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Abstract— This paper presents an experimentally tested so-
lution to the problem of estimating the attitude of a rigid body
using rate gyros and a pan and tilt camera. An exponential
input-to-state stable pan and tilt control law is used to keep the
visual features in the image plane. A multi-rate implementation
of the nonlinear attitude observer that uses recent results in
geometric numeric integration is proposed. Practical aspects,
such as the computation of suitable observer feedback gains, are
considered. Experimental results obtained with a high accuracy
motion rate table demonstrate the high level of performance
attained by the proposed solution.

I. INTRODUCTION

Vision-based techniques can be seen as a reliable alterna-

tive to GPS based navigation for the operation of Unmanned

Aerial Vehicles (UAVs) in indoor and urban environments.

The literature on vision-based rigid-body stabilization and

estimation addresses important problems such as i) keeping

feature visibility along the system’s trajectories for a large

region of attraction [1] ii) guaranteeing convergence in the

presence of camera parametric uncertainty and image mea-

surement noise [2], iii) establishing observability conditions

for attitude estimation [3]. The aim of this paper is the

development and experimental evaluation of a nonlinear

vision based observer to estimate the vehicle attitude relative

to a set of feature points.
In many applications it is desired to design observers based

only on the rigid body kinematics, which are an exact de-

scription of the physical quantities involved. In this approach,

the attitude of the vehicle is propagated by integrating inertial

sensor measurements [4], [5]. Research on the problem of

deriving a stabilizing law for systems evolving on manifolds,

where attitude is parameterized, can be found in [6], [7], and

[8], which provide important guidelines for observer design

and discuss the topological limitations to achieving global

stabilization on the SO(3) manifold.
The development of numeric integration methods that

preserve geometric properties evolving on Lie groups has

witnessed in the last two decades a remarkable progress.

These methods were originally proposed by Crouch and

Grossman in [9]. In [10] the author constructs generalized

Runge-Kutta methods where the computations are performed

in the Lie algebra, which is a linear space. More recently, the

work in [11] describes commutator-free Lie group methods

to overcome some of the problems associated with the

computation of commutators.
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In this work we consider the problem of estimating the

attitude of a rigid body equipped with a triad of rate gyros

and a pan and tilt camera. By exploiting directly sensor

information, a stabilizing feedback law with exponential con-

vergence to the origin of the estimation errors is proposed. As

a second goal, we develop an active vision system targeted

at keeping the features inside the image plane. For that

purpose, an image-based control law for the camera pan and

tilt angular rates is proposed.

To assess in practice the performance of the pro-

posed observer, an experimental setup, comprising a

MemSense nIMU and an AXIS 215 PTZ camera was as-

sembled and mounted on a motion rate table that enables the

acquisition of ground truth data. The Model 2103HT from

Ideal Aerosmith [12] is a three-axis motion rate table that

provides precise angular position and rate.

The paper is structured as follows. In Section II, the

attitude estimation and the camera pan and tilt control prob-

lems are introduced. In Section III the attitude observer is

presented, and its properties are highlighted. The camera pan

and tilt controller is derived in Section IV. A low complexity

discrete time implementation of the observer is proposed in

Section V. The experimental setup is described in Section VI,

and experimental results that illustrate the performance of

the proposed solution are presented in Section VII. Finally,

concluding remarks are given in Section VIII.

II. PROBLEM FORMULATION

Consider a rigid body equipped with a triad of rate gyros

and a pan and tilt camera. Let {B} be the frame attached to

the rigid body, {L} the local frame attached to the feature

plane, and {C} the camera frame with origin at the camera’s

center of projection with the z-axis aligned with the optical

axis. The navigation problem illustrated in Fig. 1 can be

summarized as the problem of estimating the attitude of a

rigid body given by the rotation matrix from {L} to {B},

denoted as L

B
R, using images of a collection of feature points

and angular velocity readings. An image-based controller for

the camera pan and tilt angles that enforces feature visibility

is also proposed.

A. Sensor Suite

The triad of rate gyros is assumed to be aligned with {B}
so that it provides measurements of the body angular veloc-

ity ωB corrupted by a constant bias term ωr = ωB + bω ,

ḃω = 0.

As shown in Fig. 1, the camera can describe pan and tilt

motions corresponding to the angles ψ and φ, respectively.
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Fig. 1. Diagram of the experimental setup.

As such the rotation matrix from {C} to {B} is given by

B

C
R = RpanRtilt, (1)

Rpan = Rz(π/2 + ψ), Rtilt = Rx(π/2 + φ)

where Rz(·) and Rx(·) denote rotation matrices about the

z-axis and x-axis, respectively.

For simplicity of notation, we denote the configuration of

{C} with respect to {L} by (R,p) ∈ SE(3), where R = L

C
R

is the rotation matrix from {C} to {L} and p the position of

the origin of {L} with respect to {C}. The observed scene

consists of four points whose coordinates in {L} are denoted

by Lxi ∈ R
3, i ∈ {1, . . . , 4}. Without loss of generality, the

origin of {L} is assumed to coincide with the centroid of the

feature points so that
∑

4

i=1

Lxi = 0. The 3-D coordinates

of the features points expressed in {C} can be written as

qi = RT Lxi + p, i ∈ {1, . . . , 4} and, using the perspective

camera model [2], the 2-D image coordinates of those points

yi ∈ R
2 can be written as

[

yi

1

]

= δiAqi, (2)

where A ∈ R
3×3 is the camera calibration matrix assumed

to be known and δi is an unknown scalar encoding depth

information and given by δi = (eT

3
qi)

−1, e3 = [0 0 1]T .

B. Attitude kinematics

The camera frame attitude kinematics can be described by

Ṙ = R[ω]×, (3)

where once again for simplicity of notation ω ∈ R
3 denotes

the camera angular velocity and [w]× is the skew symmetric

matrix defined such that [w]×y = w × v, with w,v ∈ R
3.

Taking the time derivative of (1), straightforward computa-

tions show that ω can be written as

ω = C

B
RωB + RT

tilt[φ̇ 0 ψ̇]T , (4)

where ψ̇ and φ̇ are the time derivatives of the camera pan and

tilt angles, respectively. Assuming that we solve the attitude

estimation problem for R and that the camera pan and tilt

angles are known, we can readily obtain the attitude of the

rigid body L

B
R = RC

B
R as proposed.
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Fig. 2. Block diagram of the attitude observer and camera controller. The

quantities R̂ and b̂ω are, respectively, the attitude and angular rate bias
estimates.

C. Problem Summary

The estimation problem addressed in this paper can be

stated as follows.

Problem 1: Consider the attitude kinematic model de-

scribed by (3). Design a dynamic observer for R based on

ωr and yi, i = {1, . . . , 4}, with the largest possible basin of

attraction.

To develop an active vision system using the camera

pan and tilt degrees of freedom, we consider the following

problem.

Problem 2: Let ȳ be the image of the features’ centroid

given by [ȳT 1]T = δ̄Ap, δ̄ = (eT

3
p)−1. Design a control

law for ψ̇ and φ̇ based on ωr and yi, i ∈ {1, . . . , 4}, such

that ȳ approaches the center of the image plane.

Figure 2 depicts the cascaded composition of the system,

where the angular rate bias estimate is fed into the pan and

tilt controller.

III. ATTITUDE OBSERVER

In the following, we propose a solution to Problem 1 that

builds on results presented in [4], where a nonlinear position

and attitude observer based on landmark measurements and

biased velocity measurements was shown to provide expo-

nential convergence to the origin for the position, attitude,

and bias errors. The proposed observer is designed to match

the rigid body attitude kinematics taking the form

˙̂
R = R̂[ω̂]×, (5)

where R̂ is the estimated camera attitude and ω̂ is the

feedback term designed to compensate for the estimation

errors.

Some rotational degrees of freedom are unobservable in

the case features are all collinear as discussed in [4] and

references therein. The following necessary condition for

attitude estimation is assumed.

Assumption 1: The features are not all collinear.

We will consider a feedback law for ω̂ that uses measure-

ments of the form

U = RT [Lu1 . . . Lu5] ∈ R
3×5, (6)

where Lui ∈ R
3 are time-invariant in the local frame {L}. To

obtain these vector readings from the image coordinates yi,

we explore the geometry of planar scenes. For that purpose,

we introduce the matrices

X =
[

Lx1 · · · Lx4

]

, Y =

[

y1 · · · y4

1 · · · 1

]

,
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where Lxi are the 3-D coordinates of the feature points

expressed in {L} and yi the corresponding 2-D image

coordinates. We can now state the following lemma.

Lemma 1: Let σ = [σ1 σ2 σ3 σ4]
T ∈ R

4 \ {0} and

ρ = [ρ1 ρ2 ρ3 ρ4]
T ∈ R

4 \ {0} be such that Yσ = 0,

Xρ = 0, and 1T
ρ = 0, where 1 = [1 1 1 1]T . Consider

that the features verify Assumption 1 and that the camera

configuration is such that the image is not degenerated

(neither a point nor a line). Then, the depth variables δi can

be written as δi = α ρi

σi
,where α ∈ R, ρi 6= 0, and σi 6= 0

for i ∈ {1, 2, 3, 4}.

Proof: See [13].

Writing (2) in matrix form and using Lemma 1, we have

Y = A(RTX − p1T )αD−1

σ Dρ, where Dρ = diag(ρ).
From the feature centroid constraint X1 = 0, it follows that

αRTX = A−1YD−1

ρ Dσ(I − 1

4
11T ), which takes the form

of (6) up to a scale factor. We can use the properties of the

rotation matrix and the positive depth constraint δi > 0 to

obtain the normalized vector readings

Cx̄i = RT

Lxi

‖Lxi‖
= sign(α)

αRT Lxi

‖αRT Lxi‖
. (7)

where sign(α) = sign
(

ρi

σi

)

. Finally, we define the ma-

trix U using linear combinations of (7) so that U =
CX̄AX , where AX ∈ R

5×5 is nonsingular and CX̄ =
[Cx̄1, . . . , Cx̄4,

Cx̄i ×
Cx̄j ] for any linearly independent

Cx̄i and Cx̄j .

The directionality associated with the features positions

is made uniform by defining transformation AX such that

UUT = I. The desired AX exists if Assumption 1 is satisfied

[4].

Let the bias in angular velocity measurements be constant,

i.e. ḃω = 0, and consider the Lyapunov function

V =
||R̃ − I||2

2
+

1

2kbω

||b̃ω||
2,

where kbω
> 0, b̃ω := b̂ω − bω, and b̂ω is the estimated

bias in angular velocity measurements. Its time derivative is

given by

V̇ = sT

ω(ω̂ − C

B
Rω) +

1

kbω

˙̃
bT

ωb̃ω, (8)

where sω = RT [R̃−R̃T ]⊗, and [·]⊗ is the unskew operator,

such that, [[a]×]⊗ = a, a ∈ R
3. The feedback term sω can

be expressed as an explicit function of the sensor readings

[4, Theorem 8].

sω =
5

∑

i=1

(R̂T LX̄AXei) × (Uei)

Consider the attitude feedback law

ω̂ = C

BR(ωr − b̂ω + R
T

pan[φ̇ 0 ψ̇]T ) − kωsω

= C

BR(ω − b̃ω + R
T

pan[φ̇ 0 ψ̇]T ) − kωsω,
(9)

where kω > 0. Applying the feedback law (9) to the

Lyapunov function (8) and defining

˙̂
bω := kbω

B

C
Rsω, (10)

the Lyapunov function derivative is given by V̇ =
−kω||sω||

2.
Considering the feedback law (9) and the differential

equation (10), the closed loop attitude error dynamics results
in

˙̃R = −kωR̃(R̃ − R̃T ) − R̃[RC

BRb̃ω]×
˙̃
bω = kbω

B

CRRT [R̃ − R̃T ]⊗
(11)

Lemma 2 provides sufficient conditions for the bounded-

ness of the estimation errors that exclude convergence to

the equilibrium points satisfying ||R̃ − I||2 = 8. Global

asymptotic stability of the origin is precluded by topological

limitations associated with those points [14].

Lemma 2: For any initial condition that verifies

||b̃ω(t0)||
2

8 − ||R̃(t0) − I||2
< kbω

, (12)

the estimation errors x̃b = (R̃, b̃ω) are bounded and

||R̃(t) − I||2 < 8 for all t ≥ t0.

Exploiting the results derived for LTV systems in [15],

Theorem 1 establishes the exponential convergence of the

system (11) trajectories to the desired equilibrium point.

Theorem 1: Assume that ω, ψ̇ and φ̇ are bounded. Then

the attitude error and the bias estimation error converge

exponentially fast to the equilibrium point (R̃, b̃ω) = (I, 0),
for any initial condition satisfying (12).

Due to space constraints, the proofs of Lemma 2 and

Theorem 1 are omitted. However, they can be obtained by

adapting the proofs of Lemma 6 and Theorem 7 in [4].

IV. CAMERA PAN AND TILT CONTROLLER

In this section, we address the problem of keeping the

features inside the image plane, exploring the camera’s

ability to describe pan and tilt angular motions. As stated in

Problem 2, the strategy adopted to achieve this goal amounts

to controlling the camera pan and tilt angular velocities ψ̇
and φ̇, using directly the image measurements yi and the

angular velocity readings ωr, so as to keep the image of the

features’ centroid at a close distance from the center of the

image plane.

We resort to Lyapunov theory and consider the following

candidate Lyapunov function

W =
1

2
pT Πp =

1

2
(p2

x + p2

y), (13)

where p = [px py pz]
T is the position of {L} expressed

in {C} and Π ∈ R
3×3 is the x-y plane projection matrix.

Using the expression for ω given in (4), the camera position

kinematics can be written as

ṗ = [p]×ω − v

= [p]×(RT

tiltR
T

panωB + RT

tilt[φ̇ 0 ψ̇]T ) − v, (14)

where v is the camera linear velocity. Recall that by defini-

tion p coincides with the position of the features’ centroid

and its image is given by ȳ. Therefore, by guaranteeing

that the Lyapunov function W is decreasing, or equivalently

[px py] is approaching the origin, we can ensure that ȳ is

approaching the center of the image plane. To simplify the
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notation and without loss of generality, assume from now on

that A = I so that ȳx = px/pz and ȳy = py/pz .

Before proceeding to define the pan and tilt control law,

we highlight the fact that ȳ can be easily obtained from the

image measurements yi. By noting that the feature centroid

lies at the intersection between the vectors x3−x1 and x4−
x2 and the intersection between lines is clearly an image

invariant, we can immediately conclude that ȳ coincides with

the point at the intersection between y3 − y1 and y4 − y2.
Lemma 3: Let the camera position kinematics be de-

scribed by (14) and assume that the rigid body and camera
motions are such that pz > 0 and cos φ 6= 0. Consider the
control law for the camera pan and tilt angular velocities
given by

[

φ̇

ψ̇

]

= kc

[

0 −1
1

cos φ
0

]

ȳ −

[

1 0 0
0 − tan φ 1

]

R
T

panω̂B, (15)

where ω̂B = ωr − b̂ω and kc > 0. Then, the time derivative
of the Lyapunov function W along the system trajectories
satisfies

Ẇ ≤ −(kc − ǫ)W, ∀ ‖Πp‖ ≥
1

ǫ

(

‖Πv‖ + pz‖b̃w‖
)

, (16)

and 0 < ǫ < kc.

Proof: Taking the time derivative of (13) and using the

expressions for ṗ given in (14), we obtain

Ẇ = pT Π(pz[e3]×ω − v)

= pz[py − px 0]RT

tilt(R
T

panωB + [φ̇ 0 ψ̇]T ) − pT Πv.

Choosing φ̇ and ψ̇ such that

RT

tilt(R
T

panω̂B + [φ̇ 0 ψ̇]T ) = −kc[ȳy − ȳx κ]T , (17)

for some κ and noting that ωB = ω̂B − b̃w yields Ẇ =
−kcW − pT Π(v + pz[e3]×

C

B
Rb̃w) and consequently (16)

holds. Solving (17) for φ̇, ψ̇, and κ, we obtain the control

law (15).

Remark 1: If we apply the control law (15) to the system

with state Πp = [px py]T and interpret v and pzb̃w as inputs,

it follows from (16) that the system is exponentially input-to-

state stable (ISS). As such, the distance between the image

of the centroid ȳ and the origin is ultimately bounded by

‖Πv/pz‖ and ‖b̃w‖ and converges exponentially fast to that

bound. Moreover, if Πv/pz and b̃w converge to zero so does

ȳ.

V. COMPUTATIONAL IMPLEMENTATION

In this section we describe the computational implementa-

tion of the attitude observer and camera pan and tilt controller

proposed in Sections III and IV, respectively.

A. Discrete Time Algorithm

Several techniques can be adopted for discretization of

nonlinear differential systems. The choice of algorithm de-

pends on the specific problem, and stability and convergence

are seldom guaranteed in general.

The discrete time algorithm is obtained by applying nu-

merical integration methods to the observer continuous time

dynamics. The integration method should guarantee that

the discrete time implementation approximates conveniently

the original continuous time observer. Classic Runge-Kutta

methods cannot be correctly applied to rotation matrix

dynamics since they are not able to preserve polynomial

invariants, like the determinant, of degree higher than three

[16, Theorem IV.3.3]. An alternative is to apply a method

that preserves orthogonality, like a Lie group integrator.

The attitude observer dynamics is composed by differential

equations (5) and (10), evolving in SO(3) and R
3, respec-

tively. The first is integrated resorting to geometric numerical

integration methods namely, the Crouch-Grossman Method

(CG) [9], the Munthe-Kaas Method (MK) [10], and the

commutator-free Lie group Method (CF) [11]. The second

is implemented in discrete time using a classical numerical

integration technique.

The presented geometric numerical integration algorithms

require the knowledge of the function ω̂(t) at instants

between sampling times. In the present work, the unit is

equipped with low cost inertial sensors and computational

resources are limited, then ω̂ is linearly interpolated in the

interval [(k − 1)T, kT ], where T is the sample period.

Due to the adopted interpolation, the use of integration

methods with order higher than two does not improve the

methods accuracy, hence we narrow our analysis to second

order methods. The complexity required to implement each

step of the second order CG and MK methods, is summarized

in Table I, for the operations in SO(3), exponential map

(Exp), inverse of the differential of the exponential map

(Dexp-1), and 3×3 matrix multiplication (mmult), as defined

in [17]. The coefficients for these methods can be obtained in

[16] and [17]. Note that there is no second order CF method

and higher orders imply higher computational cost, hence it

was not included in Table I. Due to its lower computational

cost, the second order CG method is selected.

TABLE I

COMPLEXITY IN EACH STEP FOR SECOND ORDER CG AND MK

METHODS.

operation Exp Dexp-1 mmult

CG 2nd order 3 0 3

MK 2nd order 2 2 2

The discrete time implementation of equation (10) was
obtained by using a second order Adams-Moulton Method,
see [18] for further details. This selection was done based on
arguments similar those used for (5). The resulting numerical
integration algorithm can be summarized as

sω k−1 =

5
∑

i=1

(R̂T

k−1
L
X̄AXei) × (Uk−1ei),

ω̂
(1) = ωr k−1 − b̂ω k−1 − kωsω k−1,

Y = Exp
(

−T [ω̂(1)]×
)

R̂T

k−1,

s
Y

ω k =

5
∑

i=1

(Y L
X̄AXei) × (Ukei),

b̂ω k = b̂ω k−1 +
Tkbω

2

(

B

CRksω k + B

CRk−1sω k−1

)

ω̂
(2) = ωr k − b̂ω k − kωs

Y

ω k,

RT

k = Exp

(

−
T

2
[ω̂(2)]×

)

Exp

(

−
T

2
[ω̂(1)]×

)

RT

k−1.
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Fig. 3. Experimental setup.

B. Multi-rate algorithm

The proposed attitude observer architecture includes the

attitude algorithm, the camera pan and tilt controller, and

the communication protocols with the camera and the rate

gyros. Cameras typically have much lower sampling rates

than inertial sensors. To accommodate the difference in

sampling rates, we adopt a multi-rate strategy. While an

image is being processed and the attitude feedback law

cannot be applied, the attitude estimate R̂ is propagated by

using solely the angular velocity readings ωr. As soon as the

image data is available, R̂ is recomputed using both ωr and

the vector readings CX̄. This algorithm increases the inter-

sampling accuracy of the estimates, which may be of critical

importance for control purposes.

VI. EXPERIMENTAL SETUP

To assess the performance of the proposed observer, an

experimental setup, comprising a MemSense nIMU and an

AXIS 215 PTZ camera, was mounted on a Model 2103HT

motion rate table, which enables the acquisition of ground

truth data. Figure 3 shows the experimental setup together

with the set of four colored circles that were used as visual

features in the experiments.

The MemSense nIMU is a three-axis inertial measurement

unit that incorporates a triad of rate gyros, a triad of

accelerometers, and a triad of magnetometers. The rate gyros

provide a dynamic range of ±150 deg/s, with values of

0.36 deg/s and 0.95 deg/s for typical and maximum noise,

respectively (1σ). The AXIS 215 PTZ is a network camera

that can be controlled in pan, tilt, and zoom (±170 deg pan

range, 180 deg/s pan speed, 180 deg tilt range, and 140 deg/s

tilt speed). The angular positions and speeds can be set with

a resolution of 1 deg and 1 deg/s, respectively. The camera is

interfaced via a local network and using the HTTP protocol.

The Model 2103HT from Ideal Aerosmith [12], is a three-

axis motion rate table that provides precise angular position,

rate, and acceleration for development and testing of inertial

components and systems (position accuracy ±0.0083 deg,

rate accuracy 0.01% ± 0.0005 deg/s).

VII. EXPERIMENTAL RESULTS

This section describes the experimental results obtained

for a typical trajectory generated by the motion rate table.
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Fig. 4. Time evolution of the camera pan and tilt position and velocity
and of the features’ centroid in the image plane.

The camera acquires images at 10 Hz and the rate gyros

sampling rate is 150 Hz.

The rate gyros measurement noise is characterized by

a standard deviation of 0.0105 rad/s, 0.0100 rad/s, and

0.0105 rad/s (1σ), for the x, y, and z axis, respectively. Re-

garding the visual features, the measurement noise exhibited

a standard deviation of 0.7 pixels. The measurement noise

characterization can be used to adequately select the observer

gains. This is accomplished by running the observer in simu-

lation using the same experimentally acquired measurement

noise and searching for the minimum error over a discrete ar-

ray of values for the gains kω (10−1, 10−0.5, 100, 100.5, 101),

kbω
(10−2, 10−1, 100, 101). The minimum quadratic error

was obtained for the pair kω = 100, kbω
= 10−1.

Figure 4 shows the time evolution of the camera pan

and tilt position and velocity, and the time evolution of the

features’ centroid in the image plane. Despite the reasonable

range of movements of the trajectory, the features remain

visible throughout the experiment due to the compensation

provided by the camera pan and tilt controller.

Figure 5 shows the estimation results provided by the

method proposed in this paper. To illustrate the advantages

of the proposed algorithm, we computed at each instant the

solution to Wahba’s problem and used it as an alternative

attitude estimate for the same experiment. As opposed to

the dynamic observer proposed in this paper, the estimation

method based on Wahba’s problem neglects all knowledge

of previous estimates and relies solely on the vector readings

extracted from the image measurements. Figure 6 shows the

estimation errors produced by both methods. The proposed

solution display a significant increase in accuracy. The

standard deviation obtained with the proposed solution are

0.0034 rad, 0.0083 rad, and 0.0141 rad, for roll, pitch and

yaw, respectively; and standard deviation obtained with the

Wahba’s solution are 0.0091 rad, 0.0208 rad, and 0.0296 rad

for roll, pitch and yaw, respectively.

Figure 7 shows the time evolution of the angular rate bias

estimates. A transient occur during the first 50 seconds as

result of the initial estimation errors. Although the rate gyros
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Fig. 5. Attitude estimation using the proposed algorithm.
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Fig. 6. Error of the attitude determination using the solution for the Wahba’s
problem and the proposed algorithm.

estimates never reach a steady state due to the noise present

in the measurements, after this period, they are restrained to

tight intervals.

VIII. CONCLUSIONS

This paper addressed the problem of estimating the attitude

of a rigid body equipped with a triad of rate gyros and

a pan and tilt camera. An exponential input-to-state stable

pan and tilt control law that enforces feature visibility was

introduced. A multi-rate implementation of the nonlinear

attitude observer that uses recent results in geometric nu-

meric integration was proposed and experimentally tested.

A griding technique was used to obtain suitable feedback

gains for the observer. The high level of performance attained

by the proposed solution was experimentally demonstrated

resorting a three-axis motion rate table.
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