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ABSTRACT p(k) Accumulated normalized position vector
Maneuvering vessel detection and tracking in cooperation pi(K) j-th position vecto

with vessdl state estimation and navigational trajectory W(k) Accumulated prototypes vector

prediction are important tasks for the Vessel Traffic Monitoring w;(K) i-th prototype vecto

and Information Systems (VTMIS) to improve maritime safety n(k) Neural network inpu

and security in ocean navigation. In this study, collaborated a(k) Neural network output vector

and constrained Neural-EKF algorithm is proposed for the 0i(k) Angle betweem;(k) and w(k)

above purpose. The proposed methodol ogy consists of two main a Learning rate of the Instar rule

units: an Artificial Neural Network based Vessel Detection and X(1), y(t) Vessel position x, y coordinates

Tracking Unit and an Extended Kalman Filter based Sate Vy (1), wy(t) Vessel x, y directional velocity compone

Estimation and Trajectory Prediction Unit. Finally, the an(t), a(t) Vessel normal, tangential acceleration

proposed algorithm, is implemented on the MATLAB software Va (b) Vesse speec

platform, and successfully illustrate the results attainable in Ya(t) Vesse course

respect to vessel detection and tracking, vessel state estimation x(t) Nonlinear vessel state vector

and navigational trajectory prediction in ocean navigation is f (x(t) Nonlinear vessel state funct

also presented in this study. w(t)~N(0,Q(t)) Vessel state noise vector
z(t) Measurement vect

NOMENCLATURE z(K), z,(K) Measurement x, y vessel coordini
h(x(t)) Measurement function

Ry Neural network constrained learning ra v(t)~N(O,R(t)) Measurement noise vec

Rl The sensor maximum measurement range Q(t) Vessel state noise covariance

ri(K) j-th position range vector R(k) Measurement noise covariance

r(k) Accumulated range vec! X(t) Nonlinear vessel state vec

7;(k) j-th position bearing vector X(t) Vessel state error vector

3(k) Accumulated bearing vector X(t) Estimated vessel state vector

xi(K), “yi(k) j-th position x, y coordinates x(K), x(k" Estimated pric andposterior staf vectols

Xi(K).yi(k),z(k) Normalized -th position x, y, z coordinate f(x(1)) Nonlinear vessel state funct
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w(t) \Vessel state noise vec

z(t) Measurement vector

h(x(k)) Measurement functic

v(K) Measurement noise vector

Q) Vessel state noise covariance

R(k) Meesurement noise covariar

P(t) Estimated error covariance

P(K), P(K) Estimated prior and posterior error
covariance of state vectors

K(k) Kalman filter gain

INTRODUCTION

The European Union (EU) is surrounded by one of the
busiest and most complex sea route systems in ohlel.wDver
90% of the EU external trade goes by sea and ovebiBion
tones of the freight per year are transferred tiinothe EU
ports. In addition, passenger traffic in the seasird the EU
regions is presently approximated to 350 milliorsgenger
journeys per year [1].

With the increase demand for maritime transpontatid
passengers and freights in the EU maritime regitires safety
and security issues in ocean navigation are higtdid
Furthermore, a maritime monitoring mechanism fortth
purpose is proposed by the EU Directive 2002/592ere the
highly dense maritime traffic regions are to beipped with
the regional Vessel Traffic Monitoring and Inforriaet Systems
(VTMISs). The conventional ocean navigational systeand
VTMISs are equipped with several maritime survait@
systems (i.e. Radar, Laser, Ladar, Automatic R&diztting Aid
(ARPA), Automatic Identification System (AIS), aridong-
Range Identification and Tracking System (LRIT)) floe same
purpose. However, there are many challenges fagethdse
maritime surveillance systems as presented in TBE larger
surveillance volume, synchronization among targeisd
sensors, noisy signal propagation environment anlti-target
observations. Therefore, the integration of adednfeatures
into the maritime surveillance systems as propasehis study
are required to overcome the challenges faced iearoc
navigation.

ahead of time. Furthermore, those tasks are alportamt tools
to Long-Range ldentification and Tracking (LRIT)stgm, that
will be implemented as an international maritimecusiy

network, where each respective country has sufficiene to

evaluate and to response to security risk thab&eqa by each
vessel to its coastline [2]. Furthermore, by obgyito the

conditions of national and international maritinagvé, by each
vessel, can also be monitored by these systemsewther
coastal security and safety issues should not bgmmised.

The VTMIS proposed in this work is presented inuFégl.
As depicted in the figure, the system consistsvof main units:
ANN (Artificial Neural Network) based Vessel Detiect unit
and Tracking Unit and EKF (Extended Kalman Filtegsed
Trajectory Estimation and Prediction Unit. The camaltion of
these units, collaborated and constrained Neurdd-Eligorithm
that is the main objective in this paper, is ddsati in the
following sections.

The work presented in this study is a part of thgaing
effort to formulate an Intelligent Collision Avoidee System in
ocean navigation, as further described by [5] a6 The
organization of this paper is as follows. The secsection
contains an overview of proposed Vessel Traffic Moing
and Information System (VTMIS). An ANN based vessel
detection and tracking process and an EKF basett sta
estimation and trajectory prediction process aesgmted in the
third and forth sections respectively. The fiftletsen contains a
detailed description of computational simulationsd a
discussions. Finally, the conclusion and future kware
presented in the sixth section.

g

Radar/Laser
Sensor

However, there are some advanced features developed

under current maritime surveillance systems of ARRd AlS.
The ARPA system provides accurate information argeaand
bearing of nearby vessels and the AIS is capablgivhg
information on the vessel structural data, posjtcourse, and
speed, etc. The AIS marine traffic simulator, aignfa perform
navigation safety and security studies, is preseimd4]. Even
though the ARPA and AIS systems were developedrawige
navigation aids (ie. detection and tracking faei$ij to vessels,
the vessel state estimation and its navigationajedtory
prediction tasks are still under developed.
The main advantages of vessel state estimation and

navigational trajectory prediction tasks are thention of the
vessel and the collision risk among vessels to tesligted

EKF based Vessel State
Estimation & Trajectory
Prediction Unit

=i=

Vessel Traffic Monitoring
& Reporting System

ANN based Vessel
Detection & Tracking
Unit

Figure .. The Proposed VTMI
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VESSEL TRAFFIC MONITORING AND INFORMATION
SYSTEM

The mathematical formulation of the VTMIS that is
presented in Figure 1 is further discussed in #astion. A
multi-vessel situation under the radar/laser sensasurements
is presented in Figure 2. The radar/laser senstoceted in
position O (0, 0) and the i-th vessel at the kithetinstant is
located at the position;ék). As presented in the figure, each
vessel is identified as a cluster of data poinas ith observed by
the radar/laser sensor. The sensor range is diviiotedtwo
region with respect to radius of Rand R; as presented in the
figure.

In the region between regions,Rand R; the vessel
detection and tracking processes are executedhdnrdgion
R.; the vessel states (i.e. position, velocity andebration)
estimation and navigational trajectory predictiongesses are
executed. Furthermore, the initial neurons thatuses for the
vessel detection and tracking process are locatecthé
boundary layer region of R as further described in the third
section.

Sensor Measurement and Coordinate Systems

After radar/laser scan, the sensor generates
corresponding range and bearing values of the lessal
obstacles in the environment, at k-th time instam be written
as:

r(k) =[5 (K) B (). ir (K)] 1)
3(k) =[9, (k)9 (K)...95 ()]

The range and bearing values are transformed tmto t
Cartesian coordinated in the j-th position at tite kime instant
can be written as:

©x (k)= § (k)cos(9; (k) @)
°y, (k) = 1 (K)sin(9;(K))

However, these position data points should be niizath
with respect to the maximum range of the radawlasmsor.
The normalized j-th position coordinates of thesetst the k-
th time instant can be written as:

Sy (k
Xj(k):;‘:( ) 3)
L2
C k
v, =28
L2

However, for the fair neural competition these posi
vectors should be formulated for unit magnitudediions as
further described in the following section, wheiee tthird
dimension, Zk), is introduced, and that can be written as:

the

§ Neuron

Vessel 1

pa(k)

A(k)

o)
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\ Vessel i
A AK)

Ng_euron L

s

Figure 2. Multi-vessel Radar/Laser Measurement

\/ij (K)+ yF (k) + 22 (k) =1 (4)

The coordinate of the;j(k) can be calculated considering
the above unit magnitude conditions for the j-thadaoint and
can be written as:

2,(K) = 1= X2 (k) = y;" (K) ()

One should note that the introduction of a thircheision
(z(k)) can be evaluated as a transformation of 2Ditipos
coordinates into 3D position coordinates. The ceatepBD j-th
position data point at the k-th time instant camii¢ten as:

py(K) = x; () ¥, (K) 2;(K)] ©)

Therefore, the complete data cluster (see Figuréh&®) is
generated by the sensor measurements can fornastate

p(k) = [pu(k) Po(K) ... pr(K)] (7)

ANN BASED VESSEL DETECTION AND TRACKING

The theoretical foundation of artificial neurons is
formulated from observations of biological conceggswell as
inspirations of the behavior of human brain and/oes system.
An artificial neuron consists of several inputsttbarrespond to
the synapses of a biological neuron. Furthermaoregrisists of
only one output that corresponds to the axon bfotogical
neuron. However, each input corresponds to a cewneight
value that influences the corresponding signal dlkierneuron
output.
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Furthermore, in an artificial neuron this concept i
mathematically formulated by a transfer functioheTTransfer
function calculates the sum of the net-input wigkpect to the
weight values and compare with certain thresholelte to
generate the neurons output [7]. The accumulatfoseveral
neurons in series and /or parallel formation cdagaize as an
Artificial Neural Network (ANN).

Competitive Neural Network

Artificial neural network (ANN) approach has been
successful applied in the problems of clusteringd an
classification in recent literature with respectstationary data
conditions [8]. However, in this study, moving datnditions
are proposed and this is one of the novel coniohst The
constrained Competitive Neural Networks (CNN) azzh [9]
associated with the Instar rule is proposed in shigly for the
detection and tracking of multi-vessel conditioms dcean
navigation. The proposed constrained CNN is preserin
Figure 3.

Detection and Tracking of Multi-vessel Conditions

The constrained CNN is formulated for detection and
tracking of vessels. However, each vessel is apmeated for a
cluster of data points, where the constrained Csldined to
detect each moving data clusters that are enténiogregion
R> by competing its neurons. The vessels enterirg ri@gion
R, are detected by the neurons that are assignechdn t
boundary layer of the region Rsee Figure 2). Twelve neurons
around the boundary layer of regiop, Rre assigned to detect
new vessels, as multiple data clusters, enteritgytime sensor
range. Therefore, when a vessel enters to the laoyil, as a
data cluster, the neuron closer to the data clg#es excited
and starts to detect the vessels.

The proposed constrained CNN is presented in Figuiss
presented in the figure, the constrained CNN ctssif three
sub-units: Constrained Weight vector sub-uni)( Constrained
Competition sub-unit®), and Feedback-loop (Instar Rule). The
input to the CNN consists of a accumulated datéipasvector
p(k). The prototypes vectors (neurons), W(k), ateresl as
rows vectors in the Weight vector sub-unit that gre weights
of the CNN. Initially, twelve neurons are consider@nd that
are distributed along the boundary layer of theéamedR 1(see
Figure 2). However, each new vessel entering ihtoregion
R.,, the system observed the neuron that get excitebendata
cluster. Then the excited neuron will add as a newron into
the weight vector and it modified weight valuesli¢ reset to
the original values. Hence, there are will be tweheurons
always located alone the boundary layer of theored®, to
detect new vessel entering into the sensor region.

However, in the approach the number of the Weiglttars
always increase with the number of vessels entdritmg the
region R,. Therefore, the growing number of the Weight vecto

p(k) Measurment

Sensor

Constrained Weight

3 Constrained Competition
vector sub-unit

sub-unit
L n(k) » C a(k) >

v

W(k)

A

Instar Rule [«

Competitive Neural Network
Figure 3. ANN based Detection and Tracking Unit

could originate computational problems in this azzh.
Hence, to overcome this problem, the system mimitbe
changes in the values of the added Weight veendsif no
changes observed after several iterations, then \ieéght
vectors will be removed. Therefore, the proposedharism is
implemented on the Constrained Weight vector sub-timat
will remove the additional neurons with the exittbé vessel
from region R».

The net input, n(k), is output of the constraingtbight
vector sub-unit that is a vector product relatedht® distance
among position vectors (k) and each prototype vectors(ky
where W(k) = [w(k) wx(k) ... wgKk)]. Hence, for a fair
competition among neurons, each position vectgk) mnd
prototype vectors k) should have unit magnitude conditions.
The calculations for unit magnitude conditions dach position
vector, (k) was presented in the previous section. Sinuitaf
magnitude conditions for the prototype vectorgkv is
adopted in this study.

The net input of the i-th neuror(k), the vector dot product
between data input vector(f) and the prototype vector(),
and that can be written as:

wi (K)p; (k)| [cosé(k)
w3 (K)p; (K) | _| cos8, (k)

8
ni (k) = W(k)p; (k) = ®)

wg (k)p; (k) | | cosbs (k)

In the competitive uniC (see Figure 2) of the CNN, the
distances among input vectoj() to each prototype vector
w;(k) are compared using a vector dot product. Themeuron
whose weight vector in the direction closest toitiput vector
is assigned output of 1 and others are assigne@ by the
transfer function. The competitive un@, consists of a transfer
function that is used to generate competition amoggrons.
Hence, the neural competition can be written as:
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a (k) = compet (n; (k)) €)
= compet (W (k) p; (K))

The competitive (compet) transfer function can kéndd
as:

1 for neron with max n(k)
0 all other nerons

compet(n; (k)) = { (10)

The net input, n(k) = [itk) n(k) ... nk(k)]., is the input to
the Competition sub-uniC, and the output vector a(k), is the
output from Competition unitC, at the time k-th time instant.
Finally, the feedback loop, associated with thedn®ule, is
proposed to adapt the weight values of prototypagors. At
the initial stage, the values of the prototype Wweigectors,
W(k) of the CNN, are assumed to be unknown thgérla

around the region R However, to adapt neurons to track the

moving vessels that a formulated by clusters of gtints, the
adaption of the weight vectors, W(K) is required &mat could
be done by a learning rule.

The learning rule is proposed in this section towdate the
appropriate values for the weight vectors. Thiscemt is called
the unsupervised learning. When the competitiveraxcites
the neuron that is closest to the data clusten the learning
rule will be used to adapt appropriate weight valie the
prototype vectors of the CNN. Further Instar Rslgpioposed
for the unsupervised adaptation of the CNN to ckatlge
default weights values of the of the CNN and cawh#en as:

W(k)=W(k-1)+0(a(k)(pT(k)-W(k-l)) (11)

More details on the Instar Rule that is proposedhas
unsupervised learning rule for training of the ChiNhis study
can be found in [10].

Constrained Neural Competition
The above process can be further elaborated agiaticn

where the closest neuron gets excited by the dagéec and the
winning neuron takeovers all the data points in riégpective
data cluster. However, after winning the data elyshe weight
values of the respective neuron should be adapledce newly
updated wining neuron gets closer to the respedtta cluster
in real-time implementation. This process will dooe with the
complete dynamic data cluster in each time instéhéerefore,
the Instar learning rule is introduced to faciktaproper
dynamic weight update in winning neurons.

However, several drawbacks are observed implengentin

CNN in complex environments with several stationanyd
moving targets as presented in [10]: The severatams can
track different parts of the same target and/or eeeron can
track several targets in close proximity. Therefothe
following constrained are introduced into the CNM-4unit (see

v.(0) A0
Va(t)
O yOAL T
YA X v, Ao

a(0<0

a,

_."'er1

Figure 4. Curvilinear Motion Reference System

Figure 3): Constrained Weight vector sub-unit andstrained
Competition sub-unit.

In the first region (Region between ;Rand R,) the
constrained Weight vector sub-unit is implementéthen a
target vessel enters into this region the neurorié boundary
layer start to track the respective data clustaweier, in a
normal situation the neuron closer to the vessekgeited and
start to track the respective data cluster. Howeirersome
situations two neurons may get excited in the CNiNwever,
this can happen due to either two vessels areriegtato the
same region or two neurons are tracking the diffeparts of
the same data clusters of the respective vessel.

Therefore, to overcome the above drawback constriaio
the Weight vector sub-unit is introduced. When tweurons,
Weight vectors, closer to each other get exciteztethis a
mechanism is introduced to check the distance leztwie/o
neurons. If the distance is smaller then a giveesttold value,
then the both neurons are considered as a onemeaiherwise
it will be treated as a two separate vessel and rnewrons
tracking will be continued.

In the second region (Region 4R the constrained
Competition sub-unit is implemented. When seveadh dluster
get closer to each other, there is a possibilityredfpective
neurons of the data clusters can jump in-betweé¢a dasters
in close proximity. This is similar to the situatiovhen several
neurons are tracking different parts of the sanngetaand/or
one neuron is tracking several targets, as disdussziously.
Therefore to overcome the above failures and soete/ank
constrains into the Competition sub-unit are introed.

When a neuron is tracking a vessel, a mechanism is

introduced to check the distance between neurontizadiata
cluster: If the distance among neuron and the datsters are
grater then a give threshold values, then the mewilh ignore
the respective data clusters. Therefore, this am@sm can stop
the neurons jumping between data clusters in goemity.
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STATES ESTIMATION AND TRAJECTORY 0 (f (x(v))) =

PREDICTION ax

The next step in this process, the average positibn 0 1 0 0 0 0
respective vessel that is observed by the winnggoen of the 0 a(M)fyx+a,®Mfy 0 a@®fy+a,@®fy %
constrained CNN is forwarded to the EKF based Vestsges 0 0 0 1 0 0
estimation and navigational trajectory predictianb-system 0 aMfy -a,Mfy 0 a®fy -a,®Ofy % —f*
that is further discussed in this section. Thersftiiis section is 0 0 0 0 0 0
elaborated into three sections: The Target Motiowd# 0 0 0 0 0 0

(TMM), Measurement Model and Associated Techniques (14)
(MAT) and Trajectory Tracking and Estimation (TTE)

Target Motion Model
A suitable mathematical model for tacking an oceessel v, 2 (1) _ vy (v (1)

in ocean navigation is considered in this sectmmtlie vessel fol = (v 2(0) +v 20))3/2 ol T Z—r" 20) +v.2(1) 312
states estimation and navigational trajectory tézh. In the X y X y

scenario considered, with the average vessel positalues f o OO 1y = v (1)
from the constrained CNN, the vessel motion moslelssumed bew+v,20f” bew+v,20f”

to be a point target with negligible dimensions.

Considering the above requirements, a continuooe-ti
curvilinear motion model is proposed, as depictedrigure 4.
In fact, the curvilinear motion model capability adpturing the
multi-model features is one of the advantages im dpproach.
The standard continuous-time curvilinear motion elcas the
target motion model can be written as [11]:

Measurement Models and Associated Technique

The measurement model is formulated as a disdrate-t
linear model due to ocean vessel positions availabbiscrete
time instants, and can be written as:

z(k) = h(x(k)) + v(k) (15)
_a,(t)
()= V(1) where the measurement states can be written as:
oo (12)
V. (1) =a(t) | 20 2y (K) hix(iy =[xV (00 0 000
v, (1) = V, ()sin(x, (1)) NENGIE ‘{ 0 0yy(k)000

v, (1) =V, (eos(x, (1)
The Jacobian matrix of the measurement model can be
The summarized curvilinear motion model considering written as:
Equations (12) are formulated as a target motiodeho
a [100000
2 bixco)=| }

X(t) = (x(t)) + w(t) (13) 001000
where Trajectory Tracking and Estimation
The Kalman Filter (KF) is the optimal solution tetienate
Xy (1) vy (t) the state of linear systems, thus it is inadeqfat¢he problem
vy (1) ar()f VX +ap(t)f VW at hand. However, the Extended Kalman Filter (EK$)a
X(t) = yy (1) Fx(0) = vy(t) popular technique to solve a number of non-linegstesn
vy(@®) |’ ap(t)f VY —an()f VX |- applications. The summarized Extended Kalman Filter
ag(t) 0 algorithm is presented in [12], and can be writien
an (") 0 +  System Model
VX vy () . vy(® () = fx(1) +w(t) (16)
2 2 2 2
Jvx2(0 +vy2(0) Jx2® +vy2(0) W) ~ N (0.Q()
The Jacobian matrix of the target motion model ban * Measurement Model
written as: z(K) = h(x(K)) + v(K) (17)

v(k) ~ N(O,R(K)), k = 1,2,...
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¢ Error Conditions

%K) = K(K) - x(K) (18)

« State Initial Conditions

x(0)~N (X(0),P(0)) (19)

where X(0) is the state initial estimate and P(0) is theestat

initial covariance values, describing the uncetiapresent on

the initial estimates. All stochastic disturbanees assumed as

zero mean and Gaussian.

« Uncorrelated process and measurements noises

E[v(t); wk) ] =0 for all k,t (20)

e State Estimation Propagation

(k) = f(%(K) (21)

e Error Covariance Extrapolation
P(t) = FX®)P() +POF (X)) + Q1)

F((Y) = %f(x(t»

(22)
X(t) =X(t)

« Estimate State Update

At each step, after measurement data is availabte the
sensors, the state estimates can be updated

%(k*) = K(k) + K(K) [0 - hy &k )| (23)

e Error Covariance Update

Pk = - KoH (k)| P

(24)
H(f((k')): axik) h(x(k)#

x(k)=x (k")

« Kalman Gain Computation
Kk) = P(k')H(i(k')IH(i(k'))P(k‘)H (k) + R(k)}_l (25)

The detailed description of the EKF implementatfon
state estimation and trajectory prediction alse lga found in
[13].

COMPUTATIONAL SIMULATIONS AND DISCUSSION
The computational simulations of detection andkirag of

vessels represented by three groups of data dudterstate
estimation, and navigational trajectory predictéoe detailed in
this section. The computational simulations arelémgnted in
the MATLAB software platform and consist of thremps: i)
the vessel scanning loop, ii) the vessel deteciot tracking
loop, and iii) the state estimation and navigatiomajectory
prediction loop.

Vessel detection and tracking

The computational simulations of tracking of thxessels,
represented by three groups of data clusters asepted in
Figure 4. The three data clusters that are mowirter varying
acceleration conditions consist of vessel positiiata points
that are simulated as actual trajectories in thidys

The main objective of the LMS target scanning la®o
scan the environment and collect the new positiothe target
as a new data cluster. Then, this data will besfeared into the
vessel detection and tracking loop. The main ohjeadf the
vessel detection and tracking loop is to adaptcihrestrained
CNN to track the new position of the vessel by uipgaits
weights of the CNN by the learning rule.

As depicted in the figure, the initial weight vaduef the
constrained CNN are assigned alone to the bourdsey of
region R,. Finally, respective neurons adapt their weigltes
to track the movement of each cluster of data point
Furthermore, it can be observed that each trackeverges to
the approximate mean value of the respective datdet. This
position is considered as the targets measurenusitign, at
each time instant, represented by small circlésgare 5.
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Figure 5. Target Detection and Tracking Simulation
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Target Velocities
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Figure 7. Vessel Velocities

Target Accelerations

3 (Act)
3 (Act)

Figure 8. Vessel Accelerations

Vessel state estimation and trajectory prediction

The simulations for vessel state estimation andgaséonal
trajectory prediction for ocean navigation, basedtiee EKF
algorithm, are presented in Figures 6, 7 and 8. ddta cluster
that is moving under varying acceleration condgigonsists of
vessel position is simulated as an actual trajgdtothis study.
Furthermore, the actual trajectory positions addétl sensor
noise are considered as the measurement trajgubsigons in
this study.

Figure 6 presents the actual trajectory (Act. )T najeasured
trajectory (Mea. Traj.) and estimated trajectorgt(Hraj.) of
vessel navigation. As noted from the Figure, thd-Estimated
vessel navigations trajectory successfully. Thesekselocity
components of ¥t) and y(t) of actual (Act.) and estimated
(Est.) values are depicted in Figure 7. The figem@esents the
estimation process of the estimated (Est.) velooit;mponents
to the actual (Act.) velocity components. As nofeain the
Figure, the EKF estimated vessel velocity compaent
successfully. The acceleration components,@f and a(t) of
actual (Act.) and estimated (Est.) values are degit Figure
8. The figure represents the estimation proceskeoestimated
accelerations (Act.) into the actual acceleratiggst.) for
normal and tangential acceleration components. dischfrom
the Figure, the EKF estimated vessel accelerationponents
successfully with some small error variations.

CONCLUSION

The novelty in this study is that the target dinlens are
explicitly considered during the detection and kiag process,
as most of the target tracking methods assumethbatarget is
a point or approximated small data cluster. Furtteee, a
popular state-of-the-art machine learning applafor neural
network unsupervised learning algorithms is sudobgs
implemented and validated in simulation. Moreover,
experimental results are obtained for vessel detecand
tracking.

Even though in general neural network applicati@me
extensively used for recognition of clusters oftistadata
patterns, the recognition of clusters of movingadadtterns can
also be tackled by the proposed method. Furthermibre
neural network approach can be further developédnly for
target tracking but also for classification andnitfecation of
targets. Hence, more advanced neural network atiegr
approaches for object classification and identiftoa will be
considered as future developments of this study.

The estimation of ocean vessel position, velocitasl
accelerations has been also successfully achieyatlebEKF
given the curvilinear motion model selected and linear
measurement model provided by commercially avadlabl
ranging sensors. The estimated values for the #gloc
components have small errors, varying around theabhualues
and with negligible errors due to errors on theedsration
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estimation. The ocean navigation consists of changi
acceleration conditions, as presented in this papee should
note that the acceleration estimation is achiewedsding only
position measurement data collected from the vessggation,
which is another contribution in this study. Theref theses
estimated vessel state conditions could be useduocessful
estimation of the vessel navigation trajectoriest #ventually
helps on the prediction process of the intensionhef vessel
and the collision risk among vessels in aheadnaé ti
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