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Abstract

This paper presents a novel observer for attitude estimation based on a triad of
high-grade rate gyros aided by a body-fixed vector measurement of a constant
inertial vector, departing from the majority of solutions that consider at least
two of these vectors. A cascade approach is proposed, where the first block esti-
mates a vector that is related to the angular velocity of the Earth and a second
block estimates the attitude. While the topological characteristics are relaxed in
the attitude observer so that global exponential stability is achieved, an addi-
tional stage is also devised that yields estimates directly on the special orthogonal
group, preserving global convergence of the estimation error. Simulation results
with realistic sensor noise were performed, including extensive Monte Carlo
runs. These results illustrate the convergence of the proposed solution, as well
as the achievable performance and robustness to sensor noise.
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1 INTRODUCTION

1.1 Brief literature review
Attitude estimation has been a very hot topic of research
for quite some time [1]. First and foremost, attitude
estimates are required for the operation of robotic plat-
forms, not only autonomous but also remotely-operated.
Furthermore, the limitations induced by the topological
constraints lead to a very interesting problem from a
theoretical point of view. From a strict algebraic perspec-
tive, a solution for attitude determination has been derived
long ago, see [2]. Nevertheless, it is very limited since it

does not make use of all the information that is usually
available, e.g. angular velocities, which can be employed
for filtering purposes. In the survey [3] many different
filtering solutions have been reviewed. As in many nonlin-
ear problems, the extended Kalman filter (EKF) provided
an earlier solution, see e.g. [4–6]. However, the diver-
gence due to the linearization errors of the EKF [3] has
resulted in the pursuit of alternative estimators with con-
vergence guarantees, in particular nonlinear observers, see
e.g. [7–13], and references therein. Another interesting
topic of research on attitude estimation is that of optimal
filtering, see e.g. [14]. In [15] uncertainty ellipsoids were
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employed in the design of a deterministic attitude estima-
tor. Previous work by the authors includes [16] and [17],
where two different attitude estimators are proposed that
avoid common problems of attitude estimation such as
singularities, unwinding phenomena, or topological lim-
itations for achieving global asymptotic stabilization, see
[18] for a thorough discussion of these issues.

1.2 Topological constraints
As previously mentioned, the divergence of the EKF has
originated the interest in the design of nonlinear observers.
Among these, a popular trend is to explicitly consider
the topological characteristics of the rotation matrices and
impose, by construction, that the estimates are elements
of the special orthogonal group SO(3), see e.g. [9] and
[12]. A clear advantage of this approach is that no further
refinements are required, since the estimates are, by con-
struction, rotation matrices. However, it is not so without
its drawbacks, in particular those related to the existence
of topological obstructions to achieve global stability by
continuous feedback and the relatively small convergence
speed near unstable and saddle points, as convincingly
argued in [19]. A very recent approach successfully tackles
this problem by employing hybrid observers, see [13], pre-
serving the properties of the estimates. Other alternatives
that achieve global asymptotic (or exponential) stability
were proposed in [16,17,20,21], where the estimates are
embedded in linear spaces, thus avoiding the topological
obstructions to achieve global stability. The disadvantage
is that the estimates of the observers are not restricted
to the special orthogonal group SO(3). Nevertheless, esti-
mates on SO(3) can be easily obtained, without loss of
global convergence, and several approaches are available,
see e.g. [20,21].

1.3 Contribution, novelty,
and applications
The main contribution of this paper is the design and
stability analysis of a novel attitude observer based on
high-grade rate gyros and single body-fixed measurements
of a constant inertial vector. The topological characteris-
tics of some variables are lifted, embedding those in linear
spaces, such that topological obstacles to global stabil-
ity are avoided. A cascade structure is envisioned: i) in
the first block, an estimate of the angular velocity of the
Earth, expressed in body-fixed coordinates, is obtained;
and ii) the second block estimates the attitude based on
the estimate of the angular velocity of the Earth and an
additional body-fixed vector measurement. Since the topo-
logical characteristics are not enforced in the observer, an

additional result is also provided that yields estimates on
SO(3) and preserves global convergence. Preliminary work
by the authors can be found in [22], where a solution to the
problem addressed in this paper was first presented. This
paper gives a comprehensive presentation of the solution
that yields global convergence, with detailed derivations
and proofs that had been omitted and a thorough perfor-
mance evaluation resorting to Monte Carlo runs, including
an additional scenario with aggressive maneuvers. More-
over, an additional result that provides estimates directly
on SO(3) is also derived. An alternative design was pre-
sented in [23], where the topological characteristics of
SO(3) are preserved but global convergence results are
absent as a direct consequence.

For attitude estimation, the majority of solutions assume
that there exist, at least, two body-fixed measurements of
corresponding known constant vectors in inertial coordi-
nates. Recent exceptions to this approach are presented
in [20,24–27], where time-varying reference vectors are
considered and some form of persistency-of-excitation is
required. Also with single vector observations, but con-
sidering only partial attitude estimation, solutions were
proposed in [28,29]. In complete contrast with the afore-
mentioned references, the single body-fixed vector that is
assumed to be measured in this paper corresponds to a
constant inertial vector. On the other hand, while only one
vector is measured, a second body-fixed vector is dynam-
ically estimated that actually corresponds to a constant
known vector in inertial coordinates, thus ultimately pro-
viding the information that is required for attitude estima-
tion, including the angular velocity of the Earth. Notice
that, overall, the proposed idea is closer to the first, and
more popular, class of solutions that require the existence
of at least two body-fixed measurements of corresponding
known constant vectors in inertial coordinates. However,
only one body-fixed measurement is assumed available
in this paper. Notice also that the designs presented in
[20,24–27] cannot be applied in the present case since
the only vector observation that is directly available corre-
sponds to a constant vector in inertial coordinates, which
does not provide sufficient information for attitude esti-
mation. Moreover, the traditional solutions that require at
least two vector observations of two inertial vectors cannot
be applied because only one vector observation is available
in the considered scenario.

The proposed contribution requires, in comparison with
traditional attitude estimation solutions, one less measure-
ment of a constant inertial vector, and hence it has appli-
cability in a myriad of scenarios. When there are strong
magnetic anomalies, alternatives to the traditional magne-
tometer must be considered. Mechanical gyro compasses,
fibre optic gyro compasses, or more recently, gyro com-
passes based on the hemispherical resonator gyroscope,
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are examples of such alternatives. The proposed algorithm
offers an alternative solution based on high-grade rate
gyros, providing an integrated attitude estimation solu-
tion. On the other hand, in typical attitude solutions for
vehicles that are not subject to strong accelerations, the
accelerometer measurements are assumed to be close to
the acceleration of gravity. For vehicles subject to strong
accelerations, this is no longer valid, and the present paper
offers an alternative solution since only one body-fixed
vector observation is required, and thus the accelerometer
measurements may be discarded.

1.4 INS initial alignment and the
gyrocompass
The idea of using the angular velocity of the Earth about
its own axis in navigation is not novel and the Earth's rota-
tional velocity is a fundamental quantity in the alignment
of mechanical gyrocompasses and strapdown inertial nav-
igation systems [30]. Indeed, for the initial alignment of
an inertial navigation system (INS), gyro compassing is
usually performed. However, the initial alignment requires
specific maneuvers, including positions where the plat-
form is static. Moreover, from time to time, the INS needs
to be re-calibrated, otherwise errors accumulate over time
and become prohibitive. The novelty introduced in this
paper is that the attitude of the platform is continuously
estimated in closed-loop without any particular maneuver
requirements. Furthermore, the estimate of the angular
velocity of the Earth about its own axis is continuously
updated, also in closed-loop, therefore eliminating the
accumulation of errors over time. Gyro compasses are also
related to the approach proposed in the paper in the sense
that a gyro compass is a type of non-magnetic compass
whose north-seeking function depends on the rotation
around the axis of rotation of the Earth, see e.g. [31]. The
use of a gyro compass is advantageous in that it is not
affected by magnetic field anomalies and provides true
North (geodetic North). To a certain extent, the approach
proposed in this paper uses high-grade rate gyros to extract
the angular velocity of the Earth, but it does so resorting
to an estimation algorithm coupled with body-fixed mea-
surements of any other vector whose inertial counterpart
is constant and known.

1.5 Organization
The paper is organized as follows. The problem state-
ment and the nominal system dynamics are introduced
in Section 2. The observer design and stability analysis
are presented in Section 3, whereas extensive simulation

results are discussed in Section 4. Section 5 summarizes
the main results of the paper.

2 PROBLEM FORMULATION AND
NOTATION

2.1 Notation and properties
Throughout the paper the symbol 0 denotes a matrix
of zeros and I an identity matrix, both of appropriate
dimensions. A block diagonal matrix is represented by
diag(A1, … ,An). For x ∈ R3 and y ∈ R3, x · y and
x × y represent the inner and cross products, respec-
tively. For convenience, define also the transpose oper-
ator (.)T , and notice that x · y = xTy, x, y ∈ R3.
The Special Orthogonal Group is denoted by SO(3) ∶={

X ∈ R3×3 ∶ XXT = XTX = I ∧ det (X) = 1
}

. In compact
matrix form, S (x) ∈ R3×3 is the skew-symmetric matrix
that encodes the cross product, i.e., S (x) y = x × y x, y ∈
R3. The following cross product and rotation properties
are used extensively in the paper. The rotation matrix
preserves the norm of a vector, i.e.,

‖Ra‖ = ‖a‖ , R ∈ SO(3), a ∈ R
3. (1)

Moreover, considering the cross product and the rotation
of a vector as two binary operators (the rotation operands
are an element of SO(3) and a vector in R3), it follows that
these are left-distributive over the cross product, i.e.,

(Ra) × (Rb) = R (a × b) , R ∈ SO(3), a,b ∈ R
3. (2)

2.2 Problem statement
Consider a robotic platform where a set of three,
high-grade, orthogonally mounted rate gyros are available,
in addition to another sensor, possibly inertial, that mea-
sures, in the reference frame of the platform, a vector
that is constant in some inertial frame. Further consider
that the rate gyros are sensitive to the angular veloc-
ity of the Earth about its own axis. Loosely speaking,
the problem addressed in the paper is that of determin-
ing the attitude of the platform based on these sensor
measurements.

To set the problem framework, let {I} denote a local iner-
tial coordinate reference frame, e.g. the North-East-Down
(NED) coordinate frame with origin fixed to some point
of the Earth, and denote by {B} the so-called body-fixed
frame, attached to the platform. It is assumed, without
loss of generality, that this is also the frame of the sen-
sors. Notice that due to the rotation and curvature of
the Earth, the NED coordinate frame is not truly inertial
but for local navigation purposes it can be considered so.
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Let R(t) ∈ SO(3) denote the rotation matrix from {B} to
{I}, which satisfies

.
R(t) = R(t)S [𝝎(t)] , (3)

where 𝝎(t) ∈ R3 is the angular velocity of {B} with respect
to {I}, expressed in {B}.

The measurements of the high-grade set of rate gyros are
given by

𝝎m(t) = 𝝎(t) + 𝝎E(t), (4)
where𝝎E(t) ∈ R3 is the angular velocity of the Earth about
its own axis, expressed in {B}. Denote by I𝝎E ∈ R3 the
angular velocity of the Earth about its own axis expressed
in {I}. Then,

I𝝎E = R(t)𝝎E(t) (5)
for all time t.

Let m(t) ∈ R3 denote the measurements of the second
sensor, which measures, in body-fixed coordinates, a vec-
tor that, when expressed in inertial coordinates, is assumed
known and constant. Let Im ∈ R3 denote the inertial vec-
tor corresponding to m(t). Then, similarly to the angular
velocity of the Earth about its own axis, one has

Im = R(t)m(t) (6)

for all time t.
Using (5) and (4) in (3), and considering (6), it is possible

to write the nonlinear system{ .
R(t) = R(t)S

[
𝝎m(t) − RT(t)I𝝎E

]
m(t) = RT(t)Im .

The problem considered in this paper is that of estimating
R(t) based on𝝎m(t) and m(t), which are measured, and I𝝎E
and Im, which are assumed constant and known.

The following assumptions are considered throughout
the paper.

Assumption 1. The inertial vector Im is not parallel
to the angular velocity of the Earth I𝝎E, i.e., there exists
a constant cv > 0 such that‖‖I𝝎E × Im‖‖2 ≥ cv.

Assumption 2. The signal 𝝎m(t) and its derivative
.
𝝎m(t) are bounded for all time.

The first assumption is standard since most attitude
estimation solutions assume that there exist, at least two
known non-parallel inertial vectors, which are measured
in body-fixed coordinates. Yet, in this paper, one of the
two vectors, 𝝎E(t), is not even directly measured. Instead,
it is also explicitly estimated. The second is a technical
assumption that is evidently verified for all systems in
practice, since one cannot have arbitrarily large angular
velocities or angular accelerations. It is also a standard
assumption in attitude estimation, see e.g. [8,12,25], and
[21].

3 OBSERVER DESIGN

This section presents the attitude observer design and sta-
bility analysis. First, an observer that yields estimates of
the angular velocity of Earth about its own axis is detailed
in Section 3.1. Then, an attitude observer that features
globally exponentially stable error dynamics, fed by the
sensor measurements and the estimates of the previous
observer, is proposed in Section 3.2. Finally, some addi-
tional remarks are presented in Section 3.3.

3.1 Earth rotation observer
First, take the time derivative of the vector measurement
m(t), which from (3) and (6) is given by

.m(t) = −S [𝝎(t)]m(t). (7)

Since the angular velocity 𝝎(t) is not directly available,
substitute (4) in (7), which yields

.m(t) = −S [𝝎m(t) − 𝝎E(t)]m(t). (8)

Take the time derivative 𝝎E(t), which from (3) and (5) is
given by

.
𝝎E(t) = −S [𝝎(t)]𝝎E(t). (9)

Substituting (4) in (9) and recalling that the cross product
of two parallel vectors is zero allows to write

.
𝝎E(t) = −S [𝝎m(t)]𝝎E(t). (10)

From (8) one is suggested that, with measurements of m(t)
and 𝝎m(t), it might be possible to estimate m(t) × 𝝎E(t).
This is indeed the case, as it is shown next.

Define x1(t) ∶ = m(t) and x2(t) ∶ = m(t) × 𝝎E(t). Then,
from (8) and (10) one may write{ .x1(t) = −S [𝝎m(t)] x1(t) − x2(t).x2(t) = −S [𝝎m(t) − 𝝎E(t)] x2(t) . (11)

The form of the time derivative of x2(t) in (11) is undesir-
able since it still depends on 𝝎E(t), when one has chosen
to estimate m(t) × 𝝎E(t) at this time. Consider as an
orthonormal basis

 ∶=
{

x1(t)‖x1(t)‖ , x2(t)‖x2(t)‖ , x1(t) × x2(t)‖x1(t) × x2(t)‖
}

. (12)

Notice that this set is always well-defined under
Assumption 1. In order to eliminate the explicit
dependence of .x2(t) on 𝝎E(t), one can decompose
S [𝝎E(t)] x2(t) = 𝝎E(t) × x2(t) using the orthonormal basis
(12), which gives

S [𝝎E(t)] x2(t) = A21x1(t) + A22S [x1(t)] x2(t), (13)

with

A21 ∶=
‖‖I𝝎E‖‖2‖‖Im‖‖2 −

(I𝝎E · Im
)2

‖Im‖2
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and

A22 ∶=
(I𝝎E · Im

) ‖‖Im × I𝝎E‖‖2

‖Im × (Im × I𝝎E)‖2 ,

see Appendix A for the computations. Thus, the system
dynamics (11) can be rewritten as{ .x1(t) = −S [𝝎m(t)] x1(t) − x2(t).x2(t) = A21x1(t) − S [𝝎m(t) − A22x1(t)] x2(t) . (14)

Consider the Luenberger-like observer for (14) given by

⎧⎪⎨⎪⎩
.
x̂1(t) = −S [𝝎m(t)] x̂1(t) − x̂2(t)

+𝛼1
[
x1(t) − x̂1(t)

]
.
x̂2(t) = A21x1(t) − S [𝝎m(t) − A22x1(t)] x̂2(t)

−𝛼2
[
x1(t) − x̂1(t)

] , (15)

where x̂1(t) ∈ R3 and x̂2(t) ∈ R3 correspond to the esti-
mates of x1(t) and x2(t), respectively, and 𝛼1 ∈ R+ and
𝛼2 ∈ R+ are positive observer gains. Notice that, in order
to achieve linear error dynamics, x1(t) was employed in
some of the terms of (15) rather than x̂1(t). Let x̃1(t) ∶=
x1(t)− x̂1(t) and x̃2(t) ∶= x2(t)− x̂2(t) denote the estimation
errors. Then, from (14) and (15) one may write the error
dynamics{ .

x̃1(t) = − (𝛼1I + S [𝝎m(t)]) x̃1(t) − x̃2(t).
x̃2(t) = 𝛼2x̃1(t) − S [𝝎m(t) − A22x1(t)] x̃2(t)

. (16)

The following theorem addresses the stability and con-
vergence properties of (16).

Theorem 1. Consider the state observer (15) and sup-
pose that the observer gains 𝛼1 and 𝛼2 are positive. Fur-
ther suppose that Assumptions 1 and 2 hold. Then, the
origin of the error dynamics (16) is a globally exponen-
tially stable equilibrium point.

Proof. The proof is in Appendix B.

The observer (15) allows to estimate the component of
the angular velocity of the Earth that is orthogonal to the
vector measurement m(t). This is sufficient to obtain an
algebraic estimate of the rotation matrix R(t), as at this
point one has access to two vectors in body-fixed coordi-
nates, m(t) and m(t) × 𝝎E(t)whose counterparts in inertial
coordinates are also available, given by Im and Im × I𝝎E,
respectively. However, that is not sufficient to obtain a
filtered estimate of the rotation matrix since the com-
plete angular velocity of the Earth is required, not just the
component orthogonal to m(t). Nevertheless, one already
has all the elements that allow to reconstruct the angu-
lar velocity of the Earth, as established in the following
proposition.

Proposition 1. Consider the estimates x̂1(t) and x̂2(t)
given by the state observer (15) and define an estimate of

the angular velocity of the Earth as

�̂�E(t) = We1x̂1(t) + We2x̂1(t) × x̂2(t), (17)

where
We1 ∶=

Im · I𝝎E‖Im‖2

and

We2 ∶=
(Im · I𝝎E

)2 − ‖‖Im‖‖2‖‖I𝝎E‖‖2

‖Im × (I𝝎E × Im)‖2 .

Denote by �̃�E(t) ∶= 𝝎E(t) − �̂�E(t) the estimation error of
the angular velocity of the Earth. Then, under the condi-
tions of Theorem 1, �̃�E(t) converges exponentially fast to
zero for all initial conditions x̂1 (t0) and x̂2 (t0).

Proof. The proof is in Appendix C.

3.2 Attitude observer
In the previous section an observer was proposed that gives
filtered estimates of two vectors in body-fixed coordinates,
m̂(t) and x̂2(t), whose counterparts in inertial coordinates,
i.e., Im and Im×I𝝎E, respectively, are also known. In addi-
tion, a filtered estimate of the angular velocity of the Earth
was also obtained. In this section, the latter is used to drive
the dynamics of a filtered estimate of the rotation matrix,
while the two vectors in body-fixed coordinates, along with
their counterparts in inertial coordinates, are used in the
error injection term to drive the estimation error to zero.
The overall structure of the cascade observer is depicted in
Figure 1. Notice that, while the information of the angu-
lar velocity of the Earth is not important per se, it is vital to
estimate the attitude within the problem framework that
is proposed in this paper.

It is important to remark that, given that estimates of
body-fixed vectors whose inertial counterparts are now
available, any vector-based attitude observer could be
employed, provided that it is robust to exponentially decay-
ing perturbations. One such design is provided in [16] and
it is employed in this section with the necessary adapta-
tions. The presentation is here streamlined and further
details can be found in [16].

First, substitute (4) in (3), which gives
.

R(t) = R(t)S [𝝎m(t) − 𝝎E(t)] . (18)

FIGURE 1 Structure of the cascade attitude observer [Color
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Consider a column representation of the rotation matrix
R(t) given by

z2(t) =

[ r1(t)
r2(t)
r3(t)

]
∈ R

9,

where

R(t) =
⎡⎢⎢⎣

rT
1 (t)

rT
2 (t)

rT
3 (t)

⎤⎥⎥⎦ , ri(t) ∈ R
3, i = 1, … , 3.

Then, from (18), it follows that
.z2(t) = −S3 [𝝎m(t) − 𝝎E(t)] z2(t),

where

S3 (x) ∶= diag (S (x) , S (x) , S (x)) ∈ R
9×9, x ∈ R

3.

Let

Im =

[ Ix11
Ix12
Ix13

]
,

Im × I𝝎E =

[ Ix21
Ix22
Ix23

]
,

and

Im ×
(Im × I𝝎E

)
=

[ Ix31
Ix32
Ix33

]
.

Notice that
Im × I𝝎E = R(t)x2(t) (19)

and
Im ×

(Im × I𝝎E
)
= R(t) [x1(t) × x2(t)] . (20)

From (6),(19), and (20) it is possible to write

y(t) = C2z2(t),

where

y(t) =

[ x1(t)
x2(t)

x1(t) × x2(t)

]
∈ R

9

and

C2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ix11 0 0 Ix12 0 0 Ix13 0 0
0 Ix11 0 0 Ix12 0 0 Ix13 0
0 0 Ix11 0 0 Ix12 0 0 Ix13

Ix21 0 0 Ix22 0 0 Ix23 0 0
0 Ix21 0 0 Ix22 0 0 Ix23 0
0 0 Ix21 0 0 Ix22 0 0 Ix23

Ix31 0 0 Ix32 0 0 Ix33 0 0
0 Ix31 0 0 Ix32 0 0 Ix33 0
0 0 Ix31 0 0 Ix32 0 0 Ix33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice that, under Assumption 1, C2 has full rank.
Consider the Luenberger-like attitude observer given by

.
ẑ2(t) = −S3 [𝝎m(t) − 𝝎E(t)] ẑ2(t)

+ CT
2 Q−1 [

ŷ(t) − C2ẑ2(t)
]
,

(21)

where Q = QT ∈ R9×9 is a positive definite matrix and

ŷ(t) =

[ x̂1(t)
x̂2(t)

x̂1(t) × x̂2(t)

]
.

Define the error variable z̃2(t) = z2(t) − ẑ2(t). Then, the
observer error dynamics are given by

.
z̃2(t) = (A2(t) − S3 [�̃�E(t)]) z̃2(t) + u2(t), (22)

where
A2(t) = −CT

2 Q−1C2 − S3 [𝝎(t)]

and
u2(t) = S3 (�̃�E(t)) z2(t) + CT

2 Q−1ỹ(t),

with ỹ(t) ∶= y(t) − ŷ(t).
The following theorem is the main result of this section.

Theorem 2. Consider the attitude observer (21), where
the estimates of the vector observations, ŷ(t), are
obtained using the state observer (15) and the estimates
of the angular velocity of the Earth, 𝝎E(t), are given
by (17). Then, under the conditions of Theorem 1, and
assuming that Q is a positive definite matrix, it follows
that the origin of the error dynamics (22) is a globally
exponentially stable equilibrium point.

Proof. The proof is in Appendix E.

3.3 Further discussion
3.3.1 Additional vector measurements
In this paper only one body-fixed vector measurement was
considered, in addition to the rate-gyro measurements.
However, the design can be extended to include an arbi-
trary number of body-fixed vector measurements. One
way would be to replicate the state observer (15), which
would allow to obtain filtered estimates of each of those
body-fixed vectors, as well as estimates of the components
of the angular velocity of the Earth orthogonal to each of
those body-fixed vectors. An overall estimate of the angu-
lar velocity of the Earth could then be obtained, in an
algebraic and computationally efficient way, as the solu-
tion of an optimization problem, given all those estimates.
Another way would be to include, in a single observer, each
of those body-fixed vector estimates, as well as the angular
velocity of the Earth, not just the orthogonal component.
The attitude observer, given all the body-fixed vector esti-
mates, is a straightforward generalization, see [16]. Here,
the case with less number of measurements was preferred
since it is indeed the most challenging from the theoretical
point of view and, in all truth, the most interesting from the
practical point of view since it requires a smaller number
of sensors.
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3.3.2 Estimates in SO(3)
The estimates of the rotation matrix provided by the atti-
tude observer (21) do not necessarily belong to SO(3),
although they converge asymptotically to elements of
SO(3). Indeed, the rotation estimate

R̂(t) =
⎡⎢⎢⎣

r̂T
1 (t)

r̂T
2 (t)

r̂T
3 (t)

⎤⎥⎥⎦ ,
with ẑ2(t) =

[
r̂T

1 (t) r̂T
3 (t) r̂T

3 (t)
]T , does not necessarily

belong to SO(3). As previously discussed, this is a choice of
design that allows one to achieve global stability. Indeed,
it can be seen as a lifting technique that allows one to
obtain globally exponentially stable error dynamics by lift-
ing the topological constraints and it has been used in the
past, see e.g. [16,17,20,21], and [32]. Nevertheless, one can
still obtain explicit estimates on SO(3) and there exist sev-
eral methods in the literature to obtain such constructs
from the estimates provided by (21), see e.g. [16,20,21], and
[32] for successful alternatives. Next, an additional result
is provided with one of these alternatives, which is closely
related to the solution proposed in [20].

Theorem 3. Consider the estimate R̂(t) obtained from
the attitude observer (21), under the conditions of
Theorem 2, with GES error dynamics. Further suppose
that the initial estimate satisfies R̂ (t0) ∈ SO(3) and fix
0 < 𝜖 < 1. Define a new attitude estimate R̂𝑓 (t) of the
rotation matrix R(t) as follows

• if ‖‖‖R̂T(t)R̂(t) − I‖‖‖ ≤ 𝜖, then

R̂𝑓 (t) = arg min
X(t)∈SO(3)

‖‖‖X(t) − R̂(t)‖‖‖
• if ‖‖‖R̂T(t)R̂(t) − I‖‖‖ > 𝜖, then

.
R̂𝑓 (t) = R̂𝑓 (t)S (𝝎(t) − �̂�E(t)) .

Then,

1. R̂𝑓 (t) ∈ SO(3);
2. there exists ts such that ‖‖‖R̂T(t)R̂(t) − I‖‖‖ ≤ 𝜖 for

all t ≥ ts and therefore R̂𝑓 (t) corresponds to the
projection on SO(3) of R̂(t) for all t ≥ ts; and

3. the error R̃𝑓 (t) ∶=
‖‖‖R(t) − R̂𝑓 (t)

‖‖‖ is bounded and

lim
t→∞

‖‖R̃𝑓 (t)‖‖ = 0.

Moreover, the convergence is exponentially fast.

Proof. The proof is essentially identical to [20,
Theorem 7] in spite of the different system dynamics
when ‖‖‖R̂T(t)R̂(t) − I‖‖‖ > 𝜖. Since in this case it is still
ensured that R̂𝑓 (t) ∈ SO(3) for all t ≥ t0, all the
remaining steps of the proof apply.

3.3.3 Computational requirements
The solution proposed in this paper, depicted in Figure 1,
corresponds to a cascade structure of two Luenberger-like
observers, with constant gains. Hence, the proposed
observer has minimal computational cost. The first
observer has six states, whereas the second observer has
nine states. To estimate the angular velocity of the Earth,
which is essential to drive the attitude dynamics, as it can
be seen from (18), six states are necessary, three corre-
sponding to the measured quantity m(t) and another three
corresponding to the estimate of the second body-fixed
vector x2(t). The number of states of the second observer
could be reduced if a different representation of the atti-
tude was chosen. As previously mentioned, other attitude
observers could have been devised for the second block,
with different advantages and disadvantages. The one cho-
sen in this paper allows to obtain globally exponentially
stable error dynamics, a key property in this case since: (i)
initialization close to the true value is impossible and; (ii)
the initial error may be arbitrarily large.

4 SIMULATION RESULTS

To illustrate the performance of the proposed solution,
numerical simulations are performed and discussed in
this section. The local inertial frame was considered as
the NED frame, centered at a latitude of 𝜑 = 38.7138◦
North, a longitude of 𝜓 = 9.1394◦ West, and at sea level.
The norm of the angular velocity of the Earth was set
to ‖‖I𝝎E‖‖ = 7.2921150 × 10−5 rad/s, which corresponds
approximately to 15 degrees per hour. Thus, in the NED
frame, one has I𝝎E = ‖‖I𝝎E‖‖ [

cos𝜑 0 − sin𝜑
]T . As for the

vector measurement m(t), it is assumed that magnetic field
measurements are available. However, any other inertial
vector could have been considered. In this case, Im was
set according to the 11th generation of International Geo-
magnetic Reference Field for the latitude, longitude, and
altitude previously described. Notice that, with this choice,
Assumption 1 is satisfied.

The initial attitude of the platform was set to R (0) = I
and the evolution of the angular velocity is given by

𝝎(t) =

⎡⎢⎢⎢⎢⎣
5 𝜋

180
sin

(
2𝜋
60

t
)

𝜋

180
sin

(
2𝜋
180

t
)

−2 𝜋

180
sin

(
2𝜋
300

t
)

⎤⎥⎥⎥⎥⎦
(rad/s) .

In order to demonstrate the robustness of the proposed
solutions to sensor measurement errors, the measure-
ments of the magnetometer were assumed to be corrupted
by zero-mean white Gaussian noise, with standard devia-
tion of 150 nT, which corresponds to the worst case spec-
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TABLE 1 Observer gains for (15)

Time interval (s) 𝛼1 𝛼2

[0, 60] 100 10
[60, 120] 10 1
[120, 240] 5 10−1

[240, 300] 5 5 × 10−2

[300, 600] 5 25 × 10−3

[600, 720] 2.5 10 × 10−3

[720,+∞] 2.5 5 × 10−3

ification for the standard deviation of the noise of the tri-
axial magnetometer of the nanoIMU NA02-0150F50. The
rate gyro measurements are also to be corrupted by noise,
characterized by an angle random walk of 4◦/hr/

√
Hz,

which corresponds to the KVH DSP-3000 fiber optic gyro.
A sampling frequency of 100 Hz was considered and the
fourth-order Runge-Kutta method was employed in the
simulations.

In order to ensure both fast convergence speed and
good steady-state performance, a set of piece-wise constant
gains was chosen for the first block. This does not impact
on the stability of the error dynamics since a finite set
of transitions is considered. These gains are described in
Table 1. As for the second block, its gain was set to

Q = 105C2QDCT
2 ,

with

QD = diag
(

20‖Im‖I, 2 × 10−2‖I𝝎E × Im‖I,

103‖Im × (I𝝎E × Im)‖I
)
.

These gains were chosen empirically, although the relative
gains of the second observer are related to the error noise of
its observations. The initial estimates of the first observer
were set to zero, while the initial attitude estimate was set
to R̂ (0) = diag (−1,−1, 1).

The initial convergence of the norm of the errors x̃1(t)
and x̃2(t) is depicted in Figure 2.

While the convergence of the observer is fast, differ-
ent gains are required, as detailed in Table 1, in order to
ensure an adequate steady-state level of error, as it will be
detailed shortly. The initial convergence of the error �̃�E(t)
is depicted in Figure 3. Finally, the initial convergence of
the attitude error, expressed as z̃2(t), is shown in Figure 4.
These plots show that the error converges to a neighbor-
hood of zero. In the absence of noise, the errors converge
to zero.

To evaluate the performance of the attitude observer, the
steady-state standard deviation of the errors is depicted in
Table 2. These values should be compared to the magni-
tude of the corresponding variables, which is roughly 4.5 ×
104 nT for x1(t), 3.27 nT/s for x2(t), and 15◦/hour for 𝝎E(t).

FIGURE 2 Initial convergence of the errors of (15) [Color figure
can be viewed at wileyonlinelibrary.com]

Evidently, the observer achieves very good results. Finally,
an additional error variable is defined as R̃(t) = RT(t)R̂e(t),
which corresponds to the rotation matrix error. Here, R̂e(t)
corresponds to the projection of the obtained attitude esti-
mate on SO(3). Using the Euler angle-axis representation
for the rotation error,

R̃(t) = I cos
(
𝜃(t)

)
+

[
1 − cos

(
𝜃(t)

)]
d̃(t)d̃T(t)

− S
(
d̃(t)

)
sin

(
𝜃(t)

)
,

(23)

for this new error variable, the performance of the observer
is easily identified from the evolution of 𝜃, which is
depicted, after the initial transients fade out, in Figure 5.
The mean angle error, computed for t ≥ 2400 s, is 0.586◦,
which is again a very good result.

To better evaluate the performance of the proposed solu-
tions, the Monte Carlo method was applied, and 1000
simulations were carried out with different, randomly gen-
erated noise signals. The mean angle error, using the Euler
angle-axis representation (23), was computed for each
simulation, for t ≥ 2400 s, and averaged over the set

http://wileyonlinelibrary.com
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FIGURE 3 Initial convergence of ‖�̃�e(t)‖ [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 4 Initial convergence of the error z̃2(t) [Color figure can
be viewed at wileyonlinelibrary.com]

TABLE 2 Standard deviation of the steady-state error - the mean
value of the standard deviation for each element of the error vectors
is shown

Variable Standard deviation

x̃1(t) (nT) 17.7
x̃2(t) (nT/s) 0.044
�̃�E(t) (◦/hour) 0.182
z̃2(t) 0.0069

of simulations. The corresponding mean angle error was
0.38◦.

In the simulations that were presented, the angular
velocity of the body does not exceed 5◦∕s around each
principal axis. Hence, it is only natural to ask if much
higher angular velocities have any impact whatsoever in
the convergence speed or steady-state performance of the
proposed solution. As it turns out, the proposed solutions
can effectively handle much higher velocities. To exem-

FIGURE 5 Evolution of the angle error 𝜃(t) [Color figure can be
viewed at wileyonlinelibrary.com]

plify that situation, the previous simulation was modified
considering an angular velocity 20 times higher than the
previous one, as given by

𝝎(t) =

⎡⎢⎢⎢⎢⎣
100 𝜋

180
sin

(
2𝜋
60

t
)

20 𝜋

180
sin

(
2𝜋
180

t
)

−40 𝜋

180
sin

(
2𝜋
300

t
)

⎤⎥⎥⎥⎥⎦
(rad/s) .

This corresponds to very aggressive attitude maneuvers.
All the other settings were kept as before. The initial con-
vergence of the norm of the errors is very similar and hence
it is omitted. This is to be expected. Indeed, as an example,
the angular velocity𝝎m(t) appears in the dynamics of x̃2(t),
in (16), through the skew-symmetric term −S [𝝎m(t)] x̃2(t),
which preserves the norm of the error. Similar behaviors
occur for the remaining errors, in particular x̃1(t), �̃�E(t),
and z̃2(t), for the same reasons, and hence these are omit-
ted. To evaluate the steady-state performance, the Monte
Carlo method was applied, and 1000 simulations were car-
ried out with different, randomly generated noise signals.
The mean angle error, using the Euler angle-axis repre-
sentation (23), was computed for each simulation, for t ≥
2400 s, and averaged over the set of simulations. The result-
ing mean angle error was 0.47◦, which corresponds only
to a slight decrease in performance considering the very
aggressive angular velocities that are considered.

5 CONCLUSIONS

This paper proposes a novel attitude estimation solution
that is based solely on measurements of a single body-fixed
vector and the angular velocity provided by a set of three
high-grade rate gyros, sensitive to the angular velocity of
the Earth about its own axis. In contrast with the existing
the literature, the only observed inertial vector is constant.
The key idea of the observer design, which is cascaded,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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is to obtain an estimate of a second vector in body-fixed
coordinates that corresponds to a constant known vector
in inertial coordinates and that also allows one to estimate
the angular velocity of the Earth about its own axis. Addi-
tionally, the topological constraints are lifted so that there
are no topological obstacles to achieve global convergence.
The error is shown to converge globally exponentially fast
to zero and an additional result provides estimates that
are always on SO(3), preserving the global convergence
results. Simulations are presented, including Monte Carlo
results, that illustrate the achievable performance of the
proposed solution for different angular velocity envelopes,
considering also realistic sensor noise.
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APPENDIX A: DECOMPOSITION OF 𝝎E(t) ×
x2(t)

The decomposition of 𝝎E(t) × x2(t) in the orthonormal
basis (12) is given by

S [𝝎E(t)] x2(t) = (𝝎E(t) × x2(t)) ·
x1(t)‖x1(t)‖ x1(t)‖x1(t)‖

+ (𝝎E(t) × x2(t)) ·
x2(t)‖x2(t)‖ x2(t)‖x2(t)‖

+ (𝝎E(t) × x2(t)) ·
x1(t) × x2(t)‖x1(t) × x2(t)‖ x1(t) × x2(t)‖x1(t) × x2(t)‖ .

(A1)

First, notice that all norms in (A1) are actually con-
stant since they correspond to norms of vectors expressed
in body-fixed coordinates that, in inertial coordinates, are
constant. Indeed, from (6) one has ‖x1(t)‖ = ‖m(t)‖ =

https://doi.org/10.1002/asjc.2056
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‖‖RT(t)Im‖‖ = ‖‖Im‖‖, and from (5) and (6) one may write

‖x2(t)‖ = ‖m(t) × 𝝎E(t)‖
= ‖‖‖[

RT(t)Im
]
×

[
RT(t)I𝝎E

]‖‖‖
= ‖‖‖RT(t)

[Im × I𝝎E
]‖‖‖

= ‖‖Im × I𝝎E‖‖
and ‖x1(t) × x2(t)‖ = ‖m(t) × [m(t) × 𝝎E(t)]‖

= ‖‖‖m(t) ×
([

RT(t)Im
]
×

[
RT(t)I𝝎E

])‖‖‖
= ‖‖‖[

RT(t)Im
]
×

(
RT(t)

[Im × I𝝎E
])‖‖‖

= ‖‖‖RT(t)
[Im ×

(Im × I𝝎E
)]‖‖‖

= ‖‖‖Im ×
(Im × I𝝎E

)‖‖‖ ,
where the properties (1) and (2) were used extensively.
Next, notice that the second term of the sum in (A1) is
null since 𝝎E(t) × x2(t) is orthogonal to x2(t). It remains to
compute the other two inner products in (A1). For the first
term, using the vector triple product one may write

(𝝎E(t) × x2(t)) · x1(t)
= (𝝎E(t) × [m(t) × 𝝎E(t)]) · m(t)
=

(‖𝝎E(t)‖2m(t) − [𝝎E(t) · m(t)]𝝎E(t)
)
· m(t)

= ‖𝝎E(t)‖2‖m(t)‖2 − [𝝎E(t) · m(t)]2
.

(A2)

Substituting (5) and (6) in (A2) and using (1) and

RRT = I, R ∈ SO(3), (A3)

gives

(𝝎E(t) × x2(t)) · x1(t) = ‖‖I𝝎E‖‖2‖‖Im‖‖2 −
(I𝝎E · Im

)2
.

For the last term of (A1), use the Binet-Cauchy identity and
the fact that𝝎E(t) is orthogonal to𝝎E(t) ×m(t), which gives

(𝝎E(t) × x2(t)) · [x1(t) × x2(t)]
= [𝝎E(t) · m(t)] ‖m(t) × 𝝎E(t)‖2.

(A4)

Following the same reasoning as before, using
(1),(2),(5),(6)), and (A3) allows one to rewrite (A4) as

(𝝎E(t) × x2(t)) · [x1(t) × x2(t)]

=
(I𝝎E · Im

) ‖‖Im × I𝝎E‖‖2
.

This readily gives (13).

APPENDIX B: PROOF OF THEOREM 1

Consider the compact error definition

z1(t) ∶=
[

x̃1(t)
x̃2(t)

]
∈ R

6

and notice that the error dynamics (16) can be written as
the linear time-varying system

.z1(t) = A1(t)z1(t),

with

A1(t) ∶=
[
− (𝛼1I + S [𝝎m(t)]) −I

𝛼2I −S [𝝎m(t) − A22x1(t)]

]
.

Define the Lyapunov-like function

V (z1(t)) ∶= zT
1 (t)Pz1(t),

with

P =

[ 1
2
I 0

0 1
2𝛼2

I

]
∈ R

6×6.

Notice that P is, by construction and under the assump-
tions of the theorem, constant and positive definite. There-
fore, using the Rayleigh-Ritz inequality, there exist 𝛾1 > 0
and 𝛾2 > 0 such that

𝛾1‖z1(t)‖2 ≤ V (z1(t)) ≤ 𝛾2‖z1(t)‖2
.

Next, take the time derivative of V (z1(t)), which can be
written as

.
V (z1(t)) = −zT

1 (t)C
T
1 C1z1(t) ≤ 0,

with C1 =
[ √

𝛼1I 0
]
∈ R3×6. To show that the origin

of the error dynamics (16) is a globally exponentially sta-
ble equilibrium point, it now suffices to show that the
pair (A1(t),C1) is uniformly completely observable, see
[33, Example 8.11]. Since uniform complete observability
is preserved under continuous output feedback, see [34,
Lemma 4.8.1], uniform complete observability of the pair
(A1(t),C1) is equivalent to uniform complete observability
of the pair (1(t),C1), with

1(t) = A1(t) − K1(t)C1

=
[

0 −I
0 −S [𝝎m(t) − A22x1(t)]

]
,

where

K1(t) =
1√
𝛼1

[
− (𝛼1I + S [𝝎m(t)])

𝛼2I

]
∈ 6×3.

The remainder of the proof consists in showing that the
pair (1(t),C1) is, indeed, uniformly completely observ-
able. Let R2(t) ∈ SO(3) be a rotation matrix such that

.
R2(t) = R2(t)S [𝝎m(t) − A22x1(t)] .

Then, the transition matrix associated with 1(t) is given
by

𝝓1 (t, t0) =
[

I − ∫ t
t0

RT
2 (𝜏)R2 (t0) d𝜏

0 RT
2 (t)R2 (t0)

]
.

This can be verified since 𝝓1 (t0, t0) = I and

d
dt
𝝓1 (t, t0) = 1(t)𝝓1 (t, t0)
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for all t ≥ t0. Now, let

c =
[

c1
c2

]
∈ ℝ6, c1, c2 ∈ ℝ3,

be a unit vector and denote by1 (t, t + 𝛿) the observability
Gramian associated with the pair (1(t),C1) on [t, t + 𝛿].
Then,

cT1 (t, t + 𝛿) c = cT∫
t+𝛿

t
𝝓T

1 (𝜏, t)CT
1 C1𝝓1 (𝜏, t) d𝜏c

= ∫
t+𝛿

t
‖f1 (𝜏, t)‖2d𝜏

for all t ≥ t0, with

f1 (𝜏, t) = c1 − ∫
𝜏

t
RT

2 (𝜎)R2 (t) c2d𝜎,

𝜏 ∈ [t, t + 𝛿] , t ≥ t0. Fix 𝛿 > 0 and 0 < 𝜖1 < 1. Sup-
pose that ‖c1‖ ≥ 𝜖1. Then, for all t ≥ t0, one has that‖f1 (t, t)‖ = ‖c1‖ ≥ 𝜖1 and, using [35, Proposition 4.2], it
follows that there exists 𝛽1 > 0 such that for all t ≥ t0
and all time intervals [t, t + 𝛿], it is possible to choose ti ∈
[t, t + 𝛿] such that cT1 (t, ti) c > 𝛽1, which in turn implies
that cT1 (t, t + 𝛿) c > 𝛽1. Otherwise, if ‖c1‖ < 𝜖1, as c is a
unit vector, it follows that it must be ‖c2‖ >

√
1 − 𝜖2

1 > 0.
Taking the partial derivative of f1 (𝜏, t)with respect to 𝜏 and
evaluating at 𝜏 = t gives

𝜕

𝜕𝜏
f1 (𝜏, t)

||||𝜏=t
= −c2

for all t ≥ t0 and hence‖‖‖‖ 𝜕

𝜕𝜏
f1 (𝜏, t)

||||𝜏=t

‖‖‖‖ >

√
1 − 𝜖2

1 > 0

for all t ≥ t0. Then, using [35, Proposition 4.2], it follows
that there exists 𝛽2 > 0 such that, for all t ≥ t0 and all
time intervals [t, t + 𝛿], it is possible to choose t𝑗 ∈ [t, t + 𝛿]
such that cT1

(
t, t𝑗

)
c > 𝛽2, which in turn implies that

cT1 (t, t + 𝛿) c > 𝛽2. Therefore, it was shown that there
exists 𝛽3 ∶= min (𝛽1, 𝛽2) > 0 such that, for all unit vectors c
and all t ≥ t0, it is true that cT1 (t, t + 𝛿) c > 𝛽3. This con-
cludes the proof of uniform complete observability of the
pair (1(t),C1) since both system matrices are bounded,
thus concluding the proof of the theorem.

APPENDIX C: PROOF OF PROPOSITION 1

First, consider the decomposition of the angular velocity of
the Earth, 𝝎E(t) using the orthonormal basis (12), as given
by

𝝎E(t) = We1x1(t) + We2x1(t) × x2(t), (C1)

see Appendix D for the computations. Then, from (17) and
(C1) one can write the error of the estimate of the angular

velocity of the Earth as

�̃�E(t) = We1
[
x1(t) − x̂1(t)

]
+ We2

[
x1(t) × x2(t) − x̂1(t) × x̂2(t)

]
and, by definition of the errors x̃1(t) and x̃2(t), it follows
that

�̃�E(t) = We1x̃1(t) + We2x̃1(t) × x2(t)
+ We2x1(t) × x̃2(t) − We2x̃1(t) × x̃2(t).

(C2)

Using simple norm inequalities, one can now write,
from (C2), that‖�̃�E(t)‖ ≤ |We1| ‖x̃1(t)‖ + |We2| ‖x2(t)‖ ‖x̃1(t)‖

+ |We2| ‖x1(t)‖ ‖x̃2(t)‖ + |We2| ‖x̃1(t)‖ ‖x̃2(t)‖ . (C3)

Recall that both x1(t) and x2(t) have constant norm.
Moreover, under the conditions of Theorem 1, both x̃1(t)
and x̃2(t) converge globally exponentially fast to zero.
Therefore, since the upper bound in (C3) consists in a sum
of decaying exponentials, it follows that there exists a sin-
gle decaying exponential that bounds the sum from above,
therefore concluding the proof.

APPENDIX D: DECOMPOSITION OF 𝝎E(t) in 
The decomposition of 𝝎E(t) in the orthonormal basis (12)
is given by

𝝎E(t) = 𝝎E(t) ·
x1(t)‖x1(t)‖ x1(t)‖x1(t)‖

+ 𝝎E(t) ·
x2(t)‖x2(t)‖ x2(t)‖x2(t)‖

+ 𝝎E(t) ·
x1(t) × x2(t)‖x1(t) × x2(t)‖ x1(t) × x2(t)‖x1(t) × x2(t)‖ .

(D1)

The second term of the sum in (D1) is null since 𝝎E(t)
is orthogonal to x2(t) (recall that x2(t) = 𝝎E(t) × m(t)).
Moreover, using the definitions of x1(t) and x2(t), as well
as (5) and (6), and using (1) and (2) in (D1) allows one to
write

𝝎E(t) =
𝝎E(t) · m(t)‖Im‖2 x1(t)

+ 𝝎E(t) · (m(t) × [m(t) × 𝝎E(t)])‖Im × (I𝝎E × Im)‖2 x1(t) × x2(t).

(D2)

Now, substituting (5) and (6) in (D2), using the vector
triple product and R(t)RT(t) = I, allows to further write

𝝎E(t) =
Im · I𝝎E‖Im‖2 x1(t)

+ [m(t) · 𝝎E(t)]2 − ‖m(t)‖2‖𝝎E(t)‖2

‖Im × (I𝝎E × Im)‖2 x1(t) × x2(t).

(D3)
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Substituting again (5) and (6) in (D3), and using the
properties (1) and R(t)RT(t) = I, finally gives (C1).

APPENDIX E: PROOF OF THEOREM 2

The proof is similar to that of [16, Theorem 3] and as such
only a sketch is presented here for the sake of complete-
ness. First, one can show, using the standard quadratic
Lyapunov function V2 (z̃2(t)) = 1

2
‖z̃2(t)‖2, that the ori-

gin of the unperturbed linear time-varying system
.
z̃2(t) =

A2(t)z̃2(t) is a globally exponentially stable equilibrium
point. Next, in a similar way to [33, Example 9.6], one can
conclude that the origin of the linear time-varying system

.
z̃2(t) = (A2(t) − S3 [�̃�E(t)]) z̃2(t) (E1)

is a globally exponentially stable equilibrium point since,
under the conditions of the theorem, ‖S3 [�̃�E(t)]‖ con-
verges exponentially fast to zero. Finally, notice that (22)
corresponds to the linear time-varying system (E1) per-
turbed by an additive disturbance that, in the conditions of
the theorem, converges exponentially fast to zero. As such,
the origin of (22) is also a globally exponentially stable
equilibrium point.
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