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Abstract—This paper focuses on control of a Darrieus vertical
axis wind turbine prototype. Throughout this work a control
strategy is proposed and a methodology is presented in order
to achieve a solid foundation for the control process. A non
linear dynamic model of the Darrieus prototype equipped with
a permanent magnet synchronous generator was developed.
The model was linearized and some controllers are developed,
namely a PID controller and a Linear Quadratic Regulator. The
controllers were tested in the linear and non linear models.

I. INTRODUCTION

Most wind power generation systems consist in Horizontal

Axis Wind Turbines (HAWT). A solution to generate energy

from wind closer to the consumer and to increase the wind

power usage is the Vertical Axis Wind Turbine (VAWT). In

comparison to HAWT, most VAWT models have the following

advantages [6]: performance is independent from wind direc-

tion, thus not requiring any special mechanisms for yawing

into wind; VAWT have the ability to generate energy from

wind skewed flows; smaller number of components; low sound

emission; blades can be manufactured by mass production

extrusion, since they are often untwisted and of constant chord;

ability to operate closer to the ground and, for large dimensions

VAWT, the generator is usually installed on the base, which

makes maintenance simpler and cheaper.

This works presents a structured method to elaborate linear

and non linear models for the main subsystems and how to

interpret their interaction. Furthermore, the controllers of the

controlled system are derived and simulated.

II. VAWT DYNAMIC MODELING

A. Turbine

The available kinetic energy stored in the wind is calculated

taking into account the assumption that all particles presented

in the wind are moving at constant speed and direction.

The aerodynamic torque Ta is given by:

Ta = ρr2HCp(λ)ν
2 1

λ
(1)

where, ρ is the air density, r and H are the turbine radius

and middle height, Cp is the power coefficient, λ is the Tip

Speed Ratio (TSR), ν the wind speed.

The TSR represents the interaction between the rotor and

the wind flow. For HAWT it is defined by the quotient between

the tangential linear speed of the rotor at the tip of the blade

and the wind speed, that is perpendicular to the swept area of

the blades. For the VAWT it is more complicated since there

are two tips of the blade and depending on their design the

tips can be closer or farther to the rotating axis. Since for the

turbine considered the tips are closer to the rotating axis than

the middle section of the blade, the TSR will be calculated at

middle height of the turbine.

Previous studies have achieved a theoretical relation be-

tween Cp and λ. Fig.1 shows both theoretical an experimental

data [2].
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Fig. 1. Cp in function of the TSR (λ).

This experiment was performed with a uniform wind speed

of 12 m/s. Using the fitted curve that describes the behavior

of Cp in function of the TSR, the aerodynamic torque Ta is

given by:

Ta = ρrH(−0.007365λ2 + 0.1015λ

+ 0.002052) ν3 ω−1 (2)

where ω is the rotor angular speed.

Linearizing the aerodynamic torque due to the wind impact

on the turbine blades, as a Taylor series yields:

Ta(ν, ω) ≈ Ta + a δν + b δω (3)

where Ta is the nominal aerodynamic torque, δν is the wind

speed variation and δω is the rotor angular speed variation.

Hence, δν = ν − ν, δω = ω− ω and a and b are given by:

a =
∂Ta

∂ν

∣∣∣∣
opt

and b =
∂Ta

∂ω

∣∣∣∣
opt

(4)
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B. Generator

The electrical model of the Permanent Magnet Synchronous

Generator (PMSG) in the synchronous reference frame was

presented in [8]- [9]. Considering the simplification regarding

inductances (Ld = Lq), the electromagnetic torque is given

by:

Tem = 1.5npλoiq (5)

Some tests performed on the PMSG with an auxiliary motor

were developed in order to obtain a relation between the

generator behavior regarding the angular speed of the rotor.

Two of those tests were performed with the generator in open

and short circuit.

The PMSG functions for open circuit voltage and short

circuit current are given by:

U(ω) = 0.2841 ω + 0.2193 (V ) (6)

I(ω) = 0.0089 ω − 0.0004 (A) (7)

For all situations, applying a referential transform to the

variables in study in module, corresponds to a positive gain.

Therefore we have that:

uq = 1.5

√
2

3
U and iq = 1.5

√
2

3
I (8)

For the following steps iqref = 0 and uqref = 0, however

regarding the dynamics of the generator, for transient situations

this will not be true due to (10).

Using (6) and (7), the state space representation variables

can be replaced by direct relations to the angular speed of the

turbine. The modified state space is given by:

diq
dt

= −R

L
1.5

√
2

3
(0.0089 ω − 0.0004)− np ω

λo

L

− np ω id +
1

L
1.5

√
2

3
(0.2841 ω + 0.2193) (9)

did
dt

= np ω iq (10)

In order to apply a control strategy that uses as actuation a

variable circuit resistance, it is required to achieve the relation

between this actuation Rc in the abc (physical) referential to

the corresponding to a dq0 referential, in order to relate circuit

resistance Rc to the current iq . Knowing that, for a closed

circuit with resistive loads R is given by:

R = Ra +Rc (11)

where Ra is the sum of the PMSG coil resistances, Rc is the

circuit imposed load resistance in the dq0 referential, that will

be the variable to control. Linearizing (9) and (10) around a

generic operating point, the linearized equations are given by:

˙δiq ≈ c δRc + d δω + g δid (12)

˙δid ≈ j δω + k δiq (13)

where ˙δiq = i̇q − i̇q , ˙δid = i̇d − i̇d, δRc = Rc −Rc and c,
d, g,j and k are given by:

c =
∂i̇q
∂Rc

∣∣∣∣
opt

and d =
∂i̇q
∂ω

∣∣∣∣
opt

(14)

g =
∂i̇q
∂id

∣∣∣∣
opt

and j =
∂i̇d
∂ω

∣∣∣∣
opt

(15)

k =
∂i̇d
∂iq

∣∣∣∣
opt

and e =
∂Tem

∂iq

∣∣∣∣
opt

(16)

Linearizing around an operating point (opt), the electro-

magnetic torque expressed in equation (5) is given by:

Tem ≈ Tem + e δiq (17)

where δiq = iq − iq .

C. Drive-Train

To calculate the applied aerodynamic torque, it is required

to make several assumptions to account for the motion of the

drive-train. The rotor is assumed to act as a rigid body and

therefore, to have the same acceleration over the entire axis

of rotation. Aerodynamic effects are integrated over the length

of the blade and added up for all the blades.

Applying the rotational version of Newtons second law,

adding moments about the vertical axis, a general equation

is given by:

Jtθ̈ = Jtω̇ = Ta − Tem − βω (18)

where, Jt is the total inertial moment of the VAWT, Ta is

the aerodynamic torque, Tem is the measured torque on the

generator and β is the damping coefficient.

For the configuration in hand, the axle has a small distance

between supports and for the vertical position it is valid to look

down on vibrations of mechanical deformation of the axis due

to flexion and torsion originated by non uniform speed and

direction in wind flow.

For a better understanding of the system in order to lastly

apply a control strategy it is important to have a main equation,

which appears by merging (18) with the linearized quantities

of interest.

Using (3) and (17) in (18), and applying Laplace transform

to the linear relation between the variables of interest, (19) is

obtained.

s Δω(s) ≈ 1

Jt

(
Ta + a Δν(s) + b Δω(s)− Tem−

e Δiq(s)− βΔω(s)− βω

)
(19)

where a, b and e are given by:

a =
∂Ta

∂ν

∣∣∣∣
opt

and b =
∂Ta

∂ω

∣∣∣∣
opt

(20)
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e =
∂Tem

∂iq

∣∣∣∣
opt

= 1.5 np λo (21)

Considering Tem = Ta − β ω and β = 0 the following

simplification is obtained:

δω̇ ≈ 1

Jt

(
a δν + b δω − e δiq

)
(22)

In this work, studies regarding the damping coefficient are not

performed, the damping coefficient represents the linearized

aerodynamic damping effects plus the mechanical damping

present in the drive train and in the PMSG.

III. CONTROL ANALYSIS

The main objectives of the control strategy implementation

will be the achievement of the nominal power generated. When

the nominal power is achieved the objective shifts to a new

goal that is maintaining the generated power. For instance,

when at nominal power generated, assuming wind speed in-

crease, it is required to reduce Cp in order to negatively affect

the turbines efficiency and therefore cancel the corresponding

increment in power. Hence, from (18) it is possible to create

a schematic model that describes the interaction between

the different subsystems that compose the wind turbine. The

closed loop model with the controller is shown in Fig. 2 where

it is direct that the control variable used is δRc.

Fig. 2. Linear model scheme with controller.

A. Frequency Analysis

1) Second-Order Model: A simplified set of equations

describing the TF between both inputs and the output is given

by:

TF12 =
Δω(s)

Δν(s)
=

a s

Jt s2 − b s+ e d
(23)

TF22 =
Δω(s)

ΔRc(s)
=

−e c

Jt s2 − b s+ e d
(24)

The control strategy analysis and simulations are derived

from (23) and (24). The output power is given by:

Pout = 1.5npλoiqω −Riq
2 (25)

Where R is given by (11). Linearizing (25), the output

power is given by:

Pout ≈ 1.5npλoiqΔω + (1.5λoω − 2Riq)Δiq + Pout (26)

To study the stability a Root Locus analysis is performed.

To characterize the frequency response a Bode analysis is

presented.

For the second order model assuming that the damping

coefficient is negletable (β ≈ 0), TF22 (24) is given by:

TF22 =
Δ ω(s)

ΔRc(s)
=

868.9

s2 + 1.1507× 10−3s− 0.4
(27)

By the Root Locus analysis it is clear that the system is

marginally stable, that is, for K = 0 it is unstable, however

for K > 0.00046 the system becomes stable. Therefore it is

required to use a controller that has a gain higher than 0.00046.

IV. STATE SPACE ANALYSIS

The state variables chosen are δω and δiq , since they

represent the energy of the system in study. Using the state

vector x =
[
δω δiq

]T
and the ouput vector y =

[
δω

]
, it

is possible to infer that the state space representative of the

system is given by:{
ẋ(t) = Ax(t) +B u(t) +E δν(t)

ẏ(t) = Cx(t) +Du(t)
(28)

where δν is the disturbance and u = δRc.

A. Second-Order Model

For the second-order model the parameters A, B, C and

E are given by:

A =

[
b J−1 −e J−1

d 0

]
, B =

[
0

c

]
(29)

C =
[
1 0

]
, D =

[
0
]
, E =

[
a J−1

0

]
(30)

1) System Characterization: With the view to characterize

the system in hand, it is required to analyze its controllability,

observability and stability.

Controllability
The state controllability matrix is given by:

Cs =

[
0 a J−1 −e c J−1 b a J−2

c 0 0 d a J−1

]
(31)

From this analysis, it can be stated that the system is

completely state controllable (for nonzero parameters) since

the vectors B,AB, ...,An−1B are linearly independent

which is the same that having the controllability matrix of

rank = n = 2.

Observability
The state observability matrix is given by:
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O =

[
1 0 −b J−1 d

0 1 −e J−1 0

]
(32)

For the observability the rank of the matrix is 2. Hence, the

system is completely observable.

Stability
Regarding stability of the system, by resorting to the Lya-

punov 2nd method for linear systems in order for the system

to be asymptotically stable it is a necessary and sufficient

condition that for a given hermitian positive defined matrix

Q, exist a hermitian positive defined matrix P such that the

following relation is proved:

A∗P+PA = −Q (33)

where A∗ is the conjugate transpose of A. Since for the

imposed conditions there is no matrix P that for any Q
positive defined is positive defined as well, stability cannot

be proved by now. However, this will be the subject of future

work.

B. PID Controller Design

The loop was closed and a PID(s) controller was imple-

mented after a fine tune. For the controlled system, the desired

characteristics of the time response were, Mp (maximum

overshoot) ≤ 0.2 and ts[2%] (settling time) ≤ 10s. From (19)

the following block diagram describing the controlled system

developed, is shown in Figure 3.

CONTROLLER

∆ω(s)ref =0 ∆ω(s) ∆Rc(s)

∆ν(s)

∆ω(s)

∆ω(s)

-+ TF2

TF1

++

Fig. 3. Controlled system block diagram.

The controller specifications chosen are given by:

P = 0.0084, I = 0.0033, D = 0.0047, N = 67.64
(34)

The global TF of the proposed Model for the closed control

loop is given by:

CL =
TF22 G(s)

1 + TF22 G(s)
(35)

CL =
283.51 s (s+ 67.64) (s+ 1.163)

s (s+ 67.64) (s+ 63.28) (s− 0.633) (s+ 0.5986)
...

...
(s+ 0.5986) (s+ 0.6319) (s2 + 3.76s+ 5.119)

(s+ 0.6319) (s2 + 3.76s+ 5.119)
(36)

Some mathematical models will have infinite gain/phase

margins. No real-physical system has infinite margins but this
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Fig. 4. PID controlled system analysis: (Second-Order Model).

will be an indication that the real-physical system has large

margins. Infinite gain margin implies that a stable system is

inherently stable for higher gains.
The Root Locus and Bode analysis is performed and shown

in Figure 4.

C. LQR Controller Design in Continuous Time-Infinite Hori-
zon

In order to design an optimal control solution the problem

is solved for infinite time, being therefore a sub-optimal

controller. For that achievement it is required to define some

steps.
1) Control law: The control law is given by:

u = −K x (37)

2) Performance index: The performance index is given by:

J =

∫ tf

t0

[xT (t)Qx(t) + uT (t)Ru(t)]dt (38)

3) Weight matrices definition: For the state space matrices

the values are tuned by performing several experiments simu-

lating the model. Since R is related to the cost of energy,

a higher R corresponds to a smaller gain, minimizing the

energetic cost of the actuation. Q is related to how well do

we want a state to follow a reference by minimizing the mean

state error between the reference itself and the actual state.

The weight matrices selected were tuned for each model.
4) Second-Order Model: The Q and R matrix for the

second order model are given by:

Q =

[
5 0

0 1

]
and R = [1] (39)

5) Riccati’s algebric equation - Obtaining K: The Riccati’s

algebric equation is given by:

ATP+PA−PBR−1BT +Q= 0 (40)

where, K is given by:

K = R−1BTP (41)

Solving the previous equations, the following gains are

determined for each model.
6) Second-Order Model: The LQR controller gains for the

second order model are given by:

K =
[
2.24 −1.54

]
(42)
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V. CONTROL SOLUTION PERFORMANCE

In this section the simplified model is used and simulated

to have a grasp on the control strategy intended to implement.

Although it is a model with reduced complexity since it does

not include the dynamics associated with δid, the expected

behavior is similar and therefore of interest. After executing

the process required to obtain the LQR controller, it is possible

to study the systems behavior, performing a comparison to

the system controlled by the PID controller, with the tuned

specifications. The Figures presented in the following subsec-

tions display behaviors of both controllers previously studied,

that is, the PID and the LQR controllers. The simultaneous

display intends to ease the observation of the main differences

between both controllers. Wind speed is considered at its

nominal value, 6 m/s. For all simulations, the output variable

is δω (angular speed variation) and the control signal is

δRc (circuit resistance variation). The wind perturbation is

expressed as δν = 4m/s at t = 10s. For the power coefficient

variation analysis it is clear that the immediate wind speed

increase is followed by a instant reduction of TSR resulting

in a power loss and therefore a smaller power coefficient Cp.

Such reduction in the TSR can only be contradicted by an

increase of angular speed, which occurs by regulating the

circuit resistance, which affects the passing current that affects

the electromagnetic torque resulting in a change of angular

speed.

The integration method used for solving the state equations

of the system is Runge-Kutta of 4th order of integration.

This method allows integration time steps of low amplitude,

allowing for high precision results. This method is simple

and robust and recognized has a good generic method for

integrating equations.

A. Linear Model

In this section the system is disturbed by an increase in wind

speed that takes the form of a step input. It is important to

notice that such disturbances are not observable in the wind

behavior, it either takes the form of a ramp or of a more

complex input. However for controller analysis purposes a step

is valid since it represents the most abrupt way a disturbance

can act on a system.

1) Second-Order Model: Since linearizing non linear equa-

tions produces linear equations for the variables perturbation,

the reference for the state variable δω to follow is given by:

δωref = ωopt(t)− ωopt(o) (43)

The simulation results of the angular speed variation and the

TSR variation with the wind speed increase are shown in

Figure 5.
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Fig. 5. Angular speed behavior and TSR variation - Linear Model.

Although the LQR controller does not present overshoot, the

settling time is considerably longer when compared to the PID

controller, but for the problem at hand does not present any

inconvenience. The simulation results of the circuit resistance

variation (input) and the iq variation with the wind speed

increase are shown in Figure 6.
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Fig. 6. Circuit resistance variation and Iq current behavior - Linear Model.

Although not clearly visible, after the wind speed increase

at t = 10s and the respective system time response, when at

steady state there are slight differences in δRc and iq shown

for the PID and LQR controller in Table I.

TABLE I
PID AND LQR CONTROLLER SYSTEM PARAMETERS VARIATION, δRc

AND iq , DUE TO WIND SPEED INCREASE

Wind regime t < 10 s t > 10 s

PID

δRc (Ω) 0 0

iq (A) 0.0169 0.039

LQR

δRc (Ω) 0 − 0.089

iq (A) 0.0169 0.039

2) Same Actuation range: In order to evaluate both con-

trollers, input variations were set to have approximately the

same range of actuation to understand how well the controller

is appropriate to cause the desired effect in the turbines angular

speed. The respective simulation results of the angular speed

variation and the circuit resistance variation with the wind

speed increase are shown in Figure 7.
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Fig. 7. Angular speed and Rc variation behavior - Linear Model.

B. Non-Linear Model
In this section a comparison between controllers in the non

linear models is shown only for the second order model. The

simulation results of the non linear model for the angular speed

variation and the TSR variation with the wind speed increase

are shown in Figure 8.
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Fig. 8. Angular speed behavior and TSR variation - Non Linear Model.

Here, it is clear that the LQR controller allows a better per-

formance of the system, showing less overshoot and a smaller

settling time. In the initial moments the PID controller takes a

few seconds to achieve the nominal value. The specifications

regarding maximum overshoot and settling time are achieved

for both controllers. It’s clear that the LQR controller in order

to have a better response requires higher variations of input

(δRc). The simulation results of the circuit resistance variation

(input) and the iq variation with the wind speed increase are

shown in Figure 9.
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Fig. 9. Circuit resistance variance and Iq current behavior - Non Linear
Model.

Although not clearly visible, after the wind speed increase

at t = 10s and the respective system time response, when at

steady state there are slight differences in δRc and iq shown

for the PID and LQR controller in Table II.

TABLE II
PID AND LQR CONTROLLER SYSTEM PARAMETERS VARIATION, δRc

AND iq , DUE TO WIND SPEED INCREASE

Wind regime t < 10 s t > 10 s

PID

δRc (Ω) −0.06 −0.0892

iq (A) 0.0169 0.0468

LQR

δRc (Ω) −0.06 − 0.0892

iq (A) 0.0169 0.0468

VI. CONCLUSION

A control strategy based on the imposed circuit resistance

is proposed for the linear model and simulated. Two con-

trollers are develloped, namely a PID controller and a Linear

Quadratic Regulator. The controllers were tested in the linear

and non linear models.
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