i = 1, . . . , N} be a persis-
tently non-planar set of vectors. Then, there exist α > 0 and δ

> 0 such that, for all t ≥ t0 and d ∈ R9, ∥d∥ = 1, it is true
that t+δ

t
∥bv(d, σ )∥dσ ≥ α,

where d = [dT
1 dT

2 dT
3]

T , di ∈ R3, i = 1, 2, 3, and

bv(d, t) =


[d1 d2 d3]a1(t)

...

[d1 d2 d3]aN(t)

 ∈ R3N .

Proof. The proof follows from simple norm inequalities. It is
omitted due to the lack of space. �

Proposition 9. Let R = {r1(t), r2(t)}, ri(t) ∈ R3, i = 1, 2, be a
persistently non-collinear set of vectors. Then, the augmented set of
vectors Ra := R ∪ {r1(t) × r2(t)} is persistently non-planar.

Proof. The proof follows by establishing that if Ra is not persis-
tently non-planar, then R cannot be persistently non-collinear. To
that purpose, suppose thatRa is not persistently non-planar. Then,
for every α > 0 and δ > 0, it is possible to choose t ≥ t0 and
d ∈ R3, with ∥d∥ = 1, such that t+δ

t
∥Mr(σ )d∥dσ < α, (A.1)
where

Mr(σ ) =


rT1(σ )

rT2(σ )

[r1(σ ) × r2(σ )]T

 ∈ R3×3.

Applying simple norm inequalities in (A.1) gives

 t+δ

t
∥rT1(σ )d∥dσ < α t+δ

t
∥rT2(σ )d∥dσ < α t+δ

t
∥[r1(σ ) × r2(σ )]Td∥dσ < α

(A.2)

for all α > 0 and δ > 0. Now, let d⊥1 be a unit vector orthogo-
nal to d, define d⊥2 := d × d⊥1 , and decompose r1(σ ) and r2(σ )
as
r1(σ ) = r10(σ )d + r11(σ )d⊥1 + r12(σ )d⊥2

r2(σ ) = r20(σ )d + r21(σ )d⊥1 + r22(σ )d⊥2 ,
(A.3)

which is always possible as d, d⊥1 , and d⊥2 span R3. Substituting
(A.3) in (A.2) immediately yields

 t+δ

t
|r10(σ )|dσ < α t+δ

t
|r20(σ )|dσ < α t+δ

t
|r11(σ )r22(σ ) − r12(σ )r21(σ )|dσ < α

(A.4)

for all α > 0 and δ > 0. Now, notice that

r1(σ ) × r2(σ ) = [r11(σ )r22(σ ) − r12(σ )r21(σ )]d

+ [r12(σ )r20(σ ) − r10(σ )r22(σ )]d⊥1

+ [r10(σ )r21(σ ) − r11(σ )r20(σ )]d⊥2 . (A.5)

Applying simple norm inequalities in (A.5), and as d, d⊥1 , and d⊥2

are unit vectors, yields

∥r1(σ ) × r2(σ )∥ ≤ |r11(σ )r22(σ ) − r12(σ )r21(σ )|

+ |r20(σ )| |r12(σ )| + |r10(σ )| |r22(σ )|

+ |r10(σ )| |r21(σ )| + |r20(σ )| |r11(σ )|. (A.6)

By definition, all vectors ri(σ ), i = 1, . . . , N are bounded. Let
c1 := supτ≥t0 |rij(τ )|, i = 1, . . . ,N, j = 1, 2, 3. Then, it can be
concluded, from (A.6), that

∥r1(σ ) × r2(σ )∥ ≤ |r11(σ )r22(σ ) − r12(σ )r21(σ )|

+ 2c1|r10(σ )| + 2c1|r20(σ )|. (A.7)

Integrating both sides of (A.7) and using (A.4) allows to conclude
that t+δ

t
∥r1(τ ) × r2(τ )∥dτ ≤ α[1 + 4c1] (A.8)

for all α > 0 and δ > 0. Then, it is clear that, for all α′ > 0 and
δ′ > 0 it is possible to choose t ′ ≥ t0 such that t ′+δ′

t ′
∥r1(σ ) × r2(σ )∥dσ < α′,
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just choose t = t ′, δ = δ′, and α = α′/(1 + 4c1) in (A.8), which
means that R is not persistently non-collinear. This concludes the
proof, as it was shown that, if Ra is not persistently non-planar,
then R is not persistently non-collinear. �
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