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This paper proposes an architecture based on a multiple-model solution for height and yaw control of 
a quadrotor transporting an unknown constant load, added before the flight. Estimates of the inertial 
parameters (mass and z-axis inertia) and state variables (vertical position, velocity, yaw angle and 
rate) are obtained using data from the onboard sensors. A Multiple-Model Adaptive Controller (MMAC) 
architecture is proposed. The control of each partial model is based on a steady state Linear Quadratic 
Regulator (LQR), using integrative action for the height control. The resulting system is validated with 
load variations of up to 10% of the vehicle mass, both in simulation and experimentally, resorting to an 
off-the-shelf commercially available quadrotor.
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1. Introduction

Nowadays, the popularity of Unmanned Aerial Vehicles (UAV) 
has been rising. There is a growing number of research projects, 
and military/commercial applications. There is also a rising usage 
of drones at the consumer level for transportation and delivery 
[1], inspection [2], surveillance/monitoring [3], racing, photogra-
phy, and filming. Examples of companies that are considering using 
drones for deliveries include UPS [4] and Amazon [5].

The main concern in transport and delivery applications, when 
designing the control system, is the nature of the load. Having to 
handle multiple different cargo, implies that there is high variation 
in the nature of the load. This presents a concern as it affects the 
performance of the control. Therefore, control and estimation solu-
tions that are robust to uncertain parameters are highly desirable.

Control solutions for quadrotors can be found in [6–14], to 
mention a few. [6] presents a method based on saturated feedback 
and backstepping control. [7] presents an integral predictive/non-
linear robust control structure. In [8], the control in robust landing 
and lift-off is studied, proposing a sliding-mode approach. The 
solutions proposed in these works are robust to persistent dis-
turbances, but do not approach the problem of parametric uncer-
tainty and state-estimation. Additionally, although robust methods 
can handle uncertainty, the resulting solutions tend to be over-
conservative. In [9] an integral backstepping sliding mode control 
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solution is proposed for handling external uncertain disturbances. 
In [10], a robust adaptive backstepping fast terminal sliding mode 
controller is presented for quadrotors with parametric uncertain-
ties and external disturbances. In [11], a fixed-time integral-type 
sliding mode controller is presented for quadrotor attitude sta-
bilization under actuator failures. Sliding mode control methods 
are appealing because of theirs robustness, but tend to produce 
much higher control activity than other controllers. A robust vi-
sual servoing switching-topology formation control solution for a 
team of quadrotors is presented in [12]. Using an external target 
provides important position information, but the resulting control 
becomes dependent on finding these references. Adaptive control 
is proposed in [13] for autonomous ship landing of multirotor 
UAVs. In [13], it is assumed that the quadrotor could communi-
cate with the ship to obtain data, while this paper aims to use the 
onboard sensors. A flatness-based finite-time leader–follower for-
mation controller is proposed in [14] for multiple quadrotors with 
external disturbances. In [14], the simplified model is obtained by 
assuming that part of its higher order dynamics are external dis-
turbances with unknown upper bounds.

Load transportation with quadrotors has been considered in, for 
example, in [15–18], where the case of suspended loads was stud-
ied. A Model Predictive Control (MPC) approach is proposed and 
compared with Linear Quadratic Regulator (LQR) control in [15]. 
This paper presented results showing better performance using 
the MPC approach, but stability and convergence are only shown 
through testing, without any formal proof. A solution for trajec-
tory generation and control based on the differentially flatness 
property of the system is presented in [16] with stability and con-
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vergence proofs. In [17], an adaptive solution for an unknown mass 
of the load is considered, relying on classical PID control. Adap-
tive fractional order sliding mode control is proposed in [18] for a 
quadrotor with a varying load.

A different approach for handling unknown parameters is 
Multiple-model methods. Multiple-model methods for piecewise 
constant unknown mass of quadrotors have been considered and 
tested in [19,20]. In [19], a preliminary study on a Multiple-Model 
Adaptive Estimator (MMAE) based solution using a bank of Inte-
grative Kalman Filters and LQR control with integrative action is 
presented. By using Kalman Filters with an integrative mechanism 
for gravitational force, it reduced the state-estimation error. In [20], 
an alternative Multiple-Model Adaptive Controller (MMAC) was 
proposed, providing multiple-model framework that included the 
control component. Exploratory MMAE estimation has also been 
considered for the z-axis inertia in [21].

The Extended Kalman Filter (EKF) [22] is a widely used method 
for handling non-linear and parameter uncertainty. Other varia-
tions of the EKF, such as the Unscented Kalman Filter (UKF), have 
seen use in aggressive flight control for quadrotors in [23]. Al-
though the EKF and UKF methods are widespread, there are no 
stability or robustness guarantees.

This work addresses the control and estimation problem for the 
height and yaw angle of the quadrotor. The presented solution is 
a Multiple-Model Adaptive Controller (MMAC) based architecture. 
The control is based on steady state Linear Quadratic Regulators 
(LQR), using integrative action for the height control. The estima-
tion relies on Kalman filters, using an integrative component for 
the height. The onboard sensors used are the accelerometer, the ul-
trasound sonar, the gyroscope, and the magnetometer, commonly 
available onboard these types of vehicles. In addition to the on-
board sensors, an indoor multiple-camera motion capture system 
is available.

The main contribution of this paper is an integrated architec-
ture for estimation and control of quadrotors in the presence of 
simultaneous parametric uncertainties in both mass and in z-axis 
inertia. A study on the impact of the variation in the unknown pa-
rameters is included. A stability verification is also presented, and 
the state-error is explicitly computed to be zero (disregarding dis-
sipative effects like drag).

This paper is organized as follows: the problem is presented in 
Section 2. The physical model used is shown in Section 3. The con-
trol architecture proposed is explained in Section 4. The solution 
for estimation is detailed in Section 5, and in Section 6 the solu-
tion for the control problem is presented. The analysis of stability 
and of null static-error for the full solution are shown in Section 7. 
In Section 8 the quadrotor model and its sensors are detailed. The 
implementation is also discussed in this section. A verification on 
the stability is provided in Section 9. Simulation results are pre-
sented and discussed in Section 10. The experimental results are 
presented and analyzed in Section 11. Finally, some concluding re-
marks are drawn.

2. Problem statement

The simplified height and yaw dynamics of a quadrotor are

M p̈z = h (T , g) (1)

Izψ̈ = f (τz) (2)

where h is the height acceleration function, f is the yaw acceler-
ation function, pz is the height, M is the mass of the drone, T is 
the thrust, g is the gravitational acceleration, ψ is the yaw angle, 
Iz is its z-axis inertia, and τz is the z-axis moment.

The height dynamics include the constant gravitational force, 
which imposes a non-linearity to the model. However, if there is a 
2

priori knowledge of the mass of the quadrotor, a compensation to 
the required thrust can be performed directly. The angular acceler-
ation does not suffer from the same constant influence, providing 
a simpler problem. When a transported load has unknown mass 
(Ml) and inertia (Il), a more complicated problem arises. Adjusting 
the equations to take this into account, provides

(M + Ml)p̈z = h (T , g, Ml) (3)

(Iz + Il)ψ̈ = f (τz, Il) (4)

The driving interest of this work is that the solution for the 
control is not direct, worse performance is reached, and the plat-
form stability is compromised. The physical problems include an 
unknown gravitational effect caused by Ml . Only a lower bound for 
this effect can be known a priori. Furthermore, the (M + Ml)p̈z and 
(Iz + Il)ψ̈ components also add non-linearity to the problem. Using 
a single linearization of these equations, close to the hovering sit-
uation with nominal load, results in a solution that is best suited 
for small variations around a nominal mass and inertia. Therefore, 
standard linear solutions pose performance and stability concerns 
and different solutions should be explored.

An additional complication presented by the non-linearity of 
the dynamics is that there is a need for capable estimators. Fur-
thermore, there is no vertical velocity measurement provided by 
the board sensor suite, and exploiting a ground camera with opti-
cal flow techniques provides poor estimates. To handle the optimal 
control problem and filter the sensory data, estimates of the state 
variables are necessary. Due to the non-linearity and the under 
performance achieved through linearization, a single Kalman filter 
is not an option.

3. Physical model

In this section, the dynamics of quadrotor for the height and 
yaw components are provided. This paper uses bold lowercase and 
bold uppercase symbols to represent vector and matrices, respec-
tively.

The dynamical model of a quadrotor follows the equations

M p̈ = R

⎛
⎝ 0

0
T

⎞
⎠ − Mg

⎛
⎝0

0
1

⎞
⎠ p =

⎛
⎝ px

p y

pz

⎞
⎠ (5)

I�̇ = −� × I� + τ η =
⎛
⎝ φ

θ

ψ

⎞
⎠ τ =

⎛
⎝ τx

τy

τz

⎞
⎠ (6)

I =
⎡
⎣ Ix 0 0

0 I y 0
0 0 Iz

⎤
⎦ Ṙ = R�× (7)

R =
⎡
⎣cψcθ − sφsψsθ −cφsψ cψsθ + cθ sφsψ

cθ sψ + cψsφsθ cφcψ sψsθ − cψcθ sφ
−cφsθ sφ cφcθ

⎤
⎦ (8)

Therefore, the dynamics are both coupled and non-linear. In the 
provided model, p represents the inertial position, � stands for the 
body angle rates, η represent the Euler angles, M is the mass, I is 
the inertia matrix, R ∈ S O (3) represents the rotation matrix from 
the body fixed coordinate frame to the inertial frame, g stands 
for the gravitational acceleration, T represents the thrust produced 
by the rotors, and τ denotes the angular moments produced by 
the rotors. The notation �× represents the skew-symmetric ma-
trix, such that �×v = � × v for the vector cross product × and 
any vector v ∈ R3. Furthermore, φ is the roll angle, θ is the pitch 
angle, and ψ is the yaw angle. The abbreviations c and s represent 
the cosinus and sinus trigonometric functions, respectively.
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Fig. 1. Architecture with Multiple-Model Control.
For the purpose of designing the controllers and estimators, it 
is necessary to isolate the relevant dynamics for the components 
being studied. These models are provided in the following two 
subsections.

3.1. Height dynamics

Taking the dynamics of a quadrotor from (5)-(7) and assuming 
zero roll and pitch angles, the dynamics of the height can be mod-
eled as

M p̈z = az T − Mg

where az stands for the thrust gain from the command input, 
which is assumed to be constant. Given the available measure-
ments, the state-space form of the dynamics is[

p̈z

ṗz

]
︸ ︷︷ ︸

ẋz

=
[

0 0
1 0

]
︸ ︷︷ ︸

Az

[
ṗz

pz

]
︸ ︷︷ ︸

xz

+
[ az

M
0

]
︸ ︷︷ ︸

Bz

T −
[

g
0

]

[
p̈z

pz

]
︸ ︷︷ ︸

yz

=
[

0 0
0 1

]
︸ ︷︷ ︸

C z

[
ṗz

pz

]
+

[ az
M
0

]
︸ ︷︷ ︸

Dz

T −
[

g
0

]
(9)

3.2. Yaw dynamics

For the yaw dynamics the resulting behavior is described by

Izψ̈ = aψτz + (
Ix − I y

)
θ̇ φ̇ (10)

where aψ stands for the z-axis moment gain from the command 
input. Based on the available sensors and discarding the Coriolis 
effect, the state-space representation of the dynamics can be writ-
ten as
3

[
ψ̈

ψ̇

]
︸ ︷︷ ︸

ẋψ

=
[

0 0
1 0

]
︸ ︷︷ ︸

Aψ

[
ψ̇

ψ

]
︸ ︷︷ ︸

xψ

+
[ aψ

Iz

0

]
︸ ︷︷ ︸

Bψ

τz

[
ψ̇

ψ

]
︸ ︷︷ ︸

yψ

=
[

1 0
0 1

]
︸ ︷︷ ︸

Cψ

xψ (11)

3.3. Inertia behavior analysis

A particular concern pertaining to the yaw rotation is that the 
overall inertia of an object depends on the relative position of its 
parts. Using system identification to assess the inertia would re-
quire the absence of high frequency variations during the test. The 
rotation of the rotors causes high speed variations. However, the 
relative center of mass of the rotors remains constant. Assuming 
the rotor blades to be approximately flat in the z-plane, by the 
Parallel Axis Theorem the z-axis inertia is not influenced by the 
rotation.

The position of the load also presents an issue for the over-
all inertia. To mitigate effects on the x and y rotational behavior, 
the load is assumed to be positioned along the body-frame z-axis, 
making the relative position of the load constant and known a pri-
ori.

4. Control architecture

To achieve a stable solution with zero steady state error for the 
unknown load transportation problem, the control system architec-
ture in Fig. 1 is proposed. As its foundation, LQR control and linear 
Kalman filtering are used. For the height loop, integrative compo-
nents are added to the control and estimation to compensate the 
unknown gravitational force.

The state variables are obtained through the use of estimators, 
which has the added benefit of filtering the sensor noise. The con-
trol adjusts the thrust and z-axis moment in order for the system 
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to achieve the reference height and yaw angle, based on the state 
estimates of the filters.

The proposed architecture (Fig. 1) uses a Multiple-Model Adap-
tive Control (MMAC) for simultaneous control and parameter es-
timation. The reference values are pzd and ψd , representing the 
desired height and yaw, respectively. The state estimates are x̂z

and x̂ψ , representing the state estimate vectors for the height and 
yaw components, respectively. The full drone data is represented 
as y.

5. Estimation

In this section the estimation components of the solution are 
discussed, these being the classical Kalman filters and the added 
integrative component.

5.1. Kalman filter

The Kalman filter is an optimal filter for linear systems dis-
turbed by zero mean white Gaussian noise. The structure of these 
systems is{

ẋ = Ax + Bu + F v

y = C x + Du + w
(12)

where v represents the process noise and w stands for the sen-
sor noise. These random noises are assumed to have zero mean 
and are represented by the covariance matrices Q and R for the 
process and sensor noise, respectively. The Kalman filter minimizes 
the covariance matrix of the error e:{

e = x − x̂

ė = (A − LC) e + F v − L w
(13)

via the optimization of the filter gain L , denominated as Kalman 
gain. The error covariance dynamics follows the Ricatti equation

Ṗ = A P + P A′ − P C ′ R−1C P + F ′ Q F (14)

where P stands for the covariance matrix of the error. The result-
ing Kalman gain calculation follows

L = P C ′ R−1 (15)

In a steady state case, Ṗ is zero and yields the well known alge-
braic Ricatti equation, see [24] for details.

5.2. Kalman filter with integrative component

Integrators play a fundamental role in control systems. The ad-
dition of an integrative component to a control loop is usually 
used when there are concerns regarding the robustness of the 
overall system to perturbations and the steady state error. Since 
the overall mass of the system is unknown, it is not possible to 
directly factor the correct gravitational force into the estimation. 
Even when using multiple models, if there is no model match-
ing the real mass, there will always be an incorrect force assumed 
in the filters. To reduce the error in the assumed force of each 
filter, the height filters require a component capable of adjusting 
this force. The proposed mechanism is a feedback loop of the in-
tegrated residue of the height to actuation input (u). This loop is 
responsible for adjusting an added force (c) to compensate the er-
ror in the assumed force. This forces the filter to thoroughly follow 
the measured height, and increases the accuracy of the velocity 
estimate. With tuning in mind, a gain (LI ) can be added to the 
feedback loop. The resulting structure is shown in Fig. 2.
4

Fig. 2. Kalman Filter with Integrative Component.

With the addition of the integrative component the use of a 
single model approach could be considered, but the mass con-
tinues to affect the dynamics of the quadrotor even when not 
considering the gravitational force. This would impact the accu-
racy of the velocity estimate, where a multiple-model method can 
provide improvement for the performance.

Proving that the Integrative Kalman filter provides zero residue, 
for the integrated variable, requires the analysis of the transfer 
function of the sensor measurement to the estimate. Equation

p̂z

pz
= L22Ms2 + (L12M − L21LIaz)s + LI (1 − L11)az

Ms3 + L22Ms2 + (L12M − L21LIaz)s + LI (1 − L11)az
(16)

is reached after tedious but straightforward computations. In this 
equation, the steady state gain has a value of one, indicating that 
the filter closely tracks the measurement of the height.

Furthermore, the steady state gain for the actuation input is 
required to be zero. Analyzing the transfer function

p̂z

u
= azs

Ms3 + L22Ms2 + (L12M − L21LIaz)s + LI (1 − L11)az
(17)

it is observed that the steady state gain is zero.

6. Control

In this section, the control components are described. The 
two proposed controllers and the multiple-model architecture are 
presented: the Linear Quadratic Regulator (LQR), Multiple-Model 
Adaptive Control (MMAC), and the LQR with integrative action. 
Furthermore, the requirement of zero steady state error is stud-
ied.

6.1. LQR

The LQR is an optimal controller for linear systems. Its formula-
tion is based on solving an optimal control problem for minimizing 
the cost function

J =
T∫

t

[
x′ Q x + u′ Ru

]
dτ (18)

where the matrices Q and R stand for, respectively, the relative 
weight of the error and the relative weight of the energy in the 
optimization. The solution of this problem follows the Ricatti equa-
tion

−Ṁ = M A + A′M − M B R−1 B ′M + Q (19)

where the minimizing matrix is represented by M . The control 
gain calculation follows

K = R−1 B ′M (20)

In the steady state case, Ṁ is zero and the popular algebraic Ricatti 
equation results, see [25] for details. This method provides static 
gains.

An LQR controller is proposed for the control of the yaw angle. 
A necessary condition for the control is to ensure zero steady state 
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error, which an LQR controller achieves in this case (assuming the 
absence of drag effects on the dynamics). The z-axis moment is 
therefore calculated using

τz = −kψ̇ ψ̇ + kψ(ψd − ψ) (21)

where kψ and kψ̇ represent the yaw rate and yaw gains, respec-
tively. Given the closed loop transfer function for the system with 
an LQR controller

ψ

ψd
= aψkψ

Izs2 + aψkψ̇ s + aψkψ

(22)

the steady state gain is one, and the controller provides zero steady 
state error. The resulting gain matrix is represented by k = [kψ̇ kψ ].

6.2. Multiple-model adaptive control

The MMAC algorithm (see [26] and the references therein) is 
a combined state-estimation, control, and parameter identification 
method. It is a method designed for handling parametric uncer-
tainty and non-linear control (using different linearizations). As 
suggested by its name, it makes use of multiple models of the 
same system, based on different assumptions of the unknown 
parameter (or linearization points). For each of these models, a 
Kalman filter and LQR controller pair is designed, providing ac-
tuation better suited to its assumed model. The MMAC uses the 
data provided from each controller and merges it to provide better 
control than when using a single model. Furthermore, by assessing 
which of the models provides the best estimates, the value of the 
unknown parameter is estimated.

The Bayesian Posterior Probability Estimator (PPE) uses the 
residues of the known sensory data to determine the accuracy 
of each filter by assigning it a probability (posterior probabilities). 
These probabilities are calculated using

pi = Prob(H = Hi | Y ) i = 1, ...,n (23)

which represents the probabilities of the unknown parameter H
matching one of the models, given the set of past data Y . n repre-
sents the number of models and Hi stands for the value of the 
parameter for each model. A continuous approximation for this 
discrete problem, provides a calculation of the posterior probabil-
ity derivatives ṗi . This derivative [27,28] can be computed using 
the probabilities pi and the residues of the filters r i using

ṗi = −
⎛
⎝1 − β ie

− 1
2 w i∑n

j=1 p jβ je
− 1

2 w j

⎞
⎠ pi (24)

β i = 1

(2π)
h
2
√

det S i

(25)

w i = r′
i S−1

i ri (26)

where the number of sensors used is represented by h. The resid-
ual covariance matrix of each filter (S i ) acts as a weighting param-
eter for the calculations, β i represents the weighting parameter 
obtained from residual covariance and number of sensors, and w i
stands for a quadratic weighting parameter for the residue which 
also relies on the residual covariance.

The actuation provided by the MMAC algorithm can be ob-
tained with a switching or weighted average based on the ac-
tuations of each controller, see [26] for details. In switching the 
actuation matches that of the controller with the highest posterior 
probability. In the weighted average the actuation of all controllers 
is averaged using the posterior probabilities as a weighting factor, 
5

Fig. 3. MMAC Structure.

Fig. 4. MMAC Sub-components.

as shown in (27). In this work, it was adopted the use of the aver-
age weight, as it provides low pass filtered actuation, i.e.

ûT =
n∑

i=1

pi(t)ui (27)

The estimate of the parameter is also obtained using the 
weighted average of the model nominal parameters. The resulting 
structure is depicted in Figs. 3 and 4.

6.3. LQR with integrative action

In cases where the estimated mass does not match the real 
value, the error in assumed gravitational force generates steady 
state error. However, using integrative action for the LQR controller 
makes it capable of controlling a system in the presence of pertur-
bations, like unmodelled dynamics (a suitable example for quadro-
tors is wind). The LQR controller with integrative action consists 
of a cascading controller with an outer layer that integrates the 
difference between reference and current value of the control vari-
able and inner feedback of all the state variables, and is therefore 
proposed for the height control.

To obtain this controller using the LQR calculations already dis-
cussed, it is only necessary to modify the model of the dynamics 
when calculating the LQR gains. By using the modified version of 
the model

A I =
[

A 0
−C 0

]
B I =

[
B
0

]
(28)

there is a state variable associated with the integration that is used 
for defining the integrative control gain.

Using the modified model in the LQR gains computation yields 
kcalc . The resulting gains include two different sets: k and kI . 
k stands of the vector of gains for the state variables, and kI rep-
resents the gain for the integrative component. k is composed of 
kz and kż , which stand for the position gain and velocity gain, re-
spectively.

kcalc = [k| − kI ] k = [kż kz]
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Fig. 5. LQR with Integrative Component.

This provides the following thrust calculation:

T = −kż ṗz − kz pz + kI

s
(pzd − pz)

which leads to the structure illustrated in Fig. 5.
One of the requirements for the control is to ensure zero steady 

state error. To analyze the error, the system is separated into 
two components, one that has no gravity and receives a reference 
height and one that receives a zero reference height and has grav-
ity, considered as an input.

The transfer function for the reference height and for the grav-
ity are, respectively:

pz

pzd
= kIaz

Ms3 + kżazs2 + kzazs + kIaz
(29)

pz

g
= Ms

Ms3 + kżazs2 + kzazs + kIaz
(30)

In steady state, the gain associated to the reference height case 
is unitary, which means that it goes to the desired height. In the 
gravity case, the gain is zero, which implies that the gravity causes 
no deviation from the desired height.

From this, it is concluded that the addition of the integrative 
action provides a zero steady state error solution.

7. Linear stability analysis and steady state error analysis

Stability and null static error are central to the desired con-
trol system architecture and are essential for the operation of au-
tonomous aerial vehicles in the presence of parametric uncertainty. 
To analyze this issue, the following lemma from [26] is instrumen-
tal:

Lemma 7.1. In the case where the real system has an unknown constant 
parameter that matches the underlying model of one of the filters in the 
filter bank, the corresponding posterior probability will tend to one and 
all the other probabilities will go to zero. �

Thus the following lemma can be stated:

Lemma 7.2. For a system in the conditions of the previous lemma and 
based on the Separation Theorem, there is a finite time instant T f in such 
that, for t > T f in, all variables of the closed loop control system are 
bounded and the velocity and yaw rate errors converge to zero. �

The proof of the lemma is based on the assumptions previ-
ously outlined, namely assuming that one underlying model has 
the correct parameter. Thus, the eigenvalues of the controller and 
the estimator are recovered. By the separation principle, given a 
stable controller and a stable estimator, the resulting system is sta-
ble.
6

7.1. Height control

The resulting Az matrix of the system is

Az =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 − kżaz
Mr

− kzaz
Mr

K I az
Mr

0
1 0 0 0 0 0
0 L12 A33 A34 A35 A36
0 L22 A43 A44 A45 A46
0 0 0 −1 0 0
0 1 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (31)

A33 = −kżaz

Mm
(1 − L11) A34 = −L12 − kzaz

Mm
(1 − L11)

A35 = kIaz

Mm
(1 − L11) A36 = LIaz

Mm
(1 − L11)

A43 = kż L21az

Mm
+ 1 A44 = kz L21az

Mm
− L22

A45 = −kI L21az

Mm
A46 = − LI L21az

Mm

where Mm represents the model mass, and Mr stands for the real 
mass. The input factor is represented by az , the L matrix and K
vector represent the Kalman and controller gains, respectively. Ad-
ditionally, the B z matrix for the reference value is

Bz = [
0 0 0 0 1 0

]T (32)

and the C z matrix for the system height is

C z = [
0 1 0 0 0 0

]
(33)

The steady state is analyzed using

G z = −C z A−1
z Bz (34)

which yields a gain of one, as intended.
Furthermore, to analyze the steady state error induced by the 

gravitational force, the matrix

Bz = [
1 0 0 0 0 0

]T (35)

is used instead of the previous one. Re-using (34), the steady state 
gain obtained is zero, proving that the unknown gravitational force 
does not cause steady state error.

7.2. Yaw control

The resulting Aψ matrix of the system is

Aψ =

⎡
⎢⎢⎢⎣

0 0 − kψ̇aψ

Ir
− kψaψ

Ir

1 0 0 0

L11 L12 −L11 − kψ̇aψ

Im
−L12 − kψaψ

Im

L21 L22 1 − L21 −L22

⎤
⎥⎥⎥⎦ (36)

where Im is the model inertia, Ir is the real inertia, aψ is an in-
put factor, L are the Kalman gains, and k are the controller gains. 
Additionally, the Bψ matrix for the reference value is

Bψ =
[

kψaψ

Ir
0 kψaψ

Im
0
]T

(37)

and the Cψ matrix for the system yaw angle is

Cψ = [
0 1 0 0

]
(38)

The steady state is analyzed using

Gψ = −Cψ A−1
ψ Bψ (39)

which yields a gain of one, as intended.
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Table 1
Nominal Parameters.

M (kg) Ix (kg m2) I y (kg m2) Iz (kg m2)

0.475 2.2383 × 10−3 2.9858 × 10−3 4.8334 × 10−3

Table 2
Mass Model Parameters.

Model 1 2 3 4 5 6

M (kg) 0.431 0.454 0.478 0.505 0.535 0.567

Table 3
Inertia Model Parameters.

Model 1 2 3 4 5 6 7

Iz × 10−3 (kg m2) 2.14 2.50 2.97 3.61 4.57 6.09 8.90
8. Implementation

Testing of the proposed solution was performed using the Par-
rot Ar.Drone 2.0 by Parrot SA. This off-the-shelf commercially avail-
able quadrotor is designed for users without any drone piloting 
skills. It comes equipped with an Inertial Measurement Unit (IMU) 
composed of a triad of accelerometers, a three-axis gyroscope and 
a three-axis magnetometer. Other sensors present are an ultra-
sound sensor, a barometer and two cameras. One front facing 
camera and a ground facing optical-flow camera. The rotors of the 
quadrotor are controlled through PWM commands. Therefore, the 
actuation inputs from the control are converted to the equivalent 
PWM commands for each rotor. The nominal parameters for this 
quadrotor are shown in Table 1.

Posterior probabilities pi in the MMAC require an initialization 
value, the a priori probabilities. In the proposed solution, these 
probabilities are set equally for the n filters (1/n). This is a com-
mon approach for cases where there is no a priori knowledge that 
points to a specific model or subset of models being more likely at 
start. The model selection was performed using the Baram Prox-
imity Measure analysis, as it had been used in previous work with 
multiple-model methods for the adjustment of the model param-
eter and number of models. The obtained parameters for each of 
the models are detailed in Tables 2 and 3.

For the experimental test, the control system was implemented 
using the AR.Drone 2.0 Quadcopter Embedded Coder [29], as it 
provides a Simulink based environment for developing the soft-
ware that will be deployed to the quadrotor and includes methods 
for accessing the sensors and actuators.

As the stabilization of the quadrotor is a necessary condition 
to perform the experimental testing, the X and Y position and an-
gles control uses cascading PID control to adjust the torques. For 
these components, the sensory information was provided by the 
accelerometer, the ultrasound sonar, the gyroscope, and the mag-
netometer. Since the tests were performed indoors, the X and Y 
position measurements are provided by an indoor multiple-camera 
motion capture system. The experimental setup is presented in 
Fig. 6. The load is added before the flight.

9. Stability verification

In this section, a simple verification of the system stability 
is provided. The design mass is 0.445 kg, and the real mass 
is 0.47 kg. The resulting eigenvalues for the height control are 
{−1.4648 ± 3.0317i, −0.7023 ± 0.4351i, −3.5159, −0.1077}. As 
intended, the real component of the eigenvalues are negative, pro-
viding an overall closed loop system that is stable. The design 
inertia is 5.1 × 10−3 kg m2, and the real inertia is 4.8 × 10−3 kg 
7

Fig. 6. Experimental Setup.

m2. The resulting eigenvalues for the yaw control are {−0.9873, 
−5.563 ± 5.981i, −196.1}. As intended, the real component of the 
eigenvalues are negative, providing an overall closed loop system 
that is stable.

Furthermore, to assess the influence of the value of the model 
mass on the stability, a root locus like analysis is performed. Using

f z = C z(sI − Az)
−1 Bz (40)

with (31), (32), and (33), this provides the transfer function of 
the system. Taking the resulting denominator den( f z), it can be 
re-written in the form of

den( f z) = f1Mm + f2 (41)

Plotting the root locus for f1/ f2 in Fig. 7, it is possible to per-
form the intended analysis. There is a pole in the origin for infinite 
mass, and there are two eigenvalues with positive real part for 
masses below 0.035 kg. All of these mass values are outside the 
range specified in this paper, ensuring the stability of the sys-
tem. The eigenvalues for the minimum and maximum values of the 
mass considered in this article are highlighted with thicker lines.

Performing the same analysis to assesses the influence of the 
value of the model inertia on the stability, results in

fψ = Cψ(sI − Aψ)−1 Bψ (42)

Using (36), (37), and (38), this provides the transfer function of 
the system. Taking the resulting denominator den( fψ), it can be 
re-written in the form of
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Fig. 7. Root Locus Mass.

Fig. 8. Root Locus Inertia.
den( fψ) = f1 Im + f2 (43)

Plotting the root locus for f1/ f2 in Fig. 8, it is possible to perform 
the intended analysis. There are two eigenvalues in the origin for 
zero inertia, and there are two eigenvalues with positive real part 
for inertia above 0.035 kg m2. All of these inertia values are out-
side the range specified in this paper, ensuring the stability of the 
system. The eigenvalues for the minimum and maximum values of 
the inertia considered in this article are highlighted with thicker 
lines.

10. Simulation results

The first stage of testing was performed using simulation. The 
quadrotor parameters used for its setup are a mass M of 0.454 kg 
with just the drone and 0.473 kg carrying a load, an inertia Iz of 
2.966 × 10−3 kg m2 with just the drone and 4.833 × 10−3 carrying 
8

a load. The input factors az and aψ are kept at one. For the cal-
culation of the Kalman gains, the covariance of the sensor noise is 
set as Rz̈ = 0.03 for the z-axis acceleration, Rz = 2.4 × 10−7 for 
the height, Rψ̈ = 0.03 for the yaw rate, and as Rψ = 5 × 10−7

for the yaw. Furthermore, the process noise covariances are in-
serted into the calculation as Q z = 0.005 and Q ψ = 10−6, for the 
height and yaw respectively. The height LQR gains calculation uses 
Q z/s = 3.75, Q z = 5, Q ż = 0.001, and Rz = 15. The yaw LQR gains 
calculation uses Q ψ = 1, Q ψ̇ = 1, and Rψ = 1. The reference value 
for the height is one, while the yaw has a square wave of am-
plitude π as a reference. The simulation uses the full dynamics 
and not the simplified dynamics used for the proposed control 
and estimation design. The results are separated into two sections 
pertaining to the relevant control loop. A comparison with single-
model approaches is also provided at the end of this section. The 
tests follow a weaker assumption that the model is within the con-
sidered range, instead of matching one of the considered models.
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Fig. 9. Height Simulation Results. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Fig. 10. Height Simulation Results: Mass Estimate for Both Tests.

10.1. Height control

The simulation results for the height are presented in Figs. 9
and 10. The settling times (5%) are at 4 seconds for both tests. 
There is no overshoot in both tests. The actuation does not satu-
rate. The model selection ended after 2 seconds in the no load test 
and after 3 seconds in the load test. The selection of the closest 
model is observed in both cases. The mass estimate for the no load 
case converged to the correct value, because it is a matching case. 
In the load case, the inertia has an error, as it is a non-matching 
case.

10.2. Yaw control

The simulation results for the yaw are presented in Figs. 11
and 12. The settling times (5%) are at 4 seconds in both tests. 
There is no overshoot in both tests. The actuation only saturated at 
the start of each rotation. The maximum probability is attributed 
9

to the closest model, but the two lowest inertia models are se-
lected initially in both cases before the system had rotated. There 
is an error in the inertia estimate of the load test, as it is a non-
matching case. The posterior probability of the closest model for 
the no load test gets close to 1 during the second rotation, while 
for the load test it achieves maximum probability during the first 
rotation.

10.3. Comparison between multiple-model and single-model 
approaches

A comparison between the multiple-model approach and
single-model approaches is presented in Fig. 13. In this analy-
sis, the overshoot/undershoot is analyzed at different real values 
for the mass and inertia. Since the height can suffer from over-
shoot and undershoot problems simultaneously, the metric used 
for the performance of the height controller is the overshoot mi-
nus the undershoot. Since the yaw is tested alternating between 
0 and π radians, the analysis of the overshoot is enough. In the 
case of the height, the MMAC provides consistently low results, 
while the single-model tests show a quadratic behavior centered 
around the nominal model parameter. In the case of the yaw, the 
MMAC provides a more consistent result than the single-model 
tests. However, it is observed that in the Model 7 (highest model 
inertia) test there is an abrupt increase in overshoot at low inertias 
(below 2.5 × 10−3 kg m2). Despite not obeying to the assump-
tion of one of the models matching, the performance degrades 
gracefully. Increasing the number of models, or individually tuning 
the filters/controllers could be used to improve the MMAC perfor-
mance.

11. Experimental results

To truly test the performance of the proposed architecture, an 
experiment was prepared. The real mass M is 0.475 kg and the 
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Fig. 11. Yaw Simulation Results.

Fig. 12. Yaw Simulation Results (Cont.)

Fig. 13. Overshoot/Undershoot Comparison Between Multiple-Model and Single-Model Approaches.
10
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Fig. 14. Height Experimental Results.

Fig. 15. Height Experimental Results (Cont.)
inertia Iz is 4.8334 × 10−3 kg m2. The input factors az and aψ

are set to 0.9 and 0.7, respectively. No test was performed with a 
load, as it was difficult to increase significantly the inertia without 
affecting the remainder of the dynamics. For the purpose of the 
Kalman gain calculations, the covariance of the sensor noise is de-
fined as Rz̈ = 0.03 for the z-axis acceleration, Rz = 4.6 × 10−7 for 
the height, Rψ̇ = 0.03 for the yaw rate, and as Rψ = 4.26 × 10−4

for the yaw, while the process noise of the height is given a co-
variance of Q z = 0.05, and the process noise of the yaw is given a 
covariance of Q ψ = 10−4. The height LQR gains calculations were 
performed using Q z/s = 10, Q z = 1, Q ż = 0.001, and Rz = 20. The 
yaw LQR gains calculations were done using Q ψ = 1, Q ψ̇ = 1, and 
Rψ = 300. The test consisted of lifting-off to a height of 1 meter, 
followed by a sequence of three 90◦ rotations.

11.1. Height control

The results of the test are presented in Figs. 14 and 15. The 
settling time (5%) achieved is 8 seconds with a 17% overshoot. The 
11
highest probability is given to the closest model. The probabilities 
vary during the start of the lift-off, but the selection of the clos-
est model appears to not degrade from this. The model selection in 
this test takes longer than in the simulation, settling in 6 seconds. 
Higher overshoot and slower convergence occur due to several ex-
ternal disturbances. The mass estimate has a low error, as it is a 
matching case.

11.2. Yaw control

The results of the test are presented in Fig. 16. The settling 
times (5%) observed are 8 seconds in the first rotation and 4 sec-
onds in the following rotations. There is no static error in the 
first two rotations. The actuation only saturates at the beginning 
of each rotation. The probabilities display a similar behavior to 
what was seen in simulation, evolving more visibly during the ro-
tations, but comparatively slower. Slower convergence occurs due 
to several external disturbances and noise. The highest probability 
is given to the closest model after 26 seconds. The inertia estimate 
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Fig. 16. Yaw Experimental Results.
has an error of 8 × 10−4 by the end of the test, but is seen con-
verging to the real value.

12. Conclusion

This paper analyses the use of Multiple-Model Kalman filtering 
and LQR control, in an integrated architecture, for transportation 
of an unknown load with quadrotors. The unknown parameters 
that were studied were the mass and z-axis inertia. The sensors 
utilized were an accelerometer, an ultrasound sonar, a gyroscope, 
and a magnetometer. Simulation and experimental tests were per-
formed using the Ar.Drone 2.0. The control and estimation systems 
yielded low settling times and no overshoot in simulation. In the 
experiment, the settling times saw a slight increase and the height 
had some overshoot. Zero steady state error was observed in sim-
ulation and experimentally for both components. The parameter 
estimation from the MMAC selected the closest model in the fil-
ter bank for both components. Parametric estimation errors were 
only obtained in non-matching cases, and in the experimental re-
sults for the yaw. Despite using a control method designed for 
linear systems, the simulation using the complete system and the 
experimental test show that this did not invalidate the proposed 
solution. To further explore parametric uncertainty in quadrotors, 
the authors are considering the use of nonlinear adaptive control 
for future work.
12
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