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Abstract— This paper addresses the problem of decentralized
state estimation in formations of vehicles with time-varying
topologies. The proposed solution relies on the implementa-
tion of a local state observer on-board each vehicle, based
only on local sensing capabilities and limited communication
with neighboring vehicles, to estimate its state. The effects
of changes in the formation topology over time are studied
resorting to switched systems theory, and sufficient conditions
for exponential stability of the global estimation error dynamics
are presented for two different switching laws. The results
are particularized for the case of a formation of Autonomous
Underwater Vehicles (AUVs), and simulation results are pre-
sented to assess the performance of the proposed solution in
the presence of measurement noise.

I. INTRODUCTION

Due to successive advances in technology, important im-
provements in both the miniaturization and affordability of
autonomous vehicles have been made over the years, and
the availability of small, relatively cheap robots has naturally
sparked the interest of the community towards their use in
formations. In fact, there are many applications in which the
use of multiple autonomous vehicles in a cooperative manner
opens interesting opportunities. To name only a couple of
examples, formations of Autonomous Underwater Vehicles
(AUVs) can be used to perform oceanographic sampling
and minesweeping missions, see e.g. [6] and [8], while
the design of automated highway systems poses problems
closely related to formations, such as traffic flow control
and collision avoidance [4]. In this light, it comes as no
surprise that the topics of control and estimation in multi-
agent formations have seen many compelling approaches and
contributions, see e.g. [7] and [16].

As the number of vehicles in a formation increase, so
does the dimension and complexity of the problem, and the
implementation of centralized solutions might yield crip-
plingly high costs in both computational complexity and
communication loads in the formation. One way to cope with
this is to distribute the computations between all the agents
in the formation, preferably relying on locally available
information, that is, solve the problems in a decentralized
or distributed manner, see e.g. [2] and [13].

The problem addressed in this paper is the design of a
decentralized state observer for a formation of autonomous

This work was partially supported by Fundação para a Ciência e a
Tecnologia (FCT) under Project [ PEst-OE/EEI/LA0009/2011], by the
EU Project TRIDENT (Contract No. 248497), and by the FCT Project
PTDC/EEACRO/111197/2009 MAST/AM. The work of D. Viegas was
supported by the PhD Scholarship SFRH/BD/71486/2010 from FCT.

D. Viegas, P. Batista, P. Oliveira, and C. Silvestre are with
the Institute for Systems and Robotics, Instituto Superior Técnico,
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vehicles with time-varying topology. In the scenario envi-
sioned in this work, one or more vehicles have access to
absolute measurements, that is, measurements of their own
state, while the rest must rely on measurements relative to
other vehicles in the vicinity and limited communication with
those agents in order to estimate their state. The problem
is formulated as a classical state observer design problem,
with an added sparsity constraint on the output injection
gains to reflect the limited amount of information available
to each agent. As sensing and communication in formations
of vehicles can be unreliable in most practical cases, it
is assumed that the measurements available to the agents
can change over time, resulting in a time-varying formation
topology. To address this issue, a switched systems approach
is employed. The error dynamics of the decentralized state
observer are formulated as a switched linear system with
time-dependent switching to reflect successive alterations
in the structure of the formation, and sufficient conditions
for their exponential stability are derived for two different
switching laws. This framework is then particularized to
the practical case of a formation of AUVs. The behavior
and performance of this solution in the presence of mea-
surement noise is then assessed in simulation. The problem
of decentralized state estimation in formations with fixed
topologies was already addressed in previous work by the
authors in [14]. Nevertheless, it is summarized in Section II,
as it introduces the framework necessary to derive the results
presented in the remainder of the article.

The rest of the paper is organized as follows. Section II
describes the problem at hand and introduces the dynamics
of the proposed decentralized state observer, while Section
III studies its stability when the topology of the formation
changes over time. Section IV applies the framework de-
veloped in the preceding sections to the practical case of
position and velocity estimation in formations of AUVs, with
simulation results detailed in Section V. Finally, Section VI
summarizes the main conclusions of the paper.

A. Notation

Throughout the paper the symbol 0 denotes a matrix (or
vector) of zeros and I an identity matrix, both of appropriate
dimensions. Whenever relevant, the dimensions of an n× n
identity matrix are indicated as In. The Kronecker product
of two matrices A and B is denoted by A⊗B. For x ∈ R,
⌊x⌋ represents the largest integer not larger than x.

II. DECENTRALIZED STATE ESTIMATION WITH

FIXED FORMATION TOPOLOGY

Consider a formation composed by N autonomous vehi-
cles moving in a scenario, where each vehicle is identified by
a distinct positive integer i ∈ {1, 2, . . . , N}, and has access
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to a certain set of measurements and communication with
neighboring vehicles, which will be specified further ahead
in this section. The problem considered in this paper is the
design of a decentralized state observer that allows each
vehicle to estimate its state. The approach described here
consists in the implementation of a local state observer on-
board each vehicle. To achieve a truly decentralized structure,
those local state observers must be designed such that,
during operation, each vehicle only requires locally available
measurements and limited communication to estimate its
state. In most practical settings, it is hard or even impossible
to guarantee that the measurements available to each vehicle
remain the same during the whole time of operation, as
they may lose or gain measurements due to a diverse array
of factors, such as loss of connectivity between agents,
obstructions in line-of-sight, etc. In this section, the design
of a decentralized state observer is summarized for a fixed
formation topology. The stability of the decentralized state
observer when the structure of the formation varies over time
is then studied in Section III.

A. Dynamics of the vehicles and local observers

Suppose that the state xi(t) ∈ R
nL of vehicle i follows

ẋi(t) = ALxi(t) +BLui(t),

where ui(t) ∈ R
mL is the input of the system, and AL ∈

R
nL×nL and BL ∈ R

nL×mL are given constant matrices.
Regarding the available measurements, suppose that one

or more vehicles have access to measurements of their own
state, denoted as “absolute” measurements for convenience,
yielding the Linear Time-Invariant (LTI) system

{

ẋi(t) = ALxi(t) +BLui(t)
yi(t) = CLxi(t)

, (1)

where yi(t) ∈ R
oL is the output of the system, and CL ∈

R
oL×nL . It is assumed that the pair (AL,CL) is observable.
For the other vehicles, suppose that each one has access

to measurements of its state relative to Ni other vehicles in
the vicinity, yielding the dynamic system

{

ẋi(t) = ALxi(t) +BLui(t)
yi(t) = Ci∆xi(t)

, (2)

in which yi(t) ∈ R
oL×Ni , Ci = INi

⊗CL, and

∆xi(t) :=







xi(t)− xθi,1(t)
...

xi(t)− xθi,Ni
(t)






∈ R

nLNi , θi,j ∈ Θi,

where

Θi :={θi,1, θi,2, . . . , θi,Ni
| θi,j ∈ {1, . . . , N}, j=1, . . . , Ni}

is the set of other vehicles corresponding to the relative
measurements available to vehicle i. Furthermore, assume
that vehicle i can exchange data with those vehicles through
communication. In particular, assume that those vehicles
send updated state estimates to vehicle i.

For the vehicles which have access to absolute mea-
surements, since the pair (AL,CL) is observable, it is
straightforward to design a local state observer with globally
asymptotically stable error dynamics for the LTI system (1),
see [1]. For vehicle i, its dynamics follow

{

˙̂xi(t) = ALx̂i(t) +BLui(t) + Li(yi(t)− ŷi(t))
ŷi(t) = CLx̂i(t)

,

(3)

where x̂i(t) ∈ R
nL is the state estimate, and Li ∈ R

nL×oL

is a constant matrix of observer gains, to be computed.

Regarding the vehicles which have access to relative
measurements, the design process is slightly different. First,
note that, since vehicle i receives state estimates from the
other vehicles corresponding to its relative measurements, it
can build an estimate of ∆xi(t),

∆x̂i(t) :=







x̂i(t)− x̂θi,1(t)
...

x̂i(t)− x̂θi,Ni
(t)






∈ R

nLNi , θi,j ∈ Θi.

Thus, the following local observer structure for the system
(2) follows naturally:

{

˙̂xi(t) = ALx̂i(t) +BLui(t) + Li(yi(t)− ŷi(t))
ŷi(t) = Ci∆x̂i(t)

,

(4)
with Li ∈ R

nL×oLNi .

B. Global estimation error dynamics

For analysis purposes, all the local state observers can be
taken as a whole, resulting in a decentralized state observer
for the formation, as the local state observer of each vehicle
relies only on locally available measurements and limited
communication to estimate its state. To study the stability
properties of such a decentralized state observer, it is neces-
sary to consider the error dynamics of the whole formation.
To do so, it is convenient to introduce some concepts of
graph theory, see e.g. [15], as vehicle formations such as the
one considered in this paper can be compactly described by
a directed graph. A directed graph, or digraph, G := (V, E)
is composed by a set V of vertices together with a set of
directed edges E , which are ordered pairs of vertices. Such
an edge can be expressed as e = (a, b), meaning that edge e
is incident on vertices a and b, directed towards b. Now,
consider the vehicle formation described in the previous
section. This kind of formation can be associated with a
directed graph G = (V, E), where each vertex represents a
distinct vehicle, and an edge (a, b) means that vehicle b has
access to a measurement relative to vehicle a, and also to
its state estimate. To represent the absolute measurements
available to some of the vehicles, define a special set of
edges of the form (0, i), connected to only one vertex,
which represents the absolute state measurement available to
vehicle i. Fig. 1 depicts a few examples of such formation
graphs. For a graph G with nv vertices and ne edges, the
entries of its incidence matrix SG ∈ R

nv×ne follow

[SG ]jk=







1, edge k incident on j, directed towards it,
−1, edge k incident on j, directed away from it,
0, edge k not incident on j.

The global dynamics of the formation can be represented
by the LTI system

{

ẋ(t) = Agx(t) +Bgu(t)
y(t) = Cgx(t)

, (5)

where x(t) :=
[

xT
1 (t) . . . xT

N (t)
]T

∈ R
nLN is the state

of the whole formation, y(t) :=
[

yT
1 (t) . . . yT

N (t)
]T

∈
R

oLO the output of the system, O being the total number
of measurements in the whole formation, and u(t) :=
[

uT
1 (t) . . . uT

N (t)
]T

∈ R
mLN is the input of the system.
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The matrices Ag , Bg , and Cg are built from the dynamics
of the individual agents, following







Ag = IN ⊗AL

Bg = IN ⊗BL

Cg = ST
G ⊗CL

.

The local state observers can also be grouped in a similar
way, yielding

{

˙̂x(t) := Agx̂(t) +Bgu(t) + L(y(t)− ŷ(t))
ŷ(t) := Cgx̂(t)

, (6)

where x̂(t) :=
[

x̂T
1 (t) x̂T

2 (t) . . . x̂T
N (t)

]T
∈ R

nLN is
the global state estimate of the decentralized state observer,
and L ∈ R

nLN×oLO is the matrix of observer gains. To
account for the fact that each local observer only has access
to some measurements, L must follow a special structure, or
sparsity constraint. More specifically, define an augmented
incidence matrix, S′

G = SG ⊗ 1nL,oL ∈ R
nLN×oLO, where

1n,m is a n × m matrix whose entries are all equal to 1.
Then, the individual entries of L follow
{

[S
′

G ]jk = 1 ⇒ Ljk can be set to an arbitrary value

[S
′

G ]jk 6= 1 ⇒ Ljk = 0.
(7)

The global error of the decentralized state observer (6),
x̃(t) ∈ R

nLN , is defined as x̃(t) = x(t) − x̂(t). Taking its
time derivative and using (5) and (6) yields

˙̃x(t) = (Ag − LCg)x̃(t).

To stabilize the error dynamics of the decentralized state
observer, one must find L subject to the sparsity constraint
(7) such that the matrix (Ag − LCg) is Hurwitz. This
problem was addressed by the authors in [14] and will not
be elaborated on here.

III. DECENTRALIZED STATE ESTIMATION WITH

TIME-VARYING FORMATION TOPOLOGY

This section extends the decentralized state observer pre-
sented in the previous section to the case where the topology
of the formation changes over time. The changes in topology
considered here consist in the gain or loss of measure-
ments and communication between agents, which can be
represented by the addition or removal of edges from the
formation graph. When faced with changes in the formation,
the local observers must adapt to the new topology as, in
general, observer gains computed for a given structure may
result in unstable error dynamics when applied to a different
formation topology. Thus, to extend the decentralized state
observer to the time-varying formation case, three problems
must be addressed:

1) When a change is detected in the formation, the
vehicles have to determine the new formation structure,
and then select and apply new, suitable observer gains.

2) A strategy must be chosen for the local observers to
cope with the changes in the formation until the new
topology is computed and suitable gains are applied.

3) The error dynamics will alternate between periods of
guaranteed stability (when the local observers are all
operating with suitable gains) and potential instability
(after a change in the formation, while the vehicles
are adapting to the new topology). The stability of the
whole process over time must be ensured.

A. Selection of new observer gains

To determine the new formation topology in a decentral-
ized fashion, the vehicle(s) that lose or gain measurements
could spread a warning message through the formation,
which could then trigger the synchronous execution of an
algorithm such as the one detailed in Table I in each vehicle.
Defining graph distance between two vertices as the number
of edges in the shortest undirected path between those two
vertices, the number of iterations of the algorithm in Table
I is bounded as follows:

Lemma 1: Suppose that the algorithm in Table I is started
synchronously in each vehicle and that the formation graph
is weakly connected. Then, the number of iterations of the
algorithm in any vehicle of the formation is, at most, equal
to dG+1, where dG is the maximum graph distance between
two vertices of the formation graph.
The proof is omitted due to space constraints. However, note
that, due to the way the problem was initially formulated,
weak connectivity of the formation’s measurement graph
implies strong connectivity of the communication graph.

TABLE I

ALGORITHM FOR FORMATION GRAPH DETERMINATION, FOR VEHICLE i

1) Initialization: create a table to store the edges, Ei,
and initialize it with the currently known edges, that
is, the measurements available to the vehicle. Create
a control vector vi ∈ R

N , and set it to zero except
for the i-th component, which is set to 1.

2) Send Ei and vi to neighboring agents (the ones to
which communication is available) and receive the
same from them.

3) Compare Ei with its counterparts received through
communication, and add any previously unknown
edges. For each nonzero component in each received
vj , set the corresponding component in vi to 1.

4) If all components of vi are equal to 1, and if no
changes were made to vi and Ei in this iteration,
stop the algorithm. Otherwise, go to 2).

After the formation graph is determined, the vehicles must
select and apply suitable observer gains. As the gains for a
given formation structure can be computed beforehand [14],
one way to do this would be to store a database of observer
gains for a large number of possible formations on-board
each vehicle. Since the local observer gains are constant
matrices of relatively low dimension, nowadays it is perfectly
feasible to store hundreds or even thousands of precomputed
observer gains in each vehicle. However, if the new formation
graph is not found in the database, the agent can look for a
subgraph of it, and apply the corresponding observer gains.

B. Behavior during transition periods

Regarding the second problem, i.e. the strategy followed
when gaining or losing measurements, several approaches
can be envisioned. The one followed in the simulations in
Section V, is for the vehicle to propagate the dynamics
in open loop if measurements were lost, but to keep the
old gains temporarily when it obtains new measurements.
This strategy has the advantage that the transition periods
when new measurements appear in the formation will still
be stable, limiting the instability periods to the cases where
one or more vehicles lose measurements.
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C. Error dynamics as a switched system

If the decentralized state observer operates according to
what was discussed in the preceding subsections, its error
dynamics can be represented in the following manner: start-
ing at time instant t0, the formation graph is G1 = (V1, E1),
and the error dynamics follow ˙̃x(t) = Λ1x̃(t), with Λ1

Hurwitz. Now, suppose that at t = t1 there is a change in the
formation topology and assume that, after some time interval
no longer than a known constant τu, the vehicles are able
to determine the new formation graph and synchronously
apply suitable observer gains. During that time, the error
dynamics of the decentralized state observer will follow
˙̃x(t) = Λ2x̃(t), where Λ2 depends on the strategy adopted
by the vehicles when losing or gaining measurements, and is
possibly unstable. Then, at t = t2, the new observer gains are
applied, and the decentralized state observer has stable error
dynamics ˙̃x(t) = Λ3x̃(t). Now, suppose that these changes
in formation topology continue to happen over time, and
the error dynamics alternate sequentially between periods of
stability and instability. This scenario can be represented by
the linear switched system [10][11]

ẋ(t) = Aσ(t)x(t), (8)

where x(t) ∈ R
n is the state, σ(t) : [t0,∞[→ NP =

{1, 2, . . . , P} is a piecewise constant switching signal, and
Aσ takes values in a family of n× n matrices, A := {Ap :
p ∈ NP }. With no loss of generality, assume that Ap is
stable for 1 ≤ p ≤ q, and unstable for q < p ≤ P .
Then, there exist scalars a1 > 0, a2 > 0, . . . , aP > 0 and
λ1 > 0, λ2 > 0, . . . , λP > 0 such that

{

‖eApt‖ ≤ eap−λpt, 1 ≤ p ≤ q
‖eApt‖ ≤ eap+λpt, q < p ≤ P

. (9)

Denote the switching times by t1, t2, t3, . . . Then, to reflect
the dynamics of the problem at hand, the switching signal
satisfies the following assumption:

Assumption 1: For t2j−2 ≤ t < t2j−1, j ∈ N, the
switching signal follows 1 ≤ σ(t) ≤ q. For t2j−1 ≤ t <
t2j , j ∈ N, the switching signal follows q < σ(t) ≤ P .
Furthermore, there exists τu > 0 such that (t2j−t2j−1) ≤ τu
for all j ∈ N.

This assumption encodes the sequential switching be-
tween stable and unstable estimation error dynamics into the
switching signal, and sets an upper bound τu on the duration
of the instability periods.

D. Stability of the switched system

Concerning the duration of the stable periods, two dif-
ferent cases are considered. In the first one, the minimum
activation time of the stable subsystems is bounded below
by a constant:

Assumption 2: For all j ∈ N, (t2j−1 − t2j−2) ≥ τs, for
some τs > 0.
This assumption simply states that the stable periods must
last for at least τs. The second case, inspired by the results
in [17], adapts the concept of average dwell time introduced
in [9] to the scenario considered in this paper:

Assumption 3: Let Nu
σ (t0, t) denote the number of

switchings to unstable subsystems in the interval ]t0, t]. Then,
the switching signal σ(t) follows

Nu
σ (t0, t) ≤ N0 +

t− t0
τa

, ∀t ≥ t0,

for some constants N0, τa > 0.
This assumption states that, on average, the time interval
between two consecutive switchings to unstable configura-
tions will be no less than τa, and the chatter bound N0 is
included to account for an eventual limited number of faster
switchings. If Assumption 1 is also verified, it follows that
the duration of each successive “stable/unstable” pair will
be, on average, no less than τa.

The following result presents a sufficient condition for the
stability of (8) for the first case.

Theorem 1: Consider the linear switched system (8), as-
sume that the switching signal σ(t) verifies Assumptions 1
and 2, and let

α∗ := sup
1 ≤ k ≤ q
q < l ≤ P

{ak − λkτs + al + λlτu}.

If α∗ < 0, then the state x(t) of (8) follows

‖x(t)‖ ≤ ea−λ(t−t0)‖x(t0)‖, ∀t ≥ t0,

for some a > 0 and any 0 < λ ≤ λ∗, where λ∗ := − α∗

τs+τu
.

Proof: Let v ∈ NP , w ∈ NP , tv ∈ R, and tw ∈ R,
and assume that 1 ≤ v ≤ q, q < w ≤ P , tv ≥ τs, and
tw ≤ τu. Then, it follows from the definition of λ∗ that, for
any 0 < λ ≤ λ∗,

eaw+λwtw+av−λvtv ≤ e−λ(tw+tv). (10)

Let pl denote the value of σ(t) between tl and tl+1. Then,
for any j > 0 and any t such that tj ≤ t ≤ tj+1, the state
of the system (8) follows

x(t) = eApj
(t−tj)eApj−1

(tj−tj−1) . . . eAp0
(t1−t0)

x(t0),

and its norm verifies the inequality

‖x(t)‖ ≤ ‖eApj
(t−tj)‖

j
∏

l=1

(

‖eApl−1
(tl−tl−1)‖

)

‖x(t0)‖.

(11)

Now, suppose that at time t the system (8) is in an unstable
configuration, and let j∗ = ⌊j/2⌋. Then, using (9) and (10)
in (11) yields

‖x(t)‖ ≤ e−λ(t−tj−1)

j∗
∏

l=1

(

e−λ(t2l−t2l−2)
)

‖x(t0)‖

≤ e−λ(t−t0)‖x(t0)‖.

On the other hand, if at time t the system (8) is in a stable
configuration, using the same reasoning it follows that

‖x(t)‖ ≤ eaj−λ(t−t0)‖x(t0)‖,

thus concluding the proof.
The following result presents a sufficient condition for the

stability of (8) for the second case.
Theorem 2: Consider the switched linear system (8), as-

sume that the switching signal σ(t) verifies Assumptions 1
and 3, and let

α∗
a := as + au + λsτu + λuτu − λsτa,

where

as = sup
1≤k≤q

{ak}, au = sup
q<k≤P

{ak},

λs = inf
1≤k≤q

{λk}, and λu = sup
q<k≤P

{λk}.
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Then, if α∗
a < 0, the state x(t) of (8) follows

‖x(t)‖ ≤ ea−λ(t−t0)‖x(t0)‖, ∀t ≥ t0,

for some a > 0 and any 0 < λ ≤ λ∗
a, where λ∗

a := −
α∗

a

τa
.

The proof, which follows a similar method to the proof
for Theorem 1, is omitted due to lack of space.

IV. DECENTRALIZED LINEAR POSITION AND VELOCITY

ESTIMATION IN A FORMATION OF AUVS

This section details an application of the results introduced
in the previous sections to a practical case: decentralized
position and velocity estimation in a formation of AUVs.
Consider a formation composed by N AUVs, and suppose
that each has sensors mounted on-board which give access
to either measurements of its own position in an inertial
reference coordinate frame {I}, or measurements of its
position relative to one or more AUVs in the vicinity.
Furthermore, each of those vehicles transmits an estimate
of its own inertial position to AUV i. In underwater ap-
plications, the relative measurements can be provided by
an Ultra-short Baseline (USBL) positioning system in an
inverted configuration [12]. The inertial measurements can
be provided, e.g., by a Long Baseline (LBL), or by an USBL
positioning system.

Let {Bi} denote a coordinate frame attached to AUV i,
denominated in the sequel as the body-fixed coordinate frame
associated with the i-th AUV. The linear motion of AUV i
can be modeled by the dynamic system











ṗi(t) = Ri(t)vi(t)
v̇i(t) = −S(ωi(t))vi(t) + gi(t) + ai(t)
ġi(t) = −S(ωi(t))gi(t)
yi(t) = pi(t)

.

where pi(t) ∈ R
3 is the inertial position of the vehicle,

vi(t) ∈ R
3 denotes its velocity relative to {I}, expressed in

body-fixed coordinates of the i-th AUV, Ri(t) ∈ SO(3) is
the rotation matrix from {Bi} to {I}, ωi(t) ∈ R

3 is the an-
gular velocity of {Bi}, expressed in body-fixed coordinates
of the i-th AUV, and S(ω) is the skew-symmetric matrix such
that S(ω)x is the cross product ω×x. It is assumed that an
Attitude and Heading Reference System (AHRS) installed
on-board each AUV provides measurements of both Ri(t)
and ωi(t). It is also assumed that the AUV has access to
linear acceleration measurements, denoted by ai(t) ∈ R

3,
and gi(t) ∈ R

3 is the acceleration of gravity, expressed in
body-fixed coordinates of the i-th AUV. Even though the
acceleration of gravity is usually well-known, it is treated
as an unknown variable as small errors in the estimation
of the attitude of the vehicle may lead to significant errors
in the acceleration compensation. Using in each vehicle the
Lyapunov state transformation introduced in [3],





x1
i (t)

x2
i (t)

x3
i (t)



 :=





I 0 0
0 Ri(t) 0
0 0 Ri(t)









pi(t)
vi(t)
gi(t)



 , (12)

which preserves stability and observability properties [5], and
making ui(t) := Ri(t)ai(t), the system dynamics can be
written as the LTI system (1), with nL = 9, mL = 3, oL = 3,

AL =





0 I 0
0 0 I
0 0 0



 ∈ R
nL×nL , BL =





0
I
0



 ∈ R
nL×mL ,

1

4

32

5

1

4

32

5

1

4

32

5

G1: G2: G3:

Fig. 1. Formation graphs considered in the simulations

and CL =
[

I 0 0
]

∈ R
oL×nL .

Regarding the second case, i.e., when the AUV has access
to relative position measurements and receives position es-
timates from the corresponding vehicles, a similar represen-
tation can be achieved. The relative position measurements
available to AUV i are denoted by

∆pi(t) :=







pi(t)− pθi,1
(t)

...
pi(t)− pθi,Ni

(t)






∈ R

3Ni , θi,j ∈ Θi, (13)

where Θi is defined as in Section II. The position estimates
received through communication are denoted by p̂θi,j

(t) ∈

R
3. Taking the relative position measurements (13) as the

output and applying (12) yields the system (2), where AL

and BL are defined as in the previous case, and Ci =
INi

⊗ CL ∈ R
oLNi×nLNi . Following this, each AUV can

implement a local state estimator with dynamics (3) or (4),
depending on the available measurements. On the subject
of computing suitable output injection gains for each local
observer such that the global error dynamics are stable and
achieve a certain performance under measurement noise,
please refer to previous work by the authors in [14].

It is well known that sensing and communication in
underwater applications can be unreliable, and as such during
a mission some AUVs may lose or gain access to some
measurements and/or communication over time, which will
translate in changes in the formation graph. Besides that,
the geometric configuration of the formation might change
dynamically yielding a new set of measurements, that is,
a different formation topology. Assuming that, when one
of these events occur, the AUVs are able to determine the
new formation graph and synchronously apply new, suitable
observer gains after a period of time no longer than τu,
application of the results derived in Section III allow to
guarantee stability of the global error dynamics when the
formation graph changes over time.

V. SIMULATION RESULTS

This section details the results of simulations that were
carried out to assess the performance of the proposed solution
in the presence of noise in the measurements. A formation
of 5 AUVs was considered, and its topology switches be-
tween the three different formation graphs depicted in Fig.
1. Observer gains such that the resulting error dynamics
are globally asymptotically stable were computed for each
formation graph. As for the strategy that the AUVs apply
to cope with the gain or loss of measurements during the
transitions between stable configurations, when an AUV
loses access to one or more measurements, it sets its observer
gains to zero temporarily. When gaining new measurements,
the local observer will maintain the previous observer gains
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Fig. 2. Total estimation error in the formation, with noise in the
measurements
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Fig. 3. Detailed view of the total estimation error in the formation, with
noise in the measurements

until the end of the transition time. The duration of the
stable configurations were computed by sampling a normal
distribution with an expected value of ts = 75 s and a
standard deviation of σs = 15 s, while the duration of
the unstable transition periods follow a normal distribution
with tu = 15 s and σu = 1 s. The local observers were
implemented in the body-fixed coordinate space of each
AUV, by reversing the Lyapunov state transformation (12).
For more details on this process, see [14]. Regarding the
noise in the measurements, the linear acceleration and posi-
tion measurements were corrupted by additive, uncorrelated,
zero-mean white Gaussian noise, with standard deviations
of 0.01 (m/s2) and 0.1 m, respectively. In addition to
the noise in the position and acceleration measurements,
noise was also simulated in the attitude and angular velocity
measurements required for the implementation of the local
state observers in the original coordinated space, as provided
by an AHRS. The angular velocity measurements were
corrupted by zero-mean uncorrelated white Gaussian noise,
with standard deviation of 0.05 (°/s). The attitude is usually
parametrized by roll, pitch, and yaw Euler angles, and as
such noise in the attitude measurements was simulated by
adding zero-mean, uncorrelated white Gaussian perturbations
to the roll, pitch, and yaw, with standard deviation of 0.03°
for the roll and pitch, and 0.3° for the yaw.

The results are depicted in Figs. 2 and 3. Figure 2 depicts
the evolution of the total estimation error of the decentralized
state observer over time, that is, the sum of the modulus of all
estimation error variables in the formation, and Fig. 3 shows
a detailed view of the total estimation error after the large
transient caused by the mismatch in initial conditions has
settled. As it can be seen, during the unstable periods the total
estimation error grows in a significant manner, while during
the stable period it converges to the vicinity of zero (it does

not converge to zero only due to noise in the measurements).
The results reflect what was discussed in the previous section
and, more generally, the behavior of linear systems subject
to time-dependent switching: stability is maintained as long
as the system dwells on stable configurations for a sufficient
amount of time.

VI. CONCLUSIONS

This paper addressed the problem of decentralized state es-
timation in formations of vehicles with time-varying topolo-
gies. The proposed solution relies on the implementation of
a local state observer on-board each vehicle, based only on
local sensing capabilities and limited communication with
neighboring vehicles, to estimate its state. The effects of
changes in the formation topology over time were studied re-
sorting to switched systems theory, and sufficient conditions
for global exponential stability of the global estimation error
dynamics were presented for two different switching laws.
The results were particularized for the case of a formation of
AUVs, and simulation results were presented that illustrate
the performance of the proposed solution in the presence of
measurement noise.
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