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Abstract: In this work a new algorithm is derived for the onboard calibration of three-axis
strapdown magnetometers. The proposed calibration method is written in the sensor frame, and
compensates for the combined effect of all linear time-invariant distortions, namely soft iron,
hard iron, sensor non-orthogonality, bias, among others. A Maximum Likelihood Estimator
(MLE) is formulated to iteratively find the optimal calibration parameters that best fit to the
onboard sensor readings, without requiring external attitude references. It is shown that the
proposed calibration technique is equivalent to the estimation of an ellipsoidal surface, and that
the sensor alignment matrix is given by the solution of the orthogonal Procrustes problem. Good
initial conditions for the iterative algorithm are obtained by a suboptimal batch least squares
computation. Simulation and experimental results with low-cost sensors data are presented,
supporting the application of the algorithm to autonomous vehicles and other robotic platforms.

1. INTRODUCTION

Magnetometers are a key aiding sensor for attitude esti-
mation in low-cost, high performance navigation systems
(Humphreys et al., 2005; Choukroun et al., 2004), with
widespread application to autonomous air, ground and
ocean vehicles. These inexpensive, low power sensors allow
for accurate attitude aiding by comparing the magnetic
field vector observation in body coordinates with the vec-
tor representation in Earth coordinates (Markley, 1989).

Magnetometer readings are subject to magnetic distor-
tions and nonideal sensor effects which hinder the sensor
usability and motivate several calibration techniques found
in the literature. The classic compass swinging proposed in
(Bowditch, 1984) is a heading calibration algorithm that
computes scalar parameters using a least squares algo-
rithm, but requires external heading information (Gebre-
Egziabher et al., 2006). A methodology to calibrate the
soft and hard iron parameters in heading and pitch resort-
ing only to the magnetic compass data is found in (Denne,
1979). Although the derivation of the algorithm is math-
ematically sound, it is obtained by means of successive
approximations and in a deterministic fashion that does
not exploit the redundancy of multiple compass readings.

In recent literature, advanced magnetometer calibration
algorithms have been proposed to tackle distortions such
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as bias, hard iron, soft iron and non-orthogonality di-
rectly in the sensor space, with no external attitude ref-
erences and using optimality criteria. The batch least
squares calibration algorithm derived in (Elkaim and Fos-
ter, 2006; Gebre-Egziabher et al., 2006) accounts for non-
orthogonality, scaling and bias errors. A nonlinear, two-
step estimator provides the initial conditions using a non-
linear change of variables to cast the calibration in a
pseudo-linear least squares form. The obtained estimate
of the calibration parameters is then iteratively processed
by a linearized least squares batch algorithm.

The TWOSTEP batch method proposed in (Alonso and
Shuster, 2002) is based on the observations of the differ-
ences between the norms of the modeled and the measured
vectors, denoted as scalar-checking. In the first step of
the algorithm, the centering approximation suggested by
(Gambhir, 1975) produces a good initial guess of the cal-
ibration parameters, by rewriting the calibration problem
in a linear least squares form. In a second step, a batch
Gauss-Newton method is adopted to iteratively estimate
the bias, scaling and non-orthogonality parameters. In
related work, (Crassidis et al., 2005) derives recursive
algorithms for magnetometer calibration based on the cen-
tering approximation and on nonlinear Kalman filtering
techniques.

Magnetic errors such as soft iron, hard iron, scaling, bias
and non-orthogonality are modeled separately in (Elkaim
and Foster, 2006; Gebre-Egziabher et al., 2006). Although
additional magnetic transformations can be modeled, it
is known that some sensor errors are compensated by
an equivalent effect, e.g. the hard iron and sensor biases
are grouped together in (Gebre-Egziabher et al., 2006).
Therefore, the calibration procedure should address the



estimation of the joint effect of the sensor errors, as
opposed to estimating each effect separately.

In this work, the magnetometer reading error model is dis-
cussed and formulated to account for the combined effect
of modeled and unmodeled linear time-invariant magnetic
transformations. It is shown that the calibration problem
is equivalent to that of estimating the parameters of an
ellipsoid manifold, and a Maximum Likelihood Estimator
(MLE) is formulated to find the best estimate of the
calibration parameters using the sensor readings. A closed
form solution for the magnetometer alignment is also pre-
sented, based on the well known solution to the orthogonal
Procrustes problem (Gower and Dijksterhuis, 2004). The
calibration and alignment methodology is formulated in
the sensor frame, without resorting to external information
or models about the magnetic field.

To the best of the authors’ knowledge, this work is an orig-
inal rigorous derivation of a calibration algorithm using a
comprehensive model of the sensor readings in R

3, that
clarifies and exploits the geometric locus of the magne-
tometer readings, given by an ellipsoid manifold. It is also
shown that the calibration and alignment procedures are
distinct.

The proposed calibration methodology is assessed both in
simulation and using experimental data. The calibration
parameters are estimated for magnetometer data collected
in ring shaped sets, corresponding to yaw and pitch
maneuvers that are feasible for most land, air and ocean
vehicles in common operational scenarios.

This paper is organized as follows. In Section 2, a unified
magnetometer error parametrization is derived and formu-
lated. It is shown that the calibration parameters describe
an ellipsoid surface and that the calibration and alignment
problems are distinct. A MLE formulation is proposed to
calculate the optimal generic calibration parameters and
an algorithm to provide good initial conditions is pre-
sented. Also, a closed form solution for the magnetometer
alignment problem is obtained. Simulation and experimen-
tal results obtained with a low-cost magnetometer triad
are presented and discussed in Section 3. Finally, Section 4
draws concluding remarks and comments on future work.

NOMENCLATURE

The notation adopted is fairly standard. The set of n ×
m matrices with real entries is denoted as M(n,m) and
M(n) := M(n, n). The sets of diagonal, positive diagonal,
orthogonal, and special orthogonal matrices are respec-
tively denoted by D(n), D+(n) = {S ∈ D(n) : S > 0},
O(n) := {U ∈ M(n) : U

′
U = I}, SO(n) := {R ∈ O(n) :

det(R) = 1}. The n-dimensional sphere and ellipsoid are
respectively described by S(n) = {x ∈ R

n+1 : ‖x‖2 = 1}
and L(n) = {x ∈ R

n+1 : ‖SR′
x‖2 = 1}, where S ∈ D+(n+

1) and R ∈ SO(n + 1) describe the radii and orientation
of the ellipsoid, respectively.

2. MAGNETOMETER CALIBRATION AND
ALIGNMENT

In this section, the magnetometer errors are characterized
and a unified sensor reading model is obtained, evidencing

that the magnetometer measurements are contained in
an ellipsoid manifold. The magnetometer calibration algo-
rithm is derived using a Maximum Likelihood Estimator
formulation to find the calibration parameters that max-
imize the likelihood of the sensor readings. An algorithm
to provide a good initial guess of the calibration param-
eters is proposed, and a closed form optimal alignment
determination method is also presented.

2.1 Magnetometer Errors Characterization

The magnetometer readings are distorted by the presence
of ferromagnetic elements in the vicinity of the sensor, by
the interference between the magnetic field and the vehicle
structure, by local permanently magnetized materials,
and by technological limitations of the sensor. A detailed
description of magnetic distortions and sensor errors is
found in (Denne, 1979; Gebre-Egziabher et al., 2006) and
references therein.

The three-axis magnetometer reading is modeled as

hr i = SMCNO(CSI
B
ERi

E
h + bHI) + bM + nm i (1)

where hr is the magnetometer reading in the (non-
orthogonal) magnetometer coordinate frame, SM ∈ D+(3)
and bM ∈ R

3 represent the sensor scaling and bias, re-
spectively, CNO is the non-orthogonality transformation
described in (Elkaim and Foster, 2006), CSI ∈ M(3) is
the soft iron transformation matrix, bHI ∈ R

3 is the hard
iron bias, nm ∈ R

3 is the Gaussian wideband noise, and
i = 1, . . . , n denotes the index of the reading.

2.2 Magnetometer Error Parametrization

In this section, an equivalent error model for the magne-
tometer readings is formulated. It is shown that the non-
ideal magnetic effects are equivalent to a rotation, scaling
and translation transformation, and hence that the sensor
can be calibrated by estimating the center, orientation and
radii of the ellipsoid that best fit to the acquired data.

Without loss of generality, the magnetometer reading (1)
can be rewritten as

hr i = C
B
hi + b + nm i (2)

where C = SMCNOCSI , b = SMCNObHI + bM , B
hi =

B
ERi

E
h, B

hi ∈ S(2) is the magnetic field in body coordi-
nate frame. In particular, C ∈ M(3) and b ∈ R

3 are un-
constrained, so unmodeled linear time-invariant magnetic
errors and distortions are also taken into account.

Given that the points B
hi are contained in the sphere,

straightforward application of the Singular Value Decom-
position (SVD) (Strang, 1988) shows that the magnetome-
ter readings hr i lie on an ellipsoid manifold, as illustrated
in the example of Fig. 1 and summarized in the following
theorem.

Theorem 1. (Strang (1988)). Let c : R
n → R

n, c(x) = Cx

be a linear transformation where C ∈ M(n) is full rank.
Then c(x) is a bijective transformation between the sphere
and an ellipsoid in R

n, i.e. there is an ellipsoid L(n − 1)
such that the transformation c|S : S(n − 1) → L(n −
1), c|S(x) = Cx is bijective.



Fig. 1. Affine transformation of a two dimensional sphere

A direct result of Theorem 1 is that the sensor ellipsoid,
centered at b, is fully characterized by a rotation RL and
a scaling SL matrices.

Corollary 1. Let C ∈ M(n) be a full rank matrix and let
the SVD decomposition of C be given by C = RLSLV

′
L

where RL ∈ SO(n), SL ∈ D+(n) and VL ∈ O(n). The
ellipsoid described by c|

S
is spanned by the bijective

transformation l : S(n− 1) → L(n− 1), l(x) = RLSLx.

Applying Corollary 1, the equivalent model for the mag-
netometer readings (2) is described by

hr i = RLSL
C
hi + b + nm i (3)

where
C
hi := V

′
L

B
hi,

C
hi ∈ S(2) (4)

and {C} denotes the calibration frame obtained by the
orthogonal transformation V

′
L of {B}. Clearly, the cal-

ibration process is equivalent to the estimation of the
ellipsoid’s parameters b, RL and SL lying on the manifold
Θ := SO(3) × D+(3) × R

3. The alignment matrix VL is
implicit in C

hi, and hence can not be determined in the
calibration process.

The sensor calibration and alignment algorithm is struc-
tured as follows. In the calibration step, the parameters
RL, SL and b are estimated, using a Maximum Likelihood
Estimator formulated on M(3). In the alignment step,
the determination of the orthogonal transformation VL

is obtained from a closed form optimal algorithm using
vector readings in {C} and {B} frames.

2.3 Magnetometer Calibration

The calibration parameters are computed using a Maxi-
mum Likelihood Estimator. Assuming that the noise on
the magnetometer readings is a zero mean Gaussian pro-
cess with variance σ2

m i, the probability density function
(p.d.f.) of each hr i is also Gaussian

nm i ∼ N (0, σ2
m iI) ⇒ hr i ∼ N (RLSL

C
hi + b, σ2

m iI)

The MLE finds the parameters that maximize the condi-
tional p.d.f. of each sensor reading given the optimization
parameters (Kay, 1993). The resulting minimization prob-
lem of the weighted log-likelihood function is described by

min
(RL,SL,b)∈Θ

C
hi∈S(2),i=1,...,n

n
∑

i=1

1

σ2
m i

‖(hr i − b) −RLSL
C
hi‖

2
(5)

Solving the minimization problem (5) implies estimating n
auxiliary magnetic field vectors C

hi, and the dimension of
the search space is (2n+dim Θ) whereas the dimension of
the calibration parameters space is dim Θ = dim SO(3) +
dim D+(3) + dim R

3 = 9. To produce a computationally

less intensive formulation, the minimization problem (5)
is rewritten as

min
(RL,SL,b)∈Θ

C
hi∈S(2),i=1,..,n

n
∑

i=1

1

σ2
m i

‖S−1
L R′

L(hr i − b) − C
hi‖

2 (6)

which is suboptimal with respect to the unified error
model (3), but can be rigorously derived using a MLE
formulation by assuming that the noise is external to the
sensor, as detailed in Appendix A. More important, the
log-likelihood function (6) can be optimized by searching
only in the parameter space Θ.

Proposition 2. The solution (R∗
L,S

∗
L,b

∗) of (6) also min-
imizes

min
(RL,SL,b)∈Θ

n
∑

i=1

1

σ2
m i

(‖S−1
L R′

L(hr i − b)‖ − 1)2 (7)

Proof. Given (R∗
L,S

∗
L,b

∗), the optimal C
h
∗
i satisfies

C
h
∗
i = argmin

Chi∈S(2)

‖v∗
i − C

hi‖
2 (8)

where v
∗
i := S

∗−1
L R∗

L
′(hr i − b

∗). The minimization prob-
lem (8) corresponds to the projection of v

∗
i on the unit

sphere, which has the closed form solution C
h
∗
i =

v
∗

i

‖v∗

i
‖ .

Therefore, the minimization problem (6) can be written
as min(RL,SL,b)∈Θ

∑n

i=1
1

σ2

m i

‖S−1
L RL

′(hr i − b) − vi

‖vi‖
‖2

where vi := S
−1
L RL

′(hr i − b). Using simple algebraic
manipulation produces the likelihood function (7). 2

Optimization tools on Riemannian manifolds are required
to solve for the calibration parameters (RL,SL,b) in the
domain Θ, see (Edelman et al., 1998) for a comprehensive
introduction to the subject. However, the minimization
problem (7) can be formulated on the Euclidean space,
which allows for the use of optimization tools for uncon-
strained problems (Bertsekas, 1999).

Proposition 3. Let (T∗,b∗
T ) denote the solution of the

unconstrained minimization problem

min
T∈M(3),bT ∈R3

n
∑

i=1

1

σ2
m i

(‖T(hr i − bT )‖ − 1)2 (9)

and take the SVD decomposition of T
∗ = U

∗
T S

∗
T V

∗
T
′,

UT ∈ O(3), ST ∈ D
+(3), VT ∈ SO(3). The solution of

(7) is given by R
∗
L = V

∗
T , S

∗
L = S

∗
T
−1, b

∗ = b
∗
T .

Proof. Using the equality ‖VLS
−1
L R′

L(hr i − b)‖ =

‖S−1
L R′

L(hr i − b)‖ for any VL ∈ O(3), and the fact that,

by the SVD decomposition, T := VLS
−1
L R′

L is a generic
element of M(3), produces the desired results. 2

By Proposition 3, the calibration parameters of equation
(3) are obtained by solving (9) and decomposing the
resulting T

∗. Although (9) could be derived using (2),
the intermediate derivations (6) and (7) were presented
to show that (i) the sensor readings lie on an ellipsoid
manifold parametrized by RL, SL and b (ii) the alignment
matrix, represented by VL (or U

∗
T ) cannot be determined

in the calibration process, given that there are no body
referenced measurements.

In this work, the minimization problem (9) is solved
by using the gradient and Newton-descent method for



Euclidean spaces (Bertsekas, 1999), and the Armijo rule
for the step size determination. The gradient and Hessian
of the log-likelihood function are computed analytically
and presented in Appendix B.

Given the calibration parameters (RL,SL,b), an unbiased
and unit norm representation of the Earth magnetic field
in the calibration frame {C} is obtained by algebraic
manipulation of (3), resulting in

C
hi = S

−1
L R′

L(hr i − b). (10)

A good initial guess of the scaling and bias calibration
parameters is produced by the estimator proposed in
(Gebre-Egziabher et al., 2006). The locus of measurements
described by ‖E

h‖2 = ‖S−1(hr − b)‖2 is expanded and,
by defining a nonlinear change of variables, it is rewritten
as pseudo-linear least squares estimation problem

H(hr)f(b, s) = b(hr) (11)

where the matrix H(hr) ∈ M(n, 6) and the vector b(hr) ∈
R

n are nonlinear functions of the vector readings and the
vector of unknowns f(b, s) ∈ R

6 is a nonlinear function
of the calibration parameters. The algorithm is found to
yield a good first guess of the calibration parameters, and
for a detailed description of the terms in (11) the reader
is referred to (Elkaim and Foster, 2006).

2.4 Magnetometer Alignment

The representation of B
hi in the body frame is necessary

in attitude determination algorithms (Markley, 1989),
however the results of the calibration algorithm provide
magnetic readings in the calibration frame, that is C

hi.
By means of (4), B

hi can be obtained if the alignment
matrix VL ∈ O(3) is known.

As illustrated in Fig. 2, two vector readings represented
in {C} and {B} frames are sufficient to characterize a
rigid rotation VL ∈ SO(3), or a rotation with reflection
VL ∈ (O(3) \ SO(3)), but the determination of an orthog-
onal transformation VL ∈ O(3) requires at least three
linearly independent vectors readings. The well known
results for the orthogonal Procrustes problem (Gower and
Dijksterhuis, 2004) are adopted to determine the sensor
alignment.

Theorem 4. (Orthogonal Procrustes Problem). Take two
sets of vector readings in {C} and {B} coordinate frames,
concatenated in the form C

X =
[

C
h1 . . .

C
hn

]

and
B
X =

[

B
h1 . . .

B
hn

]

where n ≥ 3. Assume that B
X

C
X

′

is nonsingular, and denote the corresponding SVD as
B
X

C
X

′ = UΣV
′, where U,V ∈ O(3), Σ ∈ D+(3). The

optimal orthogonal matrix V
∗
L ∈ O(3) that minimizes the

transformation from {B} to {C} coordinates frames in
least squares sense, i.e. minVL∈O(3)

∑n

i=1‖
C
hi−V

′
L

B
hi‖

2,

is unique and given by V
′
L
∗

= VU
′.

Using (10), the calibrated and aligned magnetic field
vector reading is given by

B
hi = VLS

−1
L R′

L(hr i − b) (12)

It is assumed without loss of generality that E
h lies on

the unit sphere, and hence the norm scaling factor is
incorporated in the scaling matrix SL. If ‖E

h‖ = α, α 6= 1
is considered, the calibrated sensor reading is given by
B
hiα = αB

hi.

Fig. 2. Alignment ambiguity with two vector readings

(a) Ring Shaped Data (b) Arch Shaped Data

Fig. 3. Ellipsoid fitting (Simulation Data)

3. ALGORITHM IMPLEMENTATION AND RESULTS

In this section, the proposed methodology is validated
using simulated and experimental data from a triad of low-
cost magnetometers.

3.1 Simulation Results

The calibration algorithm was first analyzed using simu-
lated data. The reference calibration parameters from (1)
are

SM = diag(1.2, 0.8, 1.3),

[

ψ

θ

φ

]

=

[

2.0 ◦

1.0 ◦

1.5 ◦

]

,bHI =

[

−1.2
0.2
−0.8

]

G,

bM =

[

1.5
0.4
2.7

]

G,CSI =

[

0.58 −0.73 0.36
1.32 0.46 −0.12
−0.26 0.44 0.53

]

,

and the magnetometer noise, described in the sensor
space, is a zero mean Gaussian noise with standard devi-
ation σm = 5mG. The likelihood function f is normalized
by the number of samples n and the stop condition of the
minimization algorithm is ‖∇f |xk

‖ < ε = 10−3.

The magnetic field readings are obtained for two specific
cases, depicted in Fig. 3, where the sensor ellipsoid is only
partially traced due to the maneuverability constraints
found in robotic platforms. In the first case, a ring shaped
uniform set of points is obtained for a Pitch sweep interval
of θ ∈ [−20, 20] ◦ and full turns in Yaw. In the second
case, the ellipsoid’s curvature information is reduced by
constraining the Yaw to ψ ∈ [−90, 90] ◦.

The results of 20 Monte Carlo simulations using 104

magnetometer readings are presented in Table 1 and
depicted in Fig. 3. Given the large likelihood cost of
the noncalibrated data, denoted by f(x−1), the initial
condition draws the cost function into the vicinity of the
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optimum, and the iterations yield a 20% improvement
over the initial guess. The Newton algorithm converges in
less iterations than the gradient algorithm, exploiting the
second order information of the Hessian, and the execution
time is about 5 s in a Matlab 7.3 implementation running
on a standard computer with a Pentium Celeron 1.6 Ghz
processor.

Defining the distance between the estimated and the
actual parameter as se := ‖S∗ − S‖,be := ‖b∗ − b‖, and

θe := arccos
(

tr(R∗R′)−1
2

)

, Table 1 shows that the arch

shaped data set contains sufficient eccentricity information
to estimate the magnetometer calibration parameters. As
expected, reducing the information about the ellipsoid
curvature slightly degrades the sensor calibration errors.

Although the noise is formulated in the sensor frame, the
suboptimal formulation (7) yields accurate results with
unitary likelihood weights σ2

m i. Let the distance in the
parameter space be given by d(x∗,x)2 := θ2e + s

2
e + b

2
e,

the influence of the noise power in the estimation error is
illustrated in Fig. 4, where the magnetic field magnitude
in the San Francisco Bay area is adopted, ‖E

h‖ = 0.5G.

3.2 Experimental Results

The algorithm proposed in this work was used to estimate
the calibration parameters for a set of 6 × 104 points
obtained from a Honeywell HMC1042L 2-axis magnetome-
ter and a Honeywell HMC1041Z for the third (Z) axis,
sampled with a TI MSC12xx microcontroller with a 24bit
Delta Sigma converter, at 100Hz, see (Elkaim and Foster,
2006) for details. A gimbal system was maneuvered to
collect (i) a set of sensor readings spanning the ellipsoid
surface, Fig. 5(a), (ii) only four ellipsoid sections, Fig. 5(b).

The calibration algorithm converged to a minimum within
60 Newton method iterations, taking less than 40 s. Al-
though the second data set traced a smaller region of the
ellipsoid, it was sufficient to characterize the ellipsoid’s
eccentricity and rotation, as depicted in Fig. 5(b).

Given the calibration parameters, the sensor noise is
characterized by rewriting (3) as nm i = hr−(R∗

LS
∗
L

C
h
∗
i +

b
∗) where C

h
∗
i is given in the proof of Proposition 2. The

obtained experimental standard deviation of the sensor
noise is σm = 0.65mG, which evidences that the signal-

(a) Ellipsoid Surface Data (b) Ellipsoid Sections Data

Fig. 5. Ellipsoid Fitting (Experimental Data)
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to-noise ratio of a typical low-cost magnetometer is better
than that assumed in the simulations of Section 3.1, as
depicted in Fig. 4.

The calibrated magnetometer data are compared to the
raw data in Fig. 6. The calibrated readings are near
to the unit circle locus, which validates the proposed
unified error formulation of Theorem 1 and shows that the
combined effect of the magnetic distortions is successfully
compensated for.

4. CONCLUSIONS

A new estimation algorithm was derived and validated for
the onboard calibration of three-axis strapdown magne-
tometers. An equivalent sensor error model was derived,
and it was shown that the nonideal sensor measurements
describe an ellipsoid manifold. The parameter optimiza-



Table 1. Calibration Results

f(x−1) f(x0) f(x∗) iterations θe se be

Gradient Method
Ring Shaped Data 3.28 × 10−1 1.17 × 10−4 9.64 × 10−5 2246 1.74 × 10−3 7.61 × 10−3 3.54 × 10−4

Arch Shaped Data 4.36 × 10−1 1.18 × 10−4 9.62 × 10−5 1932 1.46 × 10−2 1.65 × 10−2 1.74 × 10−2

Newton Method
Ring Shaped Data 3.28 × 10−1 1.18 × 10−4 9.64 × 10−5 37.0 1.74 × 10−3 7.61 × 10−3 3.54 × 10−4

Arch Shaped Data 4.37 × 10−1 1.18 × 10−4 9.62 × 10−5 37.2 1.46 × 10−2 1.65 × 10−2 1.75 × 10−2

tion problem was formulated resorting to a Maximum
Likelihood Estimator, and an optimization algorithm was
derived using the gradient and Newton descent methods.
An algorithm to produce good initial conditions was pre-
sented. A closed form alignment algorithm was proposed,
based on the solution to the orthogonal Procrustes prob-
lem. Simulation and experimental results for low-cost sen-
sors show that the proposed algorithm is computationally
fast and can be adopted for online calibration in robotic
platforms with maneuverability constraints. Future work
will include the adaptation of the proposed algorithm to
the 2D (heading only) case in marine and land robotic
platforms.
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Appendix A. EXTERNAL MAGNETIC NOISE

Considering that the main sources of electromagnetic
interference are external, the magnetic noise influence in
the magnetometer reading can be modeled as

hr i = SMCNO(CSI(B
ERi

E
h + B

NRnm i) + bHI) + bM

= C
B
hi + C

B
NRnm i + b = RLSL

C
hi + RLSLV

′

L
B
NRnm i + b

where B
NR rotates from the coordinate frame {N} where

the magnetic noise is defined, to the body coordinate
frame. Assuming that nm i is a zero mean Gaussian process
with variance σ2

m i, the p.d.f. of each hr i is also Gaussian

nm i ∼ N (0, σ2

m iI) ⇒ hr i ∼ N (RLSL
C
hi + b, σ2

m iRLS
2

LR′

L).

Using the p.d.f. of the hr i, straightforward analytical
derivations show that MLE formulation is given by (6).
The ellipsoid obtained by (6) tends to fit best the points
with lower eccentricity, but this effect can be balanced by
defining appropriate curvature weights σ2

m i, as convinc-
ingly argued in (Gander et al., 1994).

Appendix B. DESCENT METHOD MATRICES

Let ui := hr i − b, the gradient of the likelihood function
f :=

∑n

i=1
1

σ2

m i

(‖T(hr i−b)‖−1)2, is described by ∇f |x =
∑n

i=1
2cT

σ2

m i

[

(ui ⊗ (Tui))
′ (−T

′
Tui)

′
]′

where cT := 1 −

‖Tui‖
−1

and ⊗ denotes the Kronecker product. The

Hessian ∇2f |x =
[

HT,T HT,b

H
′

T,b Hb,b

]

is given by the following

submatrices

HT,T =

n
∑

i=1

2

σ2

m i

[

(uiu
′

i
) ⊗ (Tuiu

′

i
T′)

‖Tui‖3
+ cT

[

(uiu
′

i) ⊗ I

]

]

HT,b =

n
∑

i=1

−2

σ2

m i

[

(ui ⊗ Tui)u
′

i
T′T

‖Tui‖3
+ cT (ui ⊗ T + I ⊗ Tui)

]

Hb,b =

n
∑

i=1

2

σ2

m i

[

T′Tuiu
′

i
T′T

‖Tui‖3
+ cT T

′
T

]

.


