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Combination of Lyapunov and Density Functions for
Stability of Rotational Motion

José Fernandes Vasconcelos, Anders Rantzer, Fellow, IEEE, Carlos Silvestre, Member, IEEE, and
Paulo Jorge Oliveira, Member, IEEE

Abstract—Lyapunov methods and density functions provide
dual characterizations of the solutions of a nonlinear dynamic
system. This work exploits the idea of combining both techniques,
to yield stability results that are valid for almost all the solutions
of the system. Based on the combination of Lyapunov and density
functions, analysis methods are proposed for the derivation of
almost input-to-state stability, and of almost global stability in
nonlinear systems. The techniques are illustrated for an inertial
attitude observer, where angular velocity readings are corrupted
by non-idealities.

Index Terms—Asymptotic stability, density functions, input-to-
state stability, Lyapunov methods.

NOMENCLATURE

The notation adopted is fairly standard. The set of
matrices with real entries is denoted as and

. The set of special orthogonal matrices is denoted as
. The nom-

inal, the measured, and the estimated quantity are denoted by
, and , respectively, and denotes the Frobenius norm.

The supremum norm [17] of a time function is denoted by
. The operator produces the skew symmetric matrix

defined by the vector such that , ,
and is the unskew operator such that . The vec-
torization operator, denoted as , returns a vector in
by stacking the columns of a matrix from left to right.
The divergence operator [7], [15] is denoted by . The time
dependence of the variables will be omitted in general, but oth-
erwise denoted for the sake of clarity.

I. INTRODUCTION

G LOBAL stability is usually a highly desirable property
in control and estimation algorithms. However, topolog-

ical obstacles to continuous global stabilization arise in many
dynamic systems, due to the fact that no smooth vector field
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can have a global attractor, unless the state space on which it
is defined is homeomorphic to [5]. As a consequence, con-
trollers and observers designed using continuous state feedback
on smooth manifolds, will always produce some trajectories that
do not converge to the origin [2], [10]. Due to the presence of
unstable manifolds, stability analysis using Lyapunov’s second
theorem is more complex.

New analysis tools have been introduced, by adopting the
milder notion of almost global stability [1], [13]. In this frame-
work, an equilibrium is “almost globally stable” in the sense
that for all initial states, except for a set of zero measure, the
dynamics converge to the equilibrium. A dual to the Lyapunov
second method for analysis of almost global stability is devel-
oped in [13], [14], based on density functions, that represent the
stationary density of a substance that flows along the system tra-
jectories [11]–[13]. Almost global stability is obtained by ver-
ifying that, for a time-invariant density function, particles are
generated almost everywhere and hence must flow to a sink, lo-
cated at the origin.

A similar approach has been adopted for the analysis of
input-to-state stability (ISS). The ISS paradigm has been
extensively developed in recent years, as presented in the
comprehensive survey of ISS notions and results found in [17],
and in the list of references contained therein. The limitations
to global stability on non-Euclidean spaces, and the fact that
global stability is a necessary condition for ISS, motivate the
relaxation to almost ISS, proposed in [1] and considered in [8].
The notions of robust and weakly almost ISS are proposed,
and results for these properties using density functions are
investigated. More important, it is suggested that a combination
of Lyapunov methods with density function results, may be the
right technique for proving almost ISS in general. Surprisingly
enough, this enriching insight seems to have gone unnoticed in
the subsequent literature.

This work develops the idea of combining Lyapunov and
density functions, for the stability analysis of nonlinear sys-
tems. In the proposed analysis techniques, the Lyapunov func-
tion is adopted to characterize the system trajectories, however
the Lyapunov stability analysis is limited by the existence of un-
stable manifolds. Density functions are used to resolve for the
regions where the Lyapunov method is inconclusive, yielding
sufficient conditions for instability of undesirable equilibrium
points, and for convergence of almost all solutions to the region
where stability is guaranteed by the Lyapunov function.

The first result proposed in this work formalizes an analysis
method for almost ISS. It is evidenced how Lyapunov and den-
sity functions can be adopted to analyze local and weakly almost
ISS, respectively, and it is shown that the combination of these
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two ISS concepts may yield the desired almost ISS property.
The second major contribution yields a new tool for local sta-
bility analysis of isolated points, using density functions. Com-
bined with LaSalle’s invariance principle, it is evidenced that
the proposed analysis result can be used to attain almost global
stability of the origin.

The techniques are illustrated for the error dynamics of an at-
titude observer defined on SO(3), where angular velocity read-
ings are corrupted by non-idealities, such as unknown bias and
bounded measurement noise. The proposed analysis results are
adopted to study almost ISS of the estimation error in the pres-
ence of sensor noise, and almost GAS of a reduced-order error
dynamics in the presence of sensor bias. The presented almost
GAS derivation of the attitude observer is an alternative to the
analysis methods based on Hartman-Grobman theorem, and the
almost ISS property of the attitude observer is novel to the best
of the author’s knowledge.

This work is organized as follows. Section II derives the sta-
bility analysis results based on the combination of Lyapunov
and density functions. In Section III, the proposed analysis re-
sults are applied to an attitude observer with non-ideal velocity
measurements. Concluding remarks and guidelines for future
work are discussed in Section IV.

II. STABILITY ANALYSIS USING LYAPUNOV AND DENSITY

FUNCTIONS

This section derives new stability analysis results based on the
combination of Lyapunov and density functions. The stability
analysis methods are designed for ISS analysis of nonlinear sys-
tems with unknown inputs, and for local stability analysis of
equilibrium points other than the origin. A method to analyze
almost GAS is also proposed, by combining the local analysis
results with LaSalle’s invariance principle.

A. Almost Input-to-State Stability Analysis

The analysis of input-to-state stability, using the combination
of Lyapunov and density function techniques, is considered for
systems in the form

(1)

where is the state, is a smooth manifold, and
, is a locally Lipschitz manifold map which

satisfies , for all and all
. The notion of ISS is classically defined using comparison

functions [17]. However, the limitations to global stability on
non-Euclidean spaces motivate the relaxation proposed in [1],
formulated as follows.

Definition 1 (Almost ISS, [1]): The system (1) is almost
ISS with respect to the origin, denoted as , if is locally
asymptotically stable and

(2)

where is a class function, is the distance to the origin,
and “ ” abbreviates the quantifier “for almost all”.

Expressed in words, almost ISS is verified when, for each
valid input, all initial conditions outside a set of zero measure
converge to a neighborhood of the origin, whose radius grows
monotonically with the bound on the input. The density func-
tions framework relaxes the concept of ISS, by considering that
a zero measure set of trajectories can be effectively destabilized
by the input, but that almost all trajectories converge to a neigh-
borhood of the origin. Note that the quantifiers in (2) are not
commutable in general, because the set of converging initial
conditions is a function of the input .

In this work, a method to derive almost ISS is obtained by
combining the properties of Lyapunov and density functions.
The adopted methodology has been sketched in [1] by means
of examples, however it seems to have been unnoticed in sub-
sequent literature. This section provides a contribution to the
concept of combining Lyapunov and density functions, by for-
mulating the technique in explicit mathematical statements, that
characterize the result as the combination of two ISS properties.
These two ISS concepts are introduced in the following.

Definition 2 (Local ISS): A system (1) is locally input-to-state
stable with respect to , if is locally asymptotically stable
and there exists such that

(3)

where is a class function.
Definition 3 (Weakly Almost ISS, [1]): A system (1) is weakly

almost ISS with respect to , if is locally asymptotically
stable and

(4)

where is a class function.
Provided that these ISS properties are verified, the main result

of this section shows that almost ISS is attained.
Lemma 1 (Almost ISS): Assume that the system (1) is lo-

cally ISS and weakly almost ISS, then, for all inputs such that
, the system is almost ISS with .

Proof: Weakly almost ISS, expressed in (4), implies that,
by the continuity of the solutions of (1), almost every solution
satisfies for some , thus entering
the region where the trajectories eventually satisfy the lim sup
condition expressed in (3), yielding (2).

The proposed ISS analysis technique is based on Lemma 1,
which shows that almost ISS can be obtained by combining local
ISS with weakly almost ISS, for sufficiently small inputs. Lya-
punov methods can be used to derive local ISS [4], while weakly
almost ISS is associated with density functions [1].

The stability analysis technique is illustrated in Fig. 1.
Lyapunov techniques yield local ISS based on ultimate
boundedness and/or ISS results [4, Theorems 4.18 and 4.19].
As shown in Fig. 1(a), Lyapunov methods find a region

where the Lyapunov function
decreases along the system trajectories . The level

sets of are analyzed to show that the trajectories converge
to a level set that is positively invariant and that is a subset
of , hence guaranteeing that the
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Fig. 1. Combination of Lyapunov and density functions for almost ISS of the
origin. (a) Local ISS using Lyapunov function analysis: solutions emanating
below the bound � converge to the region bounded by � ���� �. (b) Weakly
almost ISS using density function analysis: the lim inf property of almost all so-
lutions satisfies the bound � ���� �. (c) Almost ISS using Lyapunov and den-
sity functions analysis: by the lim inf property, almost all trajectories enter the
region below the bound �, and converge to the region bounded by � ���� �.

solutions of the system are ultimately bounded with bound
.

However, the behavior of the solutions for is unde-
termined by the Lyapunov function analysis, and density func-
tions techniques are adopted to guarantee that almost all solu-
tions enter for some time instant. This is
obtained by finding a density function such that
in the region , which yields weakly
almost ISS by [1, Theorem 4]. Hence, the trajectories of the
system are endowed with the lim inf characteristic depicted in

Fig. 1(b), and enter the region
in finite time, as shown in Fig. 1(c). Consequently, almost ISS
is obtained.

B. Local Stability and Almost Global Stability Analysis

The proposed stability analysis results are derived for au-
tonomous nonlinear systems of the form

(5)

where is smooth, and the associated flow
is defined by , where

denotes the solution of the system at time with initial condition
. In the remainder of this work, it is assumed that is well

defined [16, Chapter 7].
Assumption 1: The flow is unique, continuous, and exists

for all non-negative .
To formulate the stability results in the presence of multiple

equilibrium points, some concepts are introduced, for more de-
tails the reader is referred to [16]. The values at time of the
trajectories starting in the set are denoted by

. The local inset of is the set of
all initial conditions inside a neighborhood of that con-
verge to without leaving , i.e.

(6)

The global inset of , denoted as , is defined by taking
(6) with .

The following theorem is a new result in density function
methodologies, and provides sufficient conditions to show that
an equilibrium point is not stable, given a suitable density func-
tion. This property is of interest to exclude the stability of equi-
librium points other than the origin.

Theorem 2: Let , and suppose there exists a
non-negative , integrable in a neighborhood

of , and with in . Then, the global inset
of has zero measure.

Proof: First, it is shown that the local inset, denoted as
with a slight abuse of notation, has zero measure. By Lemma
13 presented in Appendix A, the local inset is measurable.
Using [13, Lemma A.1] with produces

Since in , then has zero
measure. The flow is a diffeomorphism and hence has
zero measure, for results on set measure results see Appendix A.
By Lemma 14 presented in the appendix, the zero measure of

yields that has zero measure, which concludes the
proof.

The combination of the density function results presented in
Theorem 2 with LaSalle’s invariance principle can be used to
provide almost global stability of the origin. The technique is
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based on using LaSalle’s invariance principle to show that the
trajectories approach a candidate set in the sense discussed
in [4]; and then using the property for ,
to show that the set of trajectories converging to is
of zero measure, and hence that the origin is almost globally
asymptotically stable.

Lemma 3: Let be a countable union of isolated points
containing the origin, and assume that the trajectories of the
system (5) approach as . If there is a density function
that satisfies the conditions of Theorem 2 for all ,
then the origin of (5) is almost GAS.

Proof: Since the trajectories of (5) approach as
, then, by definition [4], [16], the trajectories satisfy , ,

, , . By the continuity
of , choosing shows that each
solution of (5) must converge to an isolated point . By
Theorem 2, the condition for a neighborhood
of every guarantees that the global inset of
has zero measure. The set of initial conditions that converge to

, given by , is a countable union of
zero measured sets and hence has zero measure. Consequently,
almost all solutions converge to the origin, and hence the origin
is almost globally asymptotically stable.

Remark 1: As argued in [1], density function methods may
provide an alternative approach to the stability analysis based
on Hartman-Grobman theorem [16]. The result of Theorem 2,
based on density function theory, allows for local stability anal-
ysis without assuming hyperbolicity of the equilibrium point.

III. STABILITY ANALYSIS OF A NONLINEAR ATTITUDE

OBSERVER

In this section, the proposed analysis methods are applied to
study the stability of an inertial attitude observer in the presence
of non-ideal velocity readings. The considered attitude observer,
summarized in Appendix B, is based on the work presented in
[18] and similar observers can be found in [6], [9]. The almost
ISS analysis technique is demonstrated for the case of sensor
readings corrupted by a bounded disturbance, and the almost
GAS analysis is applied for the case of a simplified attitude ob-
server with biased velocity measurements.

A. Stability of the Nonlinear Observer in the Presence of
Unmodeled Disturbance

The combination of Lyapunov techniques for almost ISS
analysis is illustrated for the attitude estimation error kine-
matics in the presence of unmodeled bounded sensor noise.
Using the observer kinematics formulated in [18] and described
in Appendix B, the attitude error kinematics are given by

(7)

where is the attitude estimation error,
denote the estimated and the nominal attitude matrices,

respectively, is a feedback gain, is the ve-
locity sensor disturbance, and the considered set of valid distur-
bances is given by , .
The trajectories of the kinematics (7) satisfy for

all , even in the presence of the velocity disturbance, and hence
the system is well defined.

Almost ISS of the origin is obtained by applying the com-
bination of Lyapunov techniques described in Section II-A,
namely i) Lyapunov methods to attain local ISS, ii) density
function techniques to yield weakly almost ISS, and iii) Lemma
1 to attain almost ISS. The next proposition bears local ISS by
showing uniform ultimate boundedness [4], i.e., the trajectories
emanating from initials conditions in a known neighborhood
of the origin converge to a neighborhood of the origin in finite
time, independently of .

Theorem 4: Let , then for any initial condi-
tion

(8a)

where , there exists , independent

of , such that for all bounded inputs , the
trajectory of the system (7) satisfies

(8b)

for all , where .
Proof: The proof is based on the derivation of bounded-

ness for nonlinear systems presented in [4, Theorem 4.18], using
Lyapunov methods. The time derivative of the Lyapunov func-
tion along the system trajectories is given by

. Algebraic
manipulation of produces

where and
were used. It is immediate that

Using produces

where the conditions and
guarantee that and hence that
and are well defined.

Consider the level sets defined by the Lyapunov function

then implies that . Hence, is a positively
invariant set, the trajectories of the system starting in enter

in finite time, see [4, Section 4.8] for a motivation of the
level sets involved, and any solution starting in will remain
in the set since in the corresponding boundary. The
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Fig. 2. Region of convergence as a function of the noise to gain ratio
�� � �� . (a) Balanced noise bound and gain. (b) Larger noise to gain ratio
reduces the region where �� � �. (c) Smaller noise to gain ratio increases the
region where �� � �.

initial conditions given by (8a) satisfy ; any
satisfies (8b), which concludes the proof.

The results stated in Theorem 4 are obtained using Lya-
punov stability theory, and guarantee that any trajectory
emanating from (8a) converges to a bounded region, as shown
in Fig. 1(a). Fig. 2 portrays the regions (8a) and (8b) as a func-
tion of the noise to gain ratio . The region (8a) is
smaller for large noise/small gain configuration, as illustrated in
Figs. 2(a) and (b), and, conversely, is larger for small noise/large
gain configuration, as illustrated in Figs. 2(a) and 2(c).

Following the proposed technique, a density function is
adopted to show that almost all trajectories of the system (7)
satisfy a lim inf condition, whose bound guarantees that the
solutions enter the set (8a) in finite time.

Theorem 5: The system (7) is weakly almost ISS with respect
to . Namely, the solutions verify

(9)
where .

Proof: The result is obtained by satisfying the conditions
of [1, Theorem 4], with the density function

(10)

From the local ISS property obtained in Theorem 4, it is imme-
diate that is a locally stable equilibrium point for .

The function is locally
Lipschitz over SO(3) and over . The density
function is of class over and, given that
SO(3) is compact, verifies , for all
open neighborhoods of .

The divergence is given by

where ,
and , for more details on the com-
putations of divergence and integrals in SO(3) see [3]. To attain
the “density propagation inequality” [1, Theorem 4], given by

(11)
with for almost all , the sufficient condition

is analyzed, such that (11) is verified with
for almost all . The inequality

is satisfied if

Since is a class function ( and
), the inequality (11) is verified with

and hence , ,
. The constant is arbitrarily

small, and hence taking yields the result expressed in
(9).

Using the result expressed in Lemma 1, almost ISS is ob-
tained from the local ISS property derived in Theorem 4, and
the weakly almost ISS analyzed in Theorem 5.

Theorem 6: Let . Then, the trajectories of
the system (7) satisfy

(12)

where , i.e., the attitude
observer is almost ISS with respect to .

Proof: The proof is immediate from Lemma 1. However,
it is re-derived to illustrate the combination of Lyapunov
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Fig. 3. Simulation results of the attitude observer, illustrating almost ISS. For
������ �� � ��� �, local ISS is guaranteed by Lyapunov methods (The-
orem 4); for ������ �� � ��� �, density function analysis shows weakly
almost ISS (Theorem 5). The combination of both ISS results (Lemma 1) pro-
duces the almost ISS property expressed in Theorem 6 and depicted in the figure.

and density function techniques for the present attitude ob-
server. Using the lim inf condition (9), the trajectories of
the system enter the positively invariant set (8a) for some
, if , which is equivalent to

,

that is satisfied for . Consequently, almost all
solutions enter the set defined in (8a) in finite time, and thus
verify the lim sup condition of Theorem 4, yielding almost
ISS.

Simulation results of the observer estimation error are de-
picted in Fig. 3. Note that the exponential convergence for

is justified by the fact that
in that region, for some . According to the

proposed ISS derivation technique, based on Lemma 1, almost
ISS of the attitude observer, formulated in (12), was obtained
by combining the weakly almost ISS property (9), given by
density function techniques, with the local ISS property (8),
derived using Lyapunov techniques.

B. Stability of the Nonlinear Observer in the Presence of
Biased Sensor Readings

In this section, the proposed stability analysis is illustrated
for the attitude observer, in a case where the sensor disturbance
is a constant bias, i.e., . Although the ISS results of
Section III-A can be applied by considering the bias as an un-
modeled disturbance, the bias dynamics are known, as detailed
in [18] and summarized in Appendix B. In this case, the ob-
server is augmented to dynamically estimate and compensate
for the sensor bias, yielding stronger stability properties.

The closed loop error kinematics of the augmented observer
are given by

(13)

Fig. 4. Phase portrait of the reduced order attitude observer. Using the density
function property ������� � � in a neighborhood of the equilibrium points
��	 
� � �� � 	��	 ��, � � , shows that these are unstable.

where are feedback gains, is the
bias estimation error, is the estimate of the velocity reading
bias, and . The stability analysis technique is illustrated
for the case where initial bias and attitude estimation errors exist
along the z-axis, i.e., , , and

, , . In this case, the tra-
jectories of (13) are characterized by ,

, and the dynamics can be reduced to

(14)

with initial conditions , .
The stability of the second order system (14) is analyzed

using Lemma 3. Namely, choosing a suitable Lyapunov function
and appealing to LaSalle’s invariance principle, an invariant set

is derived. Then, a density function and the results expressed
in Theorem 2 are used to show that almost all solutions approach
a subset of as .

Proposition 7: The trajectories of the system (14) approach
as .

Proof: The result is obtained by considering the Lyapunov
function , with . If the
trajectories of (14) are bounded, the convergence result is imme-
diate from LaSalle’s invariance principle [16]. To show that the
trajectories are bounded, the properties of the Lyapunov func-
tion are analyzed. Denoting the time index explicitly,
and imply that converges to a limit and that

is bounded. The boundedness of is shown by contra-
diction. An unbounded implies the existence of a sequence

such that for
all . Because is bounded by ,
there is a fixed for all such that for

. Hence, and be-
comes negative for large , which is a contradiction.

The phase portrait of the system, depicted in Fig. 4, suggests
that the equilibrium points in the set

are unstable, and that almost all
trajectories approach

as . This is demonstrated by combining Propo-
sition 7 with the results based on density functions.
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Proposition 8: Almost all trajectories of the system (14) ap-
proach the set as

.
Proof: To exclude the points in the set , we use the den-

sity function . The divergence is

There is a neighborhood of every point in where is inte-
grable, and . By Theorem 2, the set of initial con-
ditions converging to each point in has zero measure. The set

is a countable union of points, and hence the set of initial con-
ditions that approach has zero measure. Consequently, almost
all the trajectories approach .

IV. CONCLUSION

This work addressed the combination of Lyapunov and den-
sity functions, for stability analysis of nonlinear systems. Al-
most ISS of the origin was formulated as the combination of
local ISS and weakly almost ISS, that can be derived using
the properties of Lyapunov and density functions, respectively.
For the case of autonomous systems, it was shown that global
stability of the origin can be obtained by combining LaSalle’s
invariance principle, with a density function that excludes the
stability of undesirable equilibrium points. The proposed tech-
niques were illustrated for the stability analysis of an attitude
observer with non-ideal angular velocity readings.

The stability results for unforced systems were derived and
illustrated for the case where the invariant set was a countable
union of isolated points. Given that most of the tools adopted in
the proof are valid for generic sets, future work will address the
rigorous extension of the proposed stability results to sets. Also,
the illustration of the technique for non-hyperbolic equilibria
will be studied in future work.

APPENDIX A
SET MEASURE RESULTS

This section presents some set measure results adopted in the
paper, that are presented for the sake of completeness.

Proposition 9 ([16]): If is smooth then is a diffeomor-
phism for each .

Theorem 10 ([15]): Every Borel set is measurable. In partic-
ular, each open set and each closed set is measurable. The col-
lection of measurable set is -algebra; that is the complement of
a measurable set is measurable and the union (and intersection)
of a countable collection of measurable sets is measurable.

Lemma 11 ([7]): Suppose has measure zero and
is a smooth map. Then has measure zero.

Corollary 12: If is smooth, then the set has zero measure
if and only if the set has zero measure.

Lemma 13: The local inset of an equilibrium point is mea-
surable under Assumption 1.

Proof: Denote the neighborhood of the equilibrium point
as and the local inset as , with a slight abuse of notation.

The local inset is characterized by the intersection of a “sta-
bility” and a “convergence” sets, given by where

The set can be described by
where

By the continuous dependence of on the initial conditions
[4], [16], and on , for each there exists sufficiently
small, such that for the compact
interval . Consequently, the set is open, thus
measurable, and the set is measurable.

The set can be described by , where

The set is measurable, by the same arguments used for
the measurability of . Consequently, is a countable union
and intersection of measurable sets and is measurable, which
concludes the proof.

Lemma 14: Consider an equilibrium point and let
be a neighborhood of . Under Assumption 1, the local

inset has zero measure if and only if the global inset
has zero measure.

Proof: Immediate from .
Every trajectory of the global inset enters the local inset for
large enough, so the global inset can be described as

where
. The set satisfies and hence

has zero measure and, by Corollary 12, has zero measure.
Consequently is a countable union of zero measure sets,
and hence has zero measure.

APPENDIX B
ATTITUDE OBSERVER FORMULATION

This section briefly introduces the observer used in Section III
to illustrate the proposed stability analysis techniques. The atti-
tude observer is designed to estimate the orientation of a rigid
body with respect to a fixed inertial frame, by merging angular
velocity measurements, with vectors observations obtained in
body coordinates. The derivation of the observer is based on the
work presented in [18] and similar solutions are found in [6],
[9]. The rigid body kinematics are described by

where is the rotation matrix from body frame to the inertial
frame coordinates, and is the body angular velocity expressed
in body coordinates. The body angular velocity is measured by
a rate gyro sensor triad, and the measurement model is

(15)

where is a measurement disturbance.
The vector observations are a function of the rigid body’s at-

titude. The vectors coordinates are known and time-invariant in
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inertial frame, e.g., Earth’s magnetic and gravitational fields,
and measured in body coordinates by on-board sensors such as
magnetometers and pendulums, among others. The vector mea-
surement is expressed by

where , the leading superscripts and denote
that the vector is expressed respectively in body and inertial co-
ordinates, is the vector index, and is the number
of vector measuring sensors.

The vector measurements are introduced in the observer
by means of a conveniently defined linear coordinate transfor-
mation, which is briefly described, for further details see [18].
The transformed vectors expressed in inertial and body frames
are respectively given by

(16a)

(16b)

where matrix is invertible by construction,
and , ,

, ,
. In this work, the transformation is defined such that

, to shape uniformly the directionality introduced
by the vector readings. Also, it is assumed that there are at least
two noncollinear vectors , so that all rotational degrees of
freedom are observable, see [18] and references therein for a
discussion on the present observer characteristics.

The proposed observer estimates the attitude of the rigid body
by computing the kinematics

(17)

where is the estimated attitude and is the feedback term
constructed to compensate for the attitude estimation error.

The attitude observer estimates the rotation matrix by ex-
ploiting the non-ideal angular velocity measurements (15) and
the vector observations (16b) in the feedback term , for more
details on the adopted observer see [18]. In the case where the
term is considered an unmodeled and bounded disturbance,
the feedback law is defined as

(18)
where is the feedback gain. When the sensor dis-
turbance is modeled as an unknown time-invariant bias, i.e.,

, the observer can be augmented to dynamically com-
pensate . In this case, the feedback law and the bias esti-
mate are defined as

(19a)

(19b)

where are feedback gains, and is the rate gyro
bias estimate. The ISS properties of the attitude observer (18)

are analyzed in Section III-A, and the almost global stability of
the observer (19) is studied in Section III-B.
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