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Abstract: This work proposes a cooperative control solution to the problem of transporting a
suspended load using multiple quadrotor vehicles. The problem is addressed for two quadrotors,
with a methodology that can be generalized for any number of quadrotors. A dynamic model
of the system is developed considering a point-mass load, rigid massless cables, and neglecting
aerodynamic effects of the cables. The concept of differential flatness is explored and a new set
of flat outputs, which can be used to fully characterize the state of the system, is proposed. A
nonlinear Lyapunov-based controller in cascaded form is derived, by defining adequate mappings
between the cable tension vectors and the quadrotor thrust vectors and exploring the analogy
with the problem of controlling a single quadrotor. Simulation results are presented for tracking
of load trajectories. Comparisons are made with a free-flying quadrotor control scheme to
highlight the enhanced performance of the proposed scheme.
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1. INTRODUCTION

In recent years, there has been a rise in the use of Un-
manned Aerial Vehicles (UAVs) for various applications.
In particular, quadrotor UAVs have received a lot of at-
tention due to their high maneuverability in 3D environ-
ments, high thrust to weight ratio and reduced mechanical
complexity. Applications include coverage of media events
(photography and filming), infrastructure inspections, and
mobile sensor networks, to name a few. Among these
applications, load transportation is a topic that has been
explored for several years. As highlighted in Villa et al.
(2018), it has gained importance in both civilian and mil-
itary applications, taking advantage of the vehicles ability
to describe precise trajectories for transportation of fragile
cargo.

Research on slung-load transportation goes from path-
planning to control system design and estimation prob-
lems. Several results available in the literature use the
concept of differential flatness, which defines a class of
dynamical systems for which all states and inputs can be
described as functions of the so-called flat output and its
time derivatives. This property has been explored to ad-
dress both motion planning and tracking control problems.
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For example, the work in Sreenath et al. (2013) shows
that a system comprised of a single quadrotor and a load
connected by a inelastic massless cable is differentially flat
and extends also the definition for the full hybrid system
that results from considering the case when the cable is not
taut. This concept is further developed in Sreenath and
Kumar (2013), considering a rigid body load and proving
differential flatness for 3 or more quadrotors. The work in
Kotaru et al. (2017) develops further from Sreenath and
Kumar (2013) by describing the cable via a mass-spring
model to account for its elasticity. Although the resulting
system is not differentially flat, a geometric controller is
proposed and convergence is proven for the reduced dy-
namics via single perturbation theory. In Cabecinhas et al.
(2019), a nonlinear Lyapunov-based trajectory tracking
controller is proposed for the case of a single quadrotor
and suspended load, which relies on expressing the system
in an adequate form for application of the backstepping
technique, providing asymptotic stabilization with a large
region of attraction. The work in Lee et al. (2013) applies
geometric control to address the problem of slung-load
transportation using an arbitrary number of quadrotors
and a point-mass load, proposing an inner-outer loop
control structure.In Lee (2018) this control method is ex-
tended to consider a rigid-body load. Pereira et al. (2016)
analyse the full model of a single quadrotor and a load and
define the domains for the inputs and angular velocity of
the cable where the cables remain taut and the quadrotor’s
thrust points outwards to avoid compression forces on the
cables. In Pereira and Dimarogonas (2017) the problem of



controlling two drones with a slung-load is addressed by
separating the problem into three decoupled systems and
controlling each one separately: one for position, another
for the yaw angles and a final one for the plane defined by
the two cables.

In this work, we propose a cooperative control scheme for
multi-vehicle load transportation, exploring the definition
of a new set of flat outputs. These include the position of
the load and a set of angles that completely define the
cable directions and consequently the relative positions
of the quadrotors. Explicit mappings between the cable
tension vectors and the quadrotor thrust vectors are then
explored to define an error system, starting with the load
position error, progressing to the cable direction errors,
and ending with quadrotors’ thrust direction error. The
resulting closed-loop system takes the form of a cascaded
system, whose origin is shown to be asymptotically stable.

The paper is organized as follows. In Section 2, the model
of the system to be adopted and the problem to be solved
are introduced. In Section 3, the system is analyzed for
differential flatness and the control scheme is derived.
Simulation results are presented in Section 4 and Section
5 summarizes the contents of the paper.

2. PROBLEM STATEMENT

Consider two quadrotors, with masses mQ1
and mQ2

,
connected by massless, rigid links with lengths l1 and l2
to a point-mass load with mass ml. An inertial reference
frame {I} is introduced, along with two body reference
frames {Bi} where i ∈ {1, 2}, each one fixed to the center
of mass of quadrotor i. The inertial reference frame has its
z axis pointing downwards, in the direction of the gravity
vector, which is assumed to be constant. As shown in
Fig. 1, let the direction of each cable i be described by
a unit vector qi ∈ S2, where S2 = {qi ∈ R3 | ‖qi)‖ = 1},
expressed in the inertial reference frame and centered at
the origin of the body frame {Bi}. The load position
expressed in {I} is defined as xl and the orientation of
quadrotor i, or more specifically, the rotation matrix from
{Bi} to {I} is defined as RQi ∈ SO(3), where SO(3) =
{RRT = I | det(R) = I} denotes the Special Orthogonal
Group of order 3.

Within this setting, the control objective consists of de-
signing a control law to achieve tracking of a desired
trajectory for the load, i.e. guarantee that the load position
xl(t) converges asymtptotically to xld(t).

Given the rigid link assumption, it immediately follows
that

xQi
= xl − liqi , (1)

where xQi is the position of quadrotor i expressed in {I}
(see Fig. 1). By Newton’s Law, the following expression
can be obtained for the total accelerations of the load and
quadrotors{

mlẍl = −T1q1 − T2q2 +mlge3 = −TLtqt +mlge3
mQi

ẍQi
= Tiqi − TQi

rQi
+mQi

ge3
(2)

where ẍl denotes the load linear acceleration, ẍQi the ac-
celeration of quadrotor i, g the gravitational acceleration,
Ti the tension applied by link i, TQi the thrust applied by

quadrotor i, and rQi
the direction of that thrust, which

coincides with the z-axis of the vehicle. The scalar TLt

and unit vector qt ∈ S2 define the total tension norm and
direction, respectively, and are such that TLt

qt = T1q1 +
T2q2.

Fig. 1. Illustration of the problem statement (n = 2)

For the sake of simplicity, we assume that, for each quadro-
tor, an inner loop controller provides tracking of angular
velocity commands and consider only the kinematics of
rQi , assuming that the extra angular degree of freedom is
independently controlled.

Using (1) and (2) similarly to Lee et al. (2013), and per-
forming additional algebraic manipulations, the complete
model can be written as



ẋl = vl

v̇l = ge3 −M−1q
n∑
i=1

αiqi

q̈i = −‖q̇i‖2qi +
1

li
Πqi(

1

mQi

TQi
rQi
−M−1q

n∑
j=1

αjqj)

ṙQi
= uQi

(3)
where the following variables are introduced

• vl is the velocity of the load;
• Mq is the positive definite symmetric matrix given by
Mq = mlI +

∑n
i=1mQiqiq

T
i

• αi is an auxiliary variable given by αi = qTi TQirQi +
mQi

li‖q̇i‖2
• uQi

is the simplified quadrotor angular velocity input,
which satisfies rTQi

uQi = 0.

One aspect to consider when analysing the model equa-
tions is the fact for each quadrotor only the thrust com-
ponent that is parallel to the respective links qTi TQi

rQi

has an effect on the dynamics of the load, whereas the
perpendicular component of the thrust Πqi

TQi
rQi

can be
used to control the direction of cable i. This already gives
insight to the control strategy that will be developed in
the following sections.



3. DESIGN OF THE TRACKING CONTROLLER FOR
LOAD TRANSPORTATION

3.1 Differential flatness property

A system is said to be differentially flat if there exists a set
of outputs such that all states and inputs can be expressed
as functions of that output and its time derivatives. As
pointed out in the introduction, other authors have tackled
the load transportation problem by defining a set of flat
outputs for the system. For the particular case of a point-
mass model and n quadrotors, the system is differentially
flat, with flat outputs given by the yaw angles of the
quadrotors ψi, the position of the load xl and the values
of n− 1 tension vectors Tiqi.

In this section an alternative set of flat ouputs is proposed,
from which the flat outputs described previously can be
reached. The problem is defined for the case of a point mass
load and two quadrotors. Figure 2 displays the problem
configuration, introducing the angles β1, β2, and γ, which
define the orientation of q1 and q2 relative qt and satisfy

β1 = arcos(qt · q1), β1 ∈ [0, π]

β2 = arcos(qt · q2), β2 ∈ [0, π]

γ = asin(− q2 × q1
‖q2 × q1‖

· e′y), γ ∈ [0, 2π[,

where qt is total tension direction introduced in (2). Given
qt, β1, β2, and γ, the tension directions q1 and q2 can be
specified as

qi = RauxRx(γ)Rz((−1)i−1βi)e1, (4)

where
Raux = Ry(φt)Rz(θt)

and 

φt = arcos(
TLt
· ex

‖TLzx‖
), 0 < φt ≤ π

φt = 2π − arcos(TLt · ex
‖TLzx

‖
), π < φt ≤ 2π,

with TLzx = [TLt · e1 0 TLt · e3]qt

and θt = π
2 − arcos(

TLt ·ey

‖TLtqt‖
) ∈ [0, π]. The rotation matrix

Raux defines the orientation of an auxiliary reference frame
with x-axis aligned with qt relative to the inertial frame.

Assumption 1. TLtqt is always non-zero and the third
component is always non-zero, with each cable always
being taut, i.e, TLi 6= 0.

This assumption guarantees that the plane formed by q1
and q2 (which also contains qt) is always well-defined
and a mapping for the thrust values of each quadrotor
is guaranteed to exist.

Theorem 2. Under assumption 1, the system presented in
(3) is differentially flat, with the set of flat outputs given
by xl, ψ1, ψ2, β1, β2 and γ.

Proof 1. By use of (2), given a desired trajectory for the
load xl and respective acceleration ẍl, we can calculate a
desired Tension vector TLt

qt.

Given β1, β2, and γ, the directions q1 and q2 can be
immediately recovered from (4). To recover T1 and T2 we
note that T1q1 + T2q2 = TLtqt. It follows that

RauxRx(γ)(T1Ry(β1) + T2Ry(−β2))e1 = Ttqt,

Fig. 2. Flat outputs Illustration (n = 2)

yielding [
cos(β1) cos(β2)
sin(β1) −sin(β2)

] [
TL1

TL2

]
=

[
TLt

0

]
(5)

Thus, from ẍl, β1, β2, and γ the tension of either one of
the cables can be determined, which together with the yaw
angles of the quadrotors ψ1 and ψ2 form the outputs that
are shown to be flat in Sreenath and Kumar (2013).

Notice that the transformation is only well defined if the
matrix in (5) is invertible. This is the case if β1 and β2
∈ (0, π

2 ) rad, which defines a physically meaningful range
for these angles.

3.2 Outer loop control scheme

In this section, the control formulation will be given for the
configuration presented in 2. An analogy to a free flying
quadrotor control formulation will be made, following an
approach similar to the one in Cabecinhas et al. (2019)
for the case of a single quadrotor with suspended load,
but now extended to the case of two vehicles. To simplify
the controller design and follow a constructive approach,
a simplified model that neglects the orientation dynamics
of both quadrotors is chosen as a starting point, meaning
that TQi

rQi
can be set instantaneously and used as inputs.

Under this assumption, a parallel with the dynamics for
a free flying quadrotor can be drawn by applying an
adequate change of variables.
Considering the definition of the total tension vector given
in (2) and new variables τ1 and τ2 that satisfy τ i =
1
li

Πqi(
1

mQi
TQi

rQi
− M−1q

∑
j αjqj), the overall system

dynamics described in (3) can be rewritten asẍl = − 1

ml
(T1q1 + T2q2) + ge3

q̈i = −‖q̇i‖2qi + Πqiτ i
(6)

which highlights the similarity with the free flying quadro-
tor system described by{

ẍ = −Tr + ge3
r̈ = −‖ṙ‖2r + Πrτ

(7)

Using (T1, T2, τ 1, τ 2) as virtual inputs (T ∗1 , T
∗
2 , τ

∗
1, τ
∗
2), a

trajectory tracking controller can be defined for (6), much
in the same way as for (7) with inputs given by (T, τ ). To
this end, the following assumption needs to be satisfied, to
guarantee that all variables and respective time-derivates
used to define the control laws are well-defined.



Assumption 3. The desired trajectories xld are class C5

functions of time, with bounded time derivatives.

To further detail this strategy, consider the tracking errors
x̃l = xl−xld and ṽl = vl− ẋld and the PD-like controller
ald = ge3 − ẍld + kxx̃l + kvṽl. Then, the desired tensions
T1d and T2d and desired tension directions q1d and q2d can
be computed via (4) and (5) with TLt

qt = mlald. Defining

T ∗i = qTi Tidqid, (8)

the closed-loop linear dynamics can be written as
˙̃xl = ṽl

˙̃vl = −kxx̃l − kvṽl −
T1d
ml

Πq1 q̃1 −
T2d
ml

Πq2 q̃2
(9)

where q̃i = qi − qid gives the error between current and
desired orientations. The mismatch between qi and qid can
then be driven to zero by again defining PD controllers
for the inputs τ∗i , taking into account the fact that now
the state qi evolves on the two-sphere S(2). Defining the
angular velocity errors as ω̃i = q̇i + S(qi)S(qid)q̇id and
using

τ ∗i =−Πqi(kqq̃i + kωω̃i)

− S(qi)(S(qid)q̈id − q̇iqTi S(qid)q̇id) (10)

the closed-loop dynamics for the system with state (q̃i, ω̃i)
can be written as{

˙̃qi = −S(q̃i)S(qid)q̇id + ω̃i
˙̃ωi = qi(q̇

T
i ω̃i − ‖q̇i‖2)−Πqi(kqq̃i + kωω̃i)

(11)

We can then show that (q̃i, ω̃i) converges to zero, and
consequently all tracking errors also converge to zero. The
following theorem summarizes these results.

Theorem 4. Let the thrust inputs (T ∗1 , T
∗
2 ) be given by

(8) and the torque inputs (τ ∗1, τ
∗
2) be given by (10).

Then, the origin of the closed-loop system described by
(9) and (11), with state (x̃l, ṽl, q̃1, ω̃1, q̃2, ω̃2) is uniformly
asymptotically stable.

Proof 2. We start by showing that the origin of (11) is
asymptotically stable. Considering the Lyapunov function

Vq =
kq
2 ‖q̃i‖

2 + 1
2‖ω̃i‖

2 and taking the time-derivative

along the trajectories of the system, we obtain V̇q =
−kω‖ω̃i‖2 ≤ 0, which implies that Vq is non-increasing,
all states are bounded, and the origin of (11) is uniformly

stable. By showing that all states and consequently V̇q are
uniformly continuous and resorting to Barbalat’s Lemma,
we can also conclude that ω̃i converges to zero and qi con-
verges to either qid or −qid. Additional arguments based
on linearization show that the equilibrium point −qid is
unstable (see Lee (2016) for details). Considering now the
linear dynamics (9) together with angular dynamics (11),
i ∈ {1, 2}, we can rewrite the system in cascaded form as{

η̇ = f(η, ξ, t)

ξ̇ = g(ξ, t)
(12)

with η = [x̃Tl ṽTl ]T and ξ = [q̃T1 ω̃T1 q̃T2 ω̃T2 ]T . Given
that the origin of η̇ = f(η, 0, t) is globally exponentially
stable (the system becomes autonomous) and the origin

of ξ̇ = g(ξ, t) is uniformly asymptotically stable, we can
immediately conclude that in some bounded region all
error states converge to zero and thus the origin of the
full closed-loop system is uniformly asymptotically stable.

3.3 Mapping cable tensions to quadrotor thrust forces

The outer loop controller described in Section 3.2 considers
the virtual inputs (T ∗1 ,τ ∗1) and (T ∗2 ,τ ∗2), which need to
be mapped into the quadrotor virtual inputs T ∗Q1

r∗Q1
and

T ∗Q2
r∗Q2

, respectively. For convenience the superscript is
dropped, given that the mapping applies not only to
virtual but also to the real variables. To determine this
mapping, TQirQi are decomposed into two components,
one parallel and the other perpendicular to qi, i.e.

TQi
rQi

= uiqi + ΠqiTQi
rQi

, (13)

where ui = qTi TQirQi .

Recalling that in (3) ui appears in the equation for v̇l,
whereas Πqi appears in the equation for ω̇i suggest the
definition of two mappings. The first between (T1,T2) and
(u1,u2) and the second between (τ 1,τ 2) and ΠqiTQi

rQi
.

Lemma 5. If the cables are not collinear, the mapping
from the cable tensions (T1,T2) to the parallel components
(u1, u2) is given by

u1 = (1 +
mQ1

ml
)T1 +

mQ1

ml
qT1 q2T2 −mQ1

l1‖q̇1‖2 (14)

u2 = (1 +
mQ2

ml
)T2 +

mQ2

ml
qT2 q1T1 −mQ2 l2‖q̇2‖2. (15)

Proof 3. From (2) and (3), we have that

Mq(T1q1 + T2q2) = ml(α1q1 + α2q2),

where αi = ui + mQi
li‖q̇i‖2. Rearranging the terms as

linear combinations of q1 and q2, we obtain

δ1q1 + δ2q2 = 0 (16)

with δ1 and δ2 given by{
δ1 = (ml +mQ1

)T1 +mQ1
qT1 q2T2 −mlα1

δ2 = (ml +mQ2
)T2 +mQ2

qT2 q1T1 −mlα2
(17)

If q1 and q2 are noncollinear then (16) only admits the
trivial solution δ1 = δ2 = 0, yielding (14) and (15).

To obtain the second mapping note that, from (2) and the
second time-derivative of (1), we can write

mQi
(ẍl − ge3 − liq̈i) = Tiqi − TQi

rQi
. (18)

It then follows from (6) that
Πq1

TQ1
rQ1

= mQ1
Πq1

(l1τ 1 +
T2
ml
q2)

Πq2
TQ2

rQ2
= mQ2

Πq2
(l2τ 2 +

T1
ml
q1),

(19)

and thus each quadrotor thrust can be selected through
the combined mapping (13).

3.4 Inner loop control

In the previous section, the outer loop control scheme
was fully developed, under the assumption that the ori-
entation dynamics is negligible, when compared to the
position of the load and attitude control of the cables.
This assumption is now lifted and the inner loop control
scheme developed. First, the desired quadrotors thrusts
(T ∗Qi

, r∗Qi
) are defined as functions of the virtual tensions

and torques (T ∗i , τ
∗
i ). Second, a inner-loop orientation con-

troller is designed to take rQi to r∗Qi
, exploring once again

the cascaded form of the system.



According to (13), the desired quadrotor thrust vectors
take the form

T ∗Qi
r∗Qi

=qi((1 +
mQi

ml
)T ∗i +

mQi

ml
qTi T

∗
j qj −mQi

li‖q̇i‖2)

+mQiΠqi(liτ
∗
i +

1

ml
T ∗j qj) (20)

with (i, j) ∈ {(1, 2), (2, 1)}. Note that (20) is defined
as a function of the real values of q1 and q2, not the
desired ones. Adding and subtracting M−1q

∑
i qiq

T
i T
∗
Qi
r∗i

and 1
mQi

li
ΠqiT

∗
Qi
r∗Qi

to the linear and angular dynamics,

respectively, and after some algebraic manipulations we
can write

v̇l =ge3 −
∑
i

(
T ∗i
ml
qi +M−1q qiq

T
i (TQirQi − T ∗Qi

r∗Qi
)

)
q̈i =− ‖q̇i‖2qi + Πqiτ

∗
i

− 1

li
ΠqiM

−1
q

∑
j

qjqj
T (TQjrQj − T ∗Qj

r∗Qj
)

+
1

mQi
li

Πqi(TQirQi − T ∗Qi
r∗Qi

)

Finally, setting
TQi = T ∗Qi

rTQi
r∗Qi

, (21)

introducing the new error variable r̃Qi
= rQi

− r∗Qi
, and

transforming into the error system, the full error system
can be described by

˙̃xl = ṽl

˙̃vl = −kxx̃l − kvṽl −
T1d
ml

Πq1 q̃1 −
T2d
ml

Πq2 q̃2

+M−1q
∑
i

qiq
T
i ΠrQi

T ∗Qi
r̃Qi

(22)

and

˙̃qi = −S(q̃i)S(qid)q̇id + ω̃i
˙̃ωi = qi(q̇

T
i ω̃i − ‖q̇i‖2)−Πqi(kqq̃i + kωω̃i)

− 1

li
Πqi(M

−1
q

∑
j

qjq
T
j ΠrQj

T ∗Qj
r̃Qj +

1

mQi

ΠrQi
T ∗Qi

r̃Qi)

˙̃rQi
= −S(r̃Qi

)S(r∗Qi
)ṙ∗Qi

+ ṙQi
+ S(rQi

)S(r∗Qi
)ṙ∗Qi

(23)
Again, the system takes a cascaded form and the con-
vergence of r̃Qi

to zero guarantees that there exists a
neighborhood of the origin inside which all error states
converge to zero.

Theorem 6. Let the quadrotor thrust inputs (TQ1
, TQ2

) be
given by (21) and the angular rate inputs (ṙQ1

, ṙQ2
) be

given by

ṙQi = −kQΠrQi
r̃Qi − S(rQi)S(r∗Qi

)ṙ∗Qi

−
T ∗Qi

li
ΠrQi

(
1

mQi

I + qiq
T
i M

−T
q )ω̃i (24)

Then, the origin of the closed-loop system described by
(22) and (23), with state (x̃l, ṽl, q̃1, ω̃1, q̃2, ω̃2, r̃Q1 , r̃Q2)
is uniformly asymptotically stable.

Proof 4. Considering the system described by (23), the
Lyapunov function

Wi =
∑
i

(
kq
2
‖q̃i‖2 +

1

2
‖ω̃i‖2 +

1

2
‖r̃i‖2

)
(25)

has negative semi-definite time derivative given by

Ẇi = −kω‖ω̃i‖2 − kQr̃TQi
ΠrQi

r̃Qi
. (26)

Invoking once again Barbalat’s Lemma, we can show
that the origin of (23) is uniformly asymptotically stable.
Finally, using the same cascaded form as in (12), but now

with η = [x̃Tl ṽ
T
l ]T and ξ = [q̃T1 ω̃

T
1 q̃

T
2 ω̃

T
2 r̃

T
Q1
r̃TQ2

]T , we
can again conclude that the origin of the full closed-loop
system with state (η, ξ) is uniformly asymptotically stable.

4. RESULTS

In this section, simulation results are presented for a
circular trajectory with fixed altitude. One term in the
control law requires special attention: the time derivative
of the desired orientation vector ṙ∗Qi

. This term will be
computed numerically via the approximation with a band
pass filter, which accurately represents this derivative for
most trajectories. As presented next, for the selected gains
KQ1 , KQ2 and factors L1, L2, this approximation is able
to deliver adequate performance.

Three controllers were tested for the previous trajectories:
the nonlinear Lyapunov based controller with no inner
loop dynamics (assumed instantaneous), the nonlinear
Lyapunov based controller with the inner loop controller
proposed in this paper, and a free flying controller applied
to both quadrotors. The free flying case was constructed
by considering the desired load trajectory and reference
angles βi and γ and computing the corresponding nom-
inal trajectories for each of the quadrotors. For control
purposes, free flying quadrotor models were considered,
neglecting the coupling forces due to the cable connec-
tions.The selected trajectory is given by

xld(t) = A [sin(ωt) cos(ωt) 0]
T
,

where ω = π
2 rad/s. The initial position was selected to be

at an offset of [3,−2, 2] m from the initial desired position
in the circular trajectory. The flat output angles β1, β2
and γ were kept constant at π

4 , π4 , and 0 rad, respectively.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-4

-3

-2

-1

0

1

2

3

4

P
o

s
it
io

n
 e

rr
o

r 
(m

)

Position error over time

x

y

z

0 5 10 15 20 25

Time (s)

10-10

10-8

10-6

10-4

10-2

100

102

L
y
a

p
u

n
o

v
 f

u
n

c
ti
o

n
 (

-)

Lyapunov function over time

Fig. 3. Simulation results for the circular trajectory - no
inner loop dynamics
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Fig. 4. Simulation results for the circular trajectory - full
dynamics
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Fig. 5. Simulation results for nonlinear model - circular
trajectory with sinusoidal varying altitude - free flying
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In Fig. 3, we can observe that the position error converges
in approximately 10 seconds and the Lyapunov function
reaches the value of 10−9 in 12 seconds, when the inner
loop dynamics are neglected. With the inner loop con-
troller, as observed in Fig. 4, the position error also
converges to zero. However, the mean value reached by
the Lyapunov function is about 10−4 instead of 10−9. This
is likely due to the derivative term approximation, as the
angular velocity error states exhibit a sinusoidal-like varia-
tion due to the added delay in the derivative term. However
the position error values still remain in low values, with a
position error of about 0.0035 m.The 3-D trajectories of
the load and quadrotors over time are shown in Fig. 6,
where it is noticeable that the relative configuration of
the cables remain approximately constant over time, as
specified in the flat outputs. The position errors for the
load and for one quadrotor are shown in Fig. 5. It can
be observed that the free flying control solution does not
adequately control the quadrotors to obtain the desired
position, as the force interactions between the quadrotors
and the load act as time-varying disturbances on the
system. Neglecting these interactions causes an undamped
solution, as observed in Fig. 5 b), which propagates to
the position error of the load, as shown in Fig. 5 a). The
mean error of the load for this solution is 0.1383 m - more
than 4 times the mean value for the full model solution.
These oscillations can also cause practical problems with
the cable’s ridigity assumptions not holding valid in an
experiment, compromising the quadrotor and the load.

5. CONCLUSIONS

In this work, a novel control approach for trajectory track-
ing of a slung load using two quadrotors was proposed.
The approach relies on the definition of a new set of flat
outputs, which completely determine the relative configu-
rations between the load and the quadrotors and have a
simpler geometric interpretation than previously proposed
outputs. For control system design an error system in
cascaded form is incrementally constructed together with a
cooperative control law for the two quadrotors that renders
the origin of closed-loop system uniformly asymptotically
stable. As demonstrated in the simulations in Section 4,
the overall error state converges to zero, while maintaining
the inputs within the physical limits of the actuators for
each quadrotor.
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