PDF.js viewer 06/01/2021, 06:10

AUT: 109475 Model 5G pp. 1-9 (col. fig: NIL)

Automatica XXX (XXXX) XXX

Contents lists available at ScienceDirect

automatica

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Attitude, body-fixed Earth rotation rate, and sensor bias estimation
using single observations of direction of gravitational field*

Joel Reis ?, Pedro Batista®, Paulo Oliveira >, Carlos Silvestre ***

2 Faculty of Science and Technology, University of Macau, Taipa, Macao

b Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal

© LAETA—Associated Laboratory for Energy, Transports and Aeronautics, IDMEC—Institute of Mechanical Engineering, Instituto Superior Técnico,
Universidade de Lisboa, Lisboa 1049-001, Portugal

ARTICLE INFO ABSTRACT

Article history:

Received 29 January 2020

Received in revised form 16 August 2020
Accepted 21 November 2020

Available online xxxx

This paper addresses the problem of estimating the attitude of a robotic platform using biased
measurements of: (i) the direction of the gravitational field and (ii) angular velocity obtained from
a set of high-grade gyroscopes sensitive to the Earth’s rotation. A cascade solution is proposed that
features a Kalman filter (KF) tied to a rotation matrix observer built on the special orthogonal
group of order 3. The KF, whose model stems from a uniformly observable linear time-varying
system, yields estimates of: (i) the Earth’s total rotational rate; (ii) two sensor biases associated with
the aforementioned measurements; and, (iii) noise-filtered and bias-corrected accelerometer data.
All estimates are expressed in the platform’s body-fixed frame. In turn, the attitude observer put
forward is shown to be almost globally asymptotically stable, in particular locally input-to-state stable
with respect to the KF errors. Experimental results are showcased that successfully demonstrate the
efficiency of the proposed attitude estimation solution.
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three. Resorting to single observations of the direction of the
gravitational field, and to implicit knowledge of the Earth’s spin
about its own axis, the KF is able to estimate two sensor biases
and the Earth’s total angular velocity, in addition to filter out
noise from accelerometer data. The Kalman stage is followed then
by a rotation matrix observer that is shown to be almost globally
asymptotically stable (AGAS), in particular locally input-to-state
stable (LISS) with respect to the errors of the KF, which converge
asymptotically to zero.

Previous works by the authors, see Batista, Silvestre, and
Oliveira (2019a, 2019b) and Reis, Batista, Oliveira, and Silvestre
(2019a, 2019b, 2020), have been tackling, from different view-
points, the problem of true-north attitude determination, al-
though without considering biases over the measurements, which
is a considerably less challenging setting from a theoretical per-
spective. In particular, the works in Reis et al. (2019a, 2019b)
propose a strategy where the angular velocity of the planet is
only implicitly estimated, which greatly simplifies the structure
of the observers, although at the expense of convergence times
and stability guarantees. The techniques in Batista et al. (2019a)
and Batista et al. (2019b) showcase two cascade solutions where
the angular velocity of the planet is explicitly estimated; global
stability is guaranteed if topological relaxations are considered.
More recently, in Reis et al. (2020), a discrete-time version of the
problem is studied that illustrates the benefits of a Kalman based
implementation; the adaptive nature of the Kalman gain helps
to circumvent an otherwise cumbersome, empirical gain tuning
process, often leaning on sets of piecewise constant gains.

It should be stressed that whereas the vast majority of attitude
estimation solutions available in the literature require explicit
measurements of at least two inertial reference vectors, in this
paper, as well as in the work of Spielvogel et al. Spielvogel and
Whitcomb (2019), only one inertial reference vector needs to
be explicitly measured. Furthermore, the sole reference vector is
assumed to be constant, therefore bypassing the need to require
the system to satisfy a persistency of excitation condition.

In this paper, the source of reference observations is restricted
to the accelerometer case, with the relationship between the
direction of the gravitational field and the Earth’s angular ve-
locity being geometrically exploited for the purpose of system
design simplifications. As opposed to the work in Spielvogel and
Whitcomb (2019), which examines this same relationship, herein
a transition matrix is computed that offers a better insight into
the set of trajectories that undermine the observability of the
system. Moreover, the overall performance, validated with both
simulation and experimental results, is much faster than the one
shown in Spielvogel and Whitcomb (2019).

The rest of the paper is organized as follows: in Section 2,
an overview of the problem statement is sketched followed by
the design of a linear time-varying (LTV) system and ensuing KF
application. The observability of this LTV system is also analyzed.
Section 3 is dedicated to the main result of the paper, where a
proposed attitude observer is shown to be LISS with respect to
the errors of the KF. Section 4 showcases a set of experimental
results that demonstrate the efficiency of the proposed attitude
estimation solution. Finally, Section 5 elaborates upon a few
conclusions and discussions.

1.1. Notation

Throughout the paper, a bold symbol stands for a multidimen-
sional variable, the symbol 0 denotes a matrix of zeros and I an
identity matrix, both of appropriate dimensions. The exponential
of a matrix is denoted by exp(-). A positive definite matrix M is
denoted by M > 0. The set of unit vectors on R? is denoted by
S(2). The special orthogonal group of order three is denoted by
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SO(3) = {X € R¥*3 : XX" = XX = I Adet(X) = 1}. The 65
skew-symmetric matrix of a vector a € R? is defined as S(a), 66
such that given another vector b € R? one has (the cross-product) 67
a x b = S(a)b. Orthogonality between vectors is represented by 68
the symbol L. Finally, for convenience, the transpose operator is 69
denoted by the following superscript (-)', and the trace function 70
by tr(-). 71
2. Earth velocity and bias estimation 72
2.1. Problem statement 73
Consider a robotic platform describing a 3D rotational motion 74
in a dynamic environment. Suppose that the platform is equipped 75
with a set of three high-grade, orthogonally mounted rate gyros 76
that are accurate enough to perceive the angular velocity of the 77
planet. In addition, let the platform also be equipped with a set 78
of tri-axial accelerometers. Consider also two frames, one inertial 79
and another fixed to the platform’s body. As convincingly argued 80
in Mahony et al. (2008), for low frequency response, the gravita- 81
tional field often dominates the body acceleration, meaning that 82
one can assume the accelerometer measurements are constant 83
when expressed in the inertial coordinate frame. 84
The key goal is thus to determine the rotation matrix from 85
the body frame to the inertial one using biased angular velocity 86
readings from the high-grade FOGs, which implicitly measure the = 87
speed of Earth’s spin, in addition to biased body-fixed measure- 88
ments of the gravitational field. As a by-product, the two offsets 89
associated with the measurements, as well as the Earth’s rotation 90
rate expressed in {B}, are explicitly estimated. 91
2.2. Linear time-varying system design 92
Let R(t) € SO(3) denote the rotation from a body-fixed frame 93
{B} to a local inertial coordinate reference frame {I}.! In this work, 94
both frames follow the North East Down (NED) coordinate frame 95
convention, with the origin of {B} located at the body’s center of 96
gravity. 97
The derivative of R(t) with respect to time obeys 98
R(t) = R(t)S[w(t)], (1) 99
where o(t) € R? is the angular velocity of {B} with respect 100
to {I}, expressed in {B}. The measurements collected from the 101
high-grade FOGs, denoted by wy(t) € R?, are given by 102
wn(t) = o(t) + we(t) + b, + ny(t), (2) 103
where wi(t) € R? is the angular velocity of the Earth about its 104
own axis, expressed in {B}, b,, € R? is a constant bias offset, and 105
n,(t) € R? corresponds to zero-mean sensor noise, assumed to 106
be additive, white and Gaussian in nature. Let the accelerometer 107
data be denoted by an(t) € R3, which correspond to noisy and 108
biased sensor readings of the platform’s true linear acceleration 109
a(t) e R?, ie, 110
an(t) = a(t) + by + n,(t), (3) 111
where b, € R? is a constant bias offset that characterizes the 112
tri-axial accelerometer, and n,(t) € R? is assumed to be modeled 113
from an additive, zero-mean, white Gaussian noise distribution. 114
As it is the case with most robotic applications, for low fre- 115
quency response, the gravitational field, herein denoted by g(t) € 116
R?, often dominates the linear acceleration described by the 117
1 This frame, which rotates along with the Earth’s spin, is not exactly inertial,
but considered as such for this application because the apparent forces due to
the Earth’s movement are within the accelerometer’s error.
Page 2 of 10
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robotic apparatus (Mahony et al.,, 2008). Therefore, consider the
approximation

a(t) ~ g(t). (4)
Furthermore, let ‘wg, 'g € R be such that, for all t > 0,

[G)E(t) =R"(tYor (a)
gt) =R'(t)g. (b)

For ease of notation, and because most equations are de-
veloped in {B}, leading superscripts of body-fixed vectors are
dropped. Thus, whenever a vector is presented without a leading
superscript, that vector is implicitly expressed in {B}, e.g., @ =
Bwe. Notice that ‘wg and 'g are both known quantities.

The following assumptions are considered throughout the re-
mainder of the paper.

(5)

Assumption 1. The constant inertial reference vectors 'w; and
Ig are not collinear, i.e., 'wr x 'g # 0.

Assumption 2. The accelerometer bias is such that ||b,| <
llg)ll = ll'gll = g, with g € R referring to the acceleration of
gravity.

The first assumption concerns stability and is fundamental in
the main result of this work. It ensures that unequivocal infor-
mation on directionality can be extracted from both reference
vectors as long as they define a plane. The second assumption
is always verified in practice: the accelerometer bias is several
orders of magnitude smaller than the acceleration of gravity. As
result, the measured acceleration is never zero.

At any given latitude ¢ € R, the vectorial representation of
the Earth’s angular velocity in the NED inertial frame is given
by 'wr = ||'we||[cos(¢), 0, — sin(p)]". Granted that this inertial
vector does not span the East direction, proceed to write wg(t)
as the sum of a North and a Down component, ie., wg(t) =
g n(t) + wg p(t), where

wen(t) = RT(6) [ | cos(p), 0, 0]" . @
we p(t) = R'(t)[0, 0, — |'wgl sin(p)] . (b)
Observe that the norm of both vectors is constant, and, most
noticeably, that the inner product w}_ ~(t)@g p(t) is zero. Similarly,

it is a fact that 'g lies solely along the Down axis of the NED
inertial frame. This, in turn, allows us to write (6)(b) as

(6)

wg p(t) = ag(t) = a @n(t) — ba), (7)
with constant « := —||wg p||/g < O.

Next, take the derivative of (5)(b), and rewrite the result as
0 = R(t) @n(t) — ba) + R(OE(L). (8)

For the following derivation, assume noise-free FOG data.> Sub-
stituting (2) in (1) and using it in (8), noticing that the cross
product of parallel vectors is zero, and, finally, isolating the term
g(t) yields

&(t) = =S [@m(t) — @en(t) — by | @n(t) — ba) . (9)

Following through a similar process, compute the derivative
of (6)(a), which, in view of Eq. (7), may be rewritten as

@eN(t) = —S[@m(t) — & (@m(t) — ba) — by ] we,n(t). (10)
2 Note that this is not an approximation. The evolution in time of a physical

quantity describes a property of the system, which can be measured but is
independent of sensors.
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To be able to design an LTV system, a few approximations 48
must now be carried out. Start by rewriting (9) as 49
g(t) = — S[@m(t)] @n(t) — ba)
&(t) [@m(t)] (am(t) — by 1) 50
+ S [wen(t) + by ] @n(t) — ba),
and notice that the term wg n(t)+b,, is always very small.? Conse- 51
quently, since, according to Assumption 2, ||b,|| < |lan(t)|, one 52
may assume that S [@g n(t) + b, ] by ~ 0. Likewise, in Eq. (10), 53
since the magnitude of b, is typically within the noise associ- 54
ated with the measurements w,,(t), and by invoking once again 55
Assumption 2, one may also assume that S [ab, — b, ]wg n(t) =~ 56
0. In other words, these mild assumptions state, as also discussed 57
in Spielvogel and Whitcomb (2019), that, in practice, the cross 58
products between sensor biases, and between each bias and 59
the North component of the Earth’s angular velocity are orders 60
of magnitude smaller than the magnitude of the other vectors. 61
Hence, Egs. (10) and (11) can be simplified as 62
8(t) ~ —S [@n(t) — @ n(t) — by] an(t) + S [@n(t)] b, (12) 63
and 64
g N(t) ~ —S[on(t) — can(t)] e (L), (13) 65
respectively. Finally, the inner product of (7) and wg n(t) helps 66
writing a constraint which will be convenient for the KF imple- 67
mentation. Specifically, one has 68
0 = @ y(t) @n(t) — ba) & @] y(D)an(t). (14) 69
It is important to stress that, as long as Assumption 2 holds, and 70
because the Earth’s rotational speed is a very small, immutable 71
value, the simplifications carried out in (12), (13), and (14) pose 72
no practical limitations. 73
Let x(t) == [g'(t), wf(t), b], bL]" € R' denote a system 74
state vector. In the absence of sensor noise, a general LTV system 75
can be formulated as 76
X(t) = A(t)x(t) + B(t)u(t
l() (t)x(t) ()(), (1s) 77
y(t) = C(t)x(t)
0 0 T
Slan(t)]  Slom(t)—ean(t)]| Q) 12x12
where A(t) = eR , 78
= s{@nt) 0
S [an(t)] 0
B(t) = [S[wn(t)], 01" € R'>?, u(t) = an(t), y(t) = [a(t), 0] € 79
4 [0 1 0] | ek
R®, and, finally, C(t) = !:0 a’(t) 0 0 € R™“. Notice that 80
the zero element of y(t) corresponds to a virtual null measure- 81
ment, which, as seen from (14), acts as a constraint on the LTV 82
system (15). 83
2.3. Kalman filter implementation 84
Let the comprehensive system state estimate be denoted as 85
X(t) = [g(t), @pn(t), B(t), BL()]" € R'. A classic KF for the 86
LTV system (15) is thus given by 87
X(t) = ADX() + 1c(t) (¥(t) ~ C(OK(E)) ()
— T -1
K(t) = OCTOR ™ (b) (16) 88
P(t) = —P(t)C'(t)R~"C(t)P(t)+
+A()P(t) +P(OAT() +Q,  (c)
where @ € R'?*2, 9 > 0,and R € R*4, R > 0, are the covari- 89
ance matrices of the process and observation noises, respectively. 90
3 All recent commercially available FOGs, designed specifically for fast and
accurate navigation purposes, guarantee levels of bias instability below 1 (deg/h).
Therefore, even in the worst case scenario, it would follow that ||@g n(t)+be| =
10~* (rad/s) for all t > 0.
Page 3 of 10
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Each of these two matrices, herein assumed constants, depicts a
different additive white Gaussian noise distribution, and can be
seen as tuning knobs. Note that, in the presence of sensor noise,
the premises on which the KF is built are no longer rigorous, since
matrices A(t), B(t), and C(t) become sources of multiplicative
noise, therefore overruling claims of optimality. This trait, in
addition to the approximations conducive to Egs. (12) and (13),
better characterize the KF (16) as sub-optimal. Handling cross-
correlated sensor noises is out of the scope of this work, but
the interested reader can find results on this topic, for instance,
in Kailath, Sayed, and Hassibi (2000, Section 9.5) and in Chang
(2014), among several others.

At last, using the output of the KF (16), i.e., X(t), allows us to
reconstruct an estimate of the Earth’s total angular velocity as
Op(t) = @p N(t) + afl(t).

2.4. Observability analysis

The observability of the problem of attitude estimation with
biased measurements is studied in this section.

It is well-known that a KF can be designed to be asymptotically
stable if certain observability criteria are met (Anderson, 1971). In
particular for the LTV system (15), globally exponentially stable
error dynamics can be attained.

The following theorem reports an observability condition
which, if verified, renders the LTV system (15) observable. This
condition is shown to be simultaneously necessary and sufficient.

Theorem 3. The LTV system (15) is observable on T := [to, t7] if
and only if

3 uer  Glap(to) X am(tr) + 2@m(to) X wp(tr) # 0. (17)

€q,c R0}

and if, for some constant vector v € R3, v L ap(to),

J,er V'exp (S [/tl wm(a)—aam(a)da]) an(ty) #0. (18)

o

Proof. The transition matrix associated with matrix A(t) is given
by (19) in Box I, where Ry(t) € SO(3) is such that

Ry(t) = Ry(t)S [@m(t) — aan(t)], Ry(to) =1 (20)

Since, by construction, ¢(to, to) = 1, it is straightforward to
verify (19) by recalling the transition matrix property M =
A(t)d(t, to). The observability of the LTV system (15) is charac-
terized by the observability Gramian associated with the pair

(A(t), C(t)), which can be expressed as

w(ro,c)=/ &'(1, to)CT(T)C(T)P(7, to)dr € R'?¥12, (21)

fo

Consider now a constant unit vector d = [d], d], dJ, d;]T €
R'2, with dy, d,, d3, d4 € R?, and further notice that d"wW(to, t)d
— t 2 _ fl(ta tO) 4 .
= f[o |If(z, to)||* dz, where f(z,t;) = A to)| € R4, with
fi(t, to) :==d; — ft; S[am(0)] R} (0)dod; + (f‘; S[wn(o)]ldo + l)
d; — ft; S[an(o)]dod, € R?, and

fo(z, to) == d;R,(r)am(r) € R. (22)

By computing the first two derivatives of f(z, ty) with respect to
7, we conclude that both are norm-bounded from above on 7 as
all quantities involved are norm bounded as well.

To show that (17) is necessary, start by supposing that it is not

verified, which means V  ¢;e7 Ci1apm(to) X ap(ty) + c@m(to) X
1.6, €R0)
wm(t1) = 0. Then, let d2 ; i), d] = —d3 # 0, with d3 = Czwm(to),

Automatica Xxx (XXXX) Xxx

and d4 = —c1ap(tp), for some ¢, c; € R\ {0}, such that ||d|| = 1. 52
As result, it follows that f(z, t;) = 0. Note that if w,,(t;) = 0, 53
in which case it must be ¢; = 1/|lan(to)|l, the last result still 54
holds. This allows us to conclude that the observability Gramian 55
(21) is singular, therefore the LTV system (15) is not observable. 56
By contraposition, if the LTV system (15) is observable, then the 57
observability condition (17) must be true. 58

To show that both observability conditions (17) and (18) are 59
sufficient, notice first that, for some t € T, if fo(r,t,) # 0, 60
then it follows, using Batista, Silvestre, and Oliveira (2011, Propo- 61
sition 4.2), that d"W(ty, t)d > 0. Likewise, for some 7 € 7, 62
if L£f(r,t) # O, then it follows, using Batista et al. (2011, 63
Proposition 4.2) twice, that d"W(ty, t)d > 0. Otherwise, according 64
to (22), if fo(r,tp) = 0 for all T € T, this means that either 65
the vector Ry(t)an(r) is always orthogonal to d;, or d; = 0. 66
In particular, since Ry(tp) = I one has d; L ap(tp). Since the 67
solution of (20) is given by 68

t
Ry(t) = exp (S [/ wm(a)—aam(a)do]) , t>ty, (23) 69
to
substituting (23) in (22) allows us to conclude that it must be 70
T
djexp (S [/ wm(o)—aam(a)da]) an(r)=0 (24) 71
to

for all T € 7. But, according to (18), there exists an instant T = t; 72
when, given v = d;, the zero identity in (24) cannot hold. Hence, 73
for fy(t, tp) = 0 to hold for all t € 7 it must be d, = 0. Evaluate 74
now |/f(z, tp)| at T = to, which results in 75
If(to. to)ll = H [d‘ J5d3] ; (25) 76
and suppose that d; # 0. Then, if d; # —ds, it follows from (25) 77
that ||f(to, to)|| > 0 and, from Batista et al. (2011, Proposition 4.2), 78
it must be d"W(t, t)d > 0. Consider the case when d; = —d3, 79
with d3 # 0 and d4 # 0 as well. In this case, ||f(to, to)|| =0and 80
Lf(z, to) = S[an(7)]da B Sl@n(7)] d3l. If £f(z,to) # O, then, 81
using Batista et al. (2011, Proposition 4.2) twice, it follows that 82
d"W(ty, t)d > 0. Otherwise, if %f(r, to) = 0, then the following 83
must hold: 84
Slam(z)]lds — S[wm(z)]d3 = 0. (26) 85
The identity in (26) establishes that the four vector entities, a,(t), 86
d,, wn(7t) and d3, must be coplanar for all T € 7. However, 87
according to the first observability condition (17), that geometric 88
relationship cannot be verified for all T € 7, which means it must 89
be simultaneously d; = dy = 0 in order for (26) to hold. But, 90
since d; = —d3, this would in turn imply that d = 0, which 91
contradicts the claim that d is a unit vector. Therefore, it has been 92
shown that d"W(ty, t)d > 0 for all ||d|| = 1, which means the 93
observability Gramian (21) is always positive definite and thus 94
the LTV system (15) is observable. This concludes the proof. ® 95

It has just been shown that the LTV system (15) is observable, 96
but stronger forms of observability, in particular uniform com- 97
plete observability, can be attained by considering persistency 98
of excitation conditions, for instance, by conveniently applying 99
uniform bounds to both (17) and (18). Afterwards, by following 100
similar steps as those presented in the proof of Theorem 3, itis 101
possible to conclude that the LTV system (15) is also uniformly 102
completely observable, therefore ensuring that, in nominal terms, 103
the KF (16) offers globally exponentially stable guarantees. 104
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I —/; Slan(0)IR}y(0)do [, S[on(0)]do  — [; S[an(0)]do
T
(t, to) = 0 Ry(t) 0 0 c RI2X12 (19)
0 0 I 0
0 0 0 I
Box L
(g, 'z} as wgll t.he square of (31), which also consists in a rotation matrix,
EC 1 andisstenby
&) R%(6, V) = I+ sin(26(1))S [¥(t)] + 2 sin®(8(t))S*[¥(t)]. (32)
aL(”. = +] . . The following theorem is the main result of this paper.
) 4\ We(t) S0(3) R(t)
Observer

bu(t)

wm(t)

Fig. 1. Implementation scheme of the attitude estimation cascade.

3. Rotation matrix estimation

Consider the following observer for the rotation matrix:
R(®) = RS [ on(t) — by — RT(t) 05+

) ) (27)
+ kg [@(O] R (0o + kS [HO] R (g |,
where k,, and kg are positive tuning constants, and where ﬁ(t) €
SO(3) denotes the estimates of R(t). This observer completes the
cascade structure of the proposed attitude estimation solution,
which is illustrated in Fig. 1.
Define the error variables

R(t) == R(t)R™(t) € SO(3), (28)

bo(t) := b, — byt w(t), @p(t) == wg(t) — @p(t )and finally, g(t) :=
g(t) g(t). The derivative of (28) follows as R(t) ﬁ(t)ﬁT(t) +
R(t ) T(t), which, by using Egs. (1) and (2), the nonlinear observer
(27), and the error variables formerly defined, results, after a few
straightforward computations, in

R(O) = (¢, bu, @z, §)— S[(1—R(O) we | RO+

(29)
— ko, S[S ['we JR(t) 0 | R(t)—kgS[S ['g] RCe g ]Ree),
with the perturbation function 5(-) given by
e, B, G, 8) = -S[ROBu(O)] RO+
+ koS [SIROG(] R(EY 0 | RO+ (30)
+ kS [s [ROOE()] ﬁ(t)’g] R(t).
Next, define the domain D := [0, x], and consider the Euler

angle-axis representation of the error associated with R,
R(8, V) = 1+ sin(8(t))S[V(t)] + [1 — cos(B(t))] $? [W(t)],  (31)

where 6(t) € D and ¥(t) € S(2) form the Euler angle-axis pair, also
known as the exponential coordinates of R. In the sequel, consider

Theorem 4. Consider the attitude observer (27), the error defini-
tion (28), the FOG readings of angular velocity (2), the accelera-
tion measurements (3), and the estimates of the KF (16). Suppose
Assumptions_1 and 2 are verified, and define the set 2 C SO(3)
as 2 = {R(t), n(t, by, @, g = 0 | tr(R(t)) = —1}. In
view of R(t) expressed in terms of the unit quaternion, cf. (A.1) in
Appendix, define as well the parameterized set ©(¢) := {R(S, T) €
SO(3) : § > ¢}. Then: (i) the set 2 is forward invariant and unstable
with respect to the observer dynamics (27); (ii) when considering

n(t, b,, @, g) = 0, the rotation matrix error R(t) converges
locally exponentially fast to I, and is AGAS to I; and, (iii) fixing
0 < ¢ < 1, the nonlinear error dynamics (29) are LISS with (30) as
input, and, for all initial conditions such that R(ty) € @(¢), R(t) — 1,
ie., R( ) — R(t).

Proof. Let V : D — R be a positive bounded Lyapunov -like
candidate function given by V() := 1 — cos(6(t)) = tr(l —R(t)).

The time derivative of V satisfies V(t) = —Etr(R(t)). Start by
considering the unforced dynamics, i.e., the case when n = 0

holds. Then, by noticing that tr(S[(I—ﬁ(t))’ wf]ﬁ(t))z 0, equation
V(t) can be written as
. ke, . .
V(e) = =2 (s [ o | R(tY @ | RO+
2 (33)

k Ny
+2 (s [s ['e] R(t)’g] R(t)).

The property S[S[a] b] = ba" —ab" helps rewrmng (33)asV(t) =
— % | @ |+ 5 tr(RY(t) wg'w])— £ g+ & tr(R(t)'g'g"). Re-
placing (32) in the previous expression yields V(t) = — sin(6(t))
(kag ||'@e x \7(t)||2+kg||’gx17(t)||2) < 0. Under Assumption 1, ¥(t)
cannot be simultaneously collinear with both '@; and 'g, which
means V(t) = 0 is satisfied only on two occasions, when: (1)
G(t) = mr, which, according to (31), corresponds to the condition
tr(R(t ))_= —1, with g(t) R(t); and, (2) 6(t) = = 0, which
means R(t) = L. With 6(t) = &, the derivative of tr(R(t)) is zero,
which asserts forward invariance of £2. Accordingly, by applying
LaSalle’s principle to the solutions of (29), one concludes that
R(t) converges asymptotically to either I or some rotation matrix
belonging to £2. In Lemma 5, in Appendix, local exponential
stability of the isolated equilibrium point I is shown through
the linearization of the quaternion dynamics associated with the
unforced error dynamics, i.e., when 5 = 0 holds, thus proving the
theorem'’s statement (ii).

Resorting again to the quaternion formulation, the forward
invariant set £ associated with the case when » = 0 holds is
described by 2 = {(5, ) |§=0, 'f = 1}. Then, from (A4),
and in view of Assumption 1, it follows that the dynamics of
§(t) are unstable for any point § # 0. Therefore, 5(t) is a

23
24

25
26
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Fig. 2. Experimental setup for attitude estimation.

strictly increasing function for all t > 0, which means the set
2 corresponds to an unstable equilibrium point. This proves
the theorem’s statement (i). The third and last statement of
the theorem is proved considering the Lyapunov-like function
V() = 1/2|F(t)||>. From (A.3), the derivative of this func-
tion is given by V(f,t) = —y(F) (1 — IF()I?) + 22F7(t)a,(t).
Sinceky(’?) > ¢||E(t)||?> (cf. Hua, 2009, Lemma 11), where ¢ =

wpke |1 I . N
X =0, ) , =
oy Tag P+ GTal? |'we x 'g|” > 0, and since, by definition, 5%(t)

1 — |F(t)? and §(t) < 1, it follows that V(F, t) < —e||E(t)]|
(IF(OIS3(t) = L l|@y(t)]]). Now, fix 0 < & < 1, such that V(T, t) <
—e(1=0)|[T(t)|123%(t) — IF(t)|| (B€l|F(t)IS*(t) — 5 [l@,(t)]]). This al-
lows us to conclude that V(F, t) < —e(1—8)||T(t)[|1>5(t) ¥ ||K(t)|| >
Bll@,(t)|l, with constant B fixed as g = 1/(2€6¢2). As result
of V(F,t) < 0 for all ||F(t)] > Bll@,(t)ll, V(t) is non-increasing
for all ||F(t)|| > Bl@,(t)ll, which means 5(t) is non-decreasing
for all IT(t)| = Bli@,(t)]l. Therefore, for all initial conditions
R(to) € ©(¢) and ||T(t)]| = Bll@,(t)l, it follows that 5(t) > ¢
for all t > to, which implies V(F, t) < —e(1 — 0)||E(t)||*¢? for all
()l = Bll@,(t)]l and R(to) € ©(¢). Then, invoking (Khalil, 2000,
Theorem 5.2) proves, finally, that the dynamics r(t) are LISS with
(30) as input. It follows that ©(t) — 0, or, equivalently, R(t) — I,
thus concluding the proof. =

4. Experimental results

In order to validate the cascade attitude estimation solution,
an experiment was carried out using a tri-axial high-grade FOG
Inertial Measurement Unit (IMU) KVH 1775 mounted on a Ideal
Aerosmith Model 2103HT Three-Axis Positioning and Motion Rate
Table (MRT), which is designed to provide precise position, rate,
and acceleration motion, for instance, for the development and/or
production testing and calibration of IMUs and inertial navigation
systems. The final experimental setup, located at a latitude of
¢ = 38.777816 (deg), a longitude of yv = 9.097570 (deg), and
at sea level, is depicted in Fig. 2.

The KVH 1775 provides tri-axial readings of angular velocity
and acceleration. Slow rotational maneuvers are considered to
ensure that the magnitude of the gravitational field is the domi-
nant acceleration term, i.e., to guarantee that the approximation
(4) is valid. At room temperature, this unit’s accelerometer is
characterized by a velocity random walk of 0.12 (mg/~/Hz), as
mentioned in the previous section.

Based on previous work by the authors (Reis, Batista, Oliveira,
& Silvestre, 2019c), a calibration procedure was implemented

Automatica Xxx (XXXX) Xxx

Table 1

Observer gains used in the experiments.
Time (min) kog || 'wg |12 ke ' g I
t<75 0.02 20
75=t<15 0.005 15
15<t <225 0.001 5
225<t <30 7.5x107* 25
30<t <50 1x107* 25
t=>50 1x107° 1

beforehand to determine, for both the high grade rate gyro and 43
accelerometer included in the KVH 1775, a matrix of constant 44
scaling factors, a constant bias and a corresponding inertial vector 45
(with respect to the MRT's own local NED inertial frame). The 46
inertial reference vectors, as result of the calibration routine, 47
were 'wz = [—-0.9060 — 11.7102 —9.3959]" (deg/h) and 'g = 48
[0.0170 — 0.0049 9.8006]" (m/s?). In regard to the sensor biases, ~ 49
b, and b,,, it was observed during the full calibration of the KVH 50
1775 that these changed between tests. However, the extensive 51
results presented in Reis et al. (2019c¢) still allow for a reliable 52
qualitative prediction, which shall be used only as reference for 53
performance, in particular of the KF (16). More specifically, the 54
bias calibration data in Reis et al. (2019¢) suggests that b, has 55
x and y components around zero and a strong z component 56
around 0.9 mg. In turn, b, has a strong negative x component 57
around —0.7 deg/h while its components y and z are close to 58
each other and display a mirrored behavior. Naturally, in order 59
to properly assess the performance of the cascade methodology, 60
the sensor measurements @,,(t) and a,,(t), as given by (2)and (3), 61
respectively, were not bias corrected. 62

Data acquired from the MRT were sampled at 128 Hz, and later 63
appropriately down-sampled to 25 Hz to match the sampling 64
frequency of the KVH 1775. 65

The MRT was programmed to describe a three-dimensional 66
rotational maneuver lasting approximately one hour. 67

The KF (16) was tuned as follows: the initial state estimate was 68
set to X(tp) = [a](to), 0, 0, 0]; the initial state error covariance ~ 69
matrix was set to P(ty) = diag(10~2I, 10~°1, 10731, 107°I); and, 70
finally, the covariance matrices of the process and observation 71
noises were set to @ = diag(10°I, 10~'3I, 10~'°I, 10-'°I)and 72
R = diag(10~7I, 1077), respectively. These values were all ad- 73
justed empirically for the best performance. In the experiments, 74
the rotation matrix observers gains were also set in a piece-wise 75
fashion, as described in Table 1. 76

The experimental estimation error of wg n(t) remains most of 77
the time below 1 deg/h, with a steady-state accuracy around 0.4 78
deg/h, as indicated in Table 1. This strongly hints at an efficient 79
and highly accurate performance of the KF (16) in real world 80
applications (see Fig. 3). R 81

The evolutions of b,(t) and b, (t) are shown in Figs. 4 and 5, 82
respectively. Both plots suggest that the biases, despite having 83
been assumed constant, change slightly over time, whichisinline 84
with expectations and further demonstrates that the proposed 85
KF is capable of tracking slow variations. This notwithstanding, 86
the results resemble the qualitative prediction stated before. 87
Indeed, the z component of b,(t) converges to 0.75 mg, whereas 88
the other two components have smaller magnitude. The KVH 89
1775’s manufacturer specifies a maximum bias offset of 0.5 mg, 90
which means that the overshoot could be not only due to the 91
accelerometers performance but also due to the accuracy of the 92
MRT. Regarding the evolution of b,(t), its y and z components 93
are close to each other and display a mirrored behavior, while 94
the x component evolves towards a negative value of —1.5 deg/h. 95
The absence of ground-truth bias information in the experiments 96
certainly prevents a more rigorous analysis, but, overall, the 97
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Table 2
Experimental steady-state statistics for 45 min <t < 60 min.
Variable Mean sd. Units
g(t) — g(t) 0.0011167 1.7507 mg
wen(t) — @ n(t) 0.055817 0.39762 deg/h
[Ib,(8)]| 0.86663 0.0076772 mg
b ()| 18711 0.1065 deg/h
[lée(0)]l 14.922 0.34267 deg/h
a(t) 0.40751 0.16467 deg

KF (16) seems to provide a coherent estimation of both sensor
biases. What is more, the next results, which concern the estima-
tion of the rotation matrix, shall further attest to its goodness.

The initial rotation matrix estimate was such that its corre-
sponding angle deviation was approximately 128 degrees.

The evolution of the angle error, which reaches steady-state
around the same time, approaches a neighborhood of zero, as
shown in Fig. 6. Notice also the quick initial convergence, which
allows for the correction of large angle deviations in under a few
minutes. Furthermore, the mean angle deviation, computed for
45 (min) < t < 60 (min), was 0.40751 degrees, as documented in
Table 2. Once again, this demonstrates the high level of accuracy
that the proposed solution can attain.

5. Conclusions
This paper presented a cascade solution for the problem of

attitude and bias estimation. The first part of the cascade consists
in a KF applied to an LTV system whose state comprises: the
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Fig. 6. Time evolution of A(t) for 6(0) = 128 (deg).

vector of gravitational acceleration; two constant sensor bias 18
offsets; and, the component of the Earth’s angular velocity that 19
spans the North and East directions of the local inertial NED 20
frame. The LTV system was shown to be uniformly observable, 21
which in turn guarantees global exponential stability of the error 22
dynamics associated with the KF estimates. The second part of 23
the cascade features a nonlinear attitude observer, built on SO(3), 24
that is driven by measurements of angular velocity provided by 25
a set of high-grade FOGs, in addition to the estimates of the KF. 26
By regarding the rotation error dynamics as a perturbed system 27
with vanishing perturbation, the nonlinear attitude observer was 28
shown to be AGAS, as well as LISS with respect to the errors of 29
the KF. Finally, experimental results validated, and demonstrated 30
the goodness of the overall technique, deeming it suitable for real 31
word applications where highly accurate attitude data is a key 32
demand. 33
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Appendix. Unit quaternion representation

Let q(t) € Q denote a unit quaternion with real and imaginary
parts denoted by 5(t) € R and ¥(t) € R, respectively, with the
group of unit quaternions defined as

Q= {q=[s i‘T]T | q"'q = 1}. Take the representation of R(t)
by means of q(t), which, in view of the angle-axis representation
(31), is given by

R(t) = 1+ 25(t)S [{(t)] + 28? [i(1)] , (A1)

where 3(t) = cos(A(t)/2) and 1) V(t)sin(A(t)/2). Recall
the derivative of R(t), as expressed by (29), and write it as
R(t) = R()S[@(t)], with &(t) = @,(t) + (I — R'(t))0r —
ko SIR(t) g ] wg — kgSIRT(t)'g]'g, where @,(t) = —R(t)b,(t) +
kwES[R(t)wE(t)]’wE + kgS[R(t)g(t)]’g Straightforward algebraic
manipulations allow us to show that the dynamics of q(t) are
given, in vector form, by

S(6) = ——l' T(e)a(t)
(A2)

i(t) = 5 (§(t)l +S[i(t)]) @(t)

Notice that, from (A.1), one can write S[R™(t) wg)'wg = 25(t)
I'we |1%8(t) — 2("w¥(t))(3() — S[F(t)]Y @g, where a few proper-
ties related to the cross product were employed. Further no-
tice the equality R(t)i(t) = i(t). Moreover, [I — R'(t)]'@g
2 (3(t)1 — S[¥(t)]) S[F(t)]'we. Repeating the previous steps for g.
and substituting in (A.2), the vector part of the quaternion dy-

namics becomes
0 = (-S[or] + o[+ 8 [ O+
(A.3)
y(OR() + 5 (s(t M+ S [{(t)]) @y(t).

where y(F) = ko, |'@e x i'(t)|| + kg |'g x f'(t)nz. In turn, the
dynamics associated with 5(t) follows as

5(6) = y(@®3(0) — %f'T(t)lB,,(t)- (A4)

Lemma 5. Consider @,(t) = 0. Consequently, the 1st-order approx-
imation of the nonlinear differential equation (A.3) yields a linear
time-invariant (LTI) system that can be expressed as Z(t) = Az(t),
with A = (—S['wg] + ko, S*['wg] + kgS?['g]). Given Assumption 1,
and k,, > 0 and k17 > 0, then, for any c € R? ¢ # 0, it follows
that " Ac = —ko; ||'@e x €||? — kg||'g x €||* < 0. This means that
A is Hurwitz, which suffices to say that the LTI differential equation
Z(t) = Az(t) is exponentially stable, i.e., z(t) - 0ast — oo.
Therefore, the system (29), considering unperturbed dynamics, is
locally exponentially stable to L
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