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Abstract— This paper addresses the problem of attitude and
rate gyro bias estimation using Set-Valued Observers (SVOs).
We propose a singularity-free solution that exploits rate gyro
measurements and vector observations corrupted by bounded
noise providing bounds on the attitude of the rigid body and
on the bias of the rate gyros. The sensor readings are fused
directly by the SVO, without intermediate attitude computation.
By taking advantage of the powerful new multi-core processors
it is possible to increase the estimator convergence rate without
compromising the execution time. The feasibility of the tech-
nique is demonstrated in simulation.

I. INTRODUCTION

For most modern underwater, aerial, and space vehicles,
accurate attitude determination is a key requirement. The
navigation systems of these platforms frequently rely on
information provided by sensors such as rate gyros, ac-
celerometers, magnetometers, star-trackers, and sun sensors
[3]. The development of new low-cost sensors, in partic-
ular the micro-electro-mechanical systems (MEMS), have
greatly contributed to reducing the costs of middle grade
performance navigation systems. However, these sensors, in
particular the rate gyros, suffer form non-negligible noise
and bias, that, if not taken into account, might degrade
significantly the attitude estimates [10]. In this paper, we
propose a solution based on Set-Valued Observers (SVOs)
that simultaneously solves the attitude and rate gyro bias
estimation problem.

With two non-parallel vector observations in the body-
fixed reference frame, it is possible to compute low-
bandwidth estimates of the attitude of a rigid body with
respect to the inertial reference frame – see [28], [13],
[15] and references therein. To increase the accuracy of
the estimates, the vector observations are often fused with
the high-bandwidth rate gyro measurements. The rate gyro
measurements are affected, not only, by noise, but also by
bias that deteriorates the attitude estimates. The bias is, in
general, slowly time-varying, which reduces the effective-
ness of offline calibration and corroborates the necessity of
online parameter estimation. The Extended Kalman Filter
(EFK) has been extensively used to blend the information
of rate gyros and vector observations. The interested reader
is further referred to [12], [16], [26]. A survey on these
estimators, among others, such as particle filters and the
unscented Kalman filter, can be found in [6] . More recently,
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nonlinear observers have attracted the attention of the scien-
tific community – see for instance [25], [17], [11], [27].

When a probabilistic description of the measurement noise
is not available and only magnitude bounds are known, the
previous estimators are not reliable. In such circumstances,
an estimator that computes the set of possible states given
the sensor information is more suitable. The work in [22]
discusses the state estimation problem for systems with
bounded inputs, while in [4] and [14] a similar problem, but
using a set-membership description for model uncertainty,
is addressed. New advances in the framework of these
estimators, known as SVOs [1], are presented in [24], [19],
[20]. The work in [21] proposes an attitude estimator where
the sensor measurements and the filter state are bounded
by uncertainty ellipsoids. However, this estimator relies on
the linearization of the system to propagate the uncertainty
ellipsoids, which, in the presence of fast dynamics, may lead
to inaccurate estimates.

In a previous work by the authors [5], it is proposed
an SVO-based solution for attitude estimation assuming
that the sensor measurements have additive uncertainties
characterized by polytopes. If the uncertainties are solely
present on the vector observation, the uncertainty on the
estimates is guaranteed to be the smallest possible.

In this paper, we propose an estimator based on SVOs that
simultaneously calculates the attitude of a rigid body and the
rate gyro bias, by directly exploiting angular velocity mea-
surements and vector observations. We propose a solution
that considers measurements with uncertainties, defined by
polytopes, that guarantees that the true state of the system
is inside the estimated set, as long as the assumptions on
the bounds on the measurements are satisfied. Unlike typical
approaches in the literature, no linearization is required.

In summary, the main contributions of this paper are as
follows:

• The development of a singularity-free SVO for attitude
estimation, which takes into account rate gyro bias.

• The development of an SVO for the online estimation
of the bias of the rate gyros.

• The assessment, in simulation, of the proposed tech-
nique, highlighting the advantages and shortcomings in
comparison with the alternatives in the literature.

The remainder of this article is organized as follows.
In Section II, the attitude estimation problem is introduced
and the available sensor information is described. The main
contribution of this work is presented in Section III, where
the SVOs for attitude and rate gyro bias estimation is devel-
oped. Section IV illustrates the properties of the proposed
solution in simulation. Finally, some concluding remarks are
presented in Section V.
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NOMENCLATURE

To enhance the readability of this paper, we introduce the
following notation. The set of special orthogonal matrices
is denoted by SO(3) and the associated algebra is denoted
by so(3). The skew-symmetric operator in R3 is denoted
by [.]× : R3 7→ so(3), which satisfies [v]×w = v × w,
v,w ∈ R3. The Kronecker product of matrices is denoted
by A⊗B and satisfies

A⊗B =

[
a11B ··· a1nB

...
. . .

...
am1B ··· amnB

]
.

The 3 × 3 matrices whose elements are zeros except the
element ij, and whose elements are ones, are denoted by
Ei,j and 13×3, respectively. The operator Vec(M) stacks
the columns of the m × n matrix M into a long (9 × 1) ×
1 vector and the inverse operation of Vec(.) is denoted as
Mat(.). The matrix norm ||.||max is defined as the maximum
of the absolute value of all matrix elements, i.e., ∥A∥max :=
max{|aij |}. Consider a polytope defined by {x ∈ Rnx :
Ax ≤ b}. Then, define the Fourier-Motzkin projection [9]
as

(Ā, b̄) := FM(A,b, n),

where n = nx − n̄x > 0, and Ā and b̄ satisfy, for all
x̄ ∈ Rn̄x ,

Āx̄ ≤ b̄ ⇔ ∃x∈Rn : A

[
x̄
x

]
≤ b.

Finally, define Set(M,m) := {x ∈ Rm : Mx ≤ m}, and
MatSet(M,m) := {Y ∈ Ra×b : MVec(Y) ≤ m}.

II. PROBLEM FORMULATION

In this section, we introduce the attitude estimation prob-
lem using vector observations and biased angular velocity
measurements. The vector observation provides instanta-
neous information about attitude while the angular velocity
characterizes the time-evolution of attitude.

The rotation matrix is an attractive attitude representation,
since unlike others, such as the Euler Angles, is free of
singularities, which is a necessary condition for the results
being global. Let R be the rotation matrix from the reference
frame {I}, which is assumed to be inertial, to the body-fixed
reference frame {B}.

The kinematics of the rotation matrix R is given by

Ṙ = [ω]×R, (1)

where ω is the angular velocity of the inertial frame with
respect to the rigid body, measured in the body reference
frame. This continuous-time model is not suitable to be
implemented in a digital system. However, for a sufficiently
small sampling period, T , we can approximate the angular
velocity between sampling times by a constant function, and
use the Euler approximation (see [7, pp. 126]) of (1), which
is given by

R(k + 1) = exp(Tω(k))R(k), (2)

where exp(.) : so(3) 7→ SO(3) is the exponential map on
the special orthogonal group, and so(3) is the Lie algebra
associated with SO(3). An advantage of this approximation

is the linearity on R of the time-varying discrete-time model
in (2).

A triad of rate gyros fixed in reference frame {B} mea-
sures ωr ∈ R3, which is the angular velocity corrupted by
an unknown bias term b ∈ R3 and bounded noise n ∈ R3

so that
ωr = ω + b+ n, ∥n∥max ≤ n̄. (3)

On-board sensors, such as, magnetometers, star trackers,
among others, provide vector observations expressed in body
frame coordinates, i.e.,

Bvi = RIvi, (4)

where i = 1, . . . , Nv , and Nv is the number of different
vector observations and no three of which are collinear, or,
in the matrix form,

BV = RIV, (5)

where BV = [Bv1 . . .
BvNv ] such IV = [Iv1 . . .

IvNv ]. If
the linear acceleration is negligible in comparison with the
gravity, the measurements of tri-axial accelerometers may
also be suitable to be used as vector observation.

We assume the sensor measurements to be corrupted by
noise characterized by compact polytopes. Thus, a generic
measurement q ∈ Rn belongs to the compact convex
polytope defined by an m×n real matrix M ∈ Rm×n and by
a vector m ∈ Rm, i.e., q ∈ Set(M,m). The measurement
is thus provided as a set, rather than as a point.

Definition 1: Given Ivi, i = 1, ..., Nv , R is compatible
with a set of observations, S, if there exists Bv ∈ S such
that (4) is satisfied.

In the next lemma, we show how the output of the system
relates with the state, i.e., the time-varying rotation matrix.

Lemma 1: ([5, Lemma 1]) Assume that the vector ob-
servations Bvi(k), i = 1, . . . , Nv , at each time k satisfy
Bvi(k) ∈ Set(Mvi(k),mvi(k)). Then, there exist a matrix
Mm and a vector mm such that

Mm(k)Vec(R(k)) ≤ mm(k),

if and only if R(k) is compatible with the set of observations,
Set(Mv(k),mvk), where

Mv(k) =

Mv1 (k) 0

. . .
0 MvNv

(k)

 , mv(k) =

 mv1 (k)

...
mvNv

(k)

 .

Proof: The vector observations Bvi(k), i = 1, . . . , Nv ,
at each time k, satisfy Bvi(k) ∈ Set(Mvi(k),mvi(k)),
i.e., Vec(BV(k)) satisfy Mv(k)Vec(

BV(k)) ≤ mv(k). On
the other hand, it follows from (5) that Vec(BV(k)) =
Q(k)Vec(R(k)), where Q(k) is given by

Q(k) =

 Iv11I
Iv21I

Iv31I

...
...

...
Iv1Nv I

Iv2Nv I
Iv3Nv I


and Ivij is the element in the line i and column j of matrix
IV(k). Hence, we have that

Mv(k)Q(k)︸ ︷︷ ︸
M(k)

Vec(R(k)) ≤ mv(k)︸ ︷︷ ︸
m(k)

.
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The objective of the present work is to estimate the
smallest set that contains the attitude of a rigid body using the
available sensor suite, i.e., to obtain the set-valued attitude
estimate with the smallest possible uncertainty set.

III. ATTITUDE AND RATE GYRO BIAS ESTIMATION
USING SVOS

The aim of this section is to design an SVO for attitude
and gyro bias estimation. Throughout the remainder of this
paper we assume that the angular velocity ω(.) is constant
between sampling times.

A. Attitude estimation
At each time k, the proposed estimator provides a set

containing the current state of the system in (2). The rate
gyro bias is modeled as an unknown constant vector, b, and
the set of possible bias values is given by the polytope B.
Our goal is to reduce the volume of the sets containing the
rotation matrix and the rate gyro bias as time goes by. To
that end, we introduce the vectors b0 and bδ , that satisfy

b = b0 + bδ,

where b0 is the center of B.
The system dynamics in (2) can be rewritten in the form

x(k + 1) = A(k)x(k), (6)

where x(k) = Vec(R(k)) and A(k) = I3×3 ⊗
exp(T [ω(k)]×). Due to the rate gyro bias and the mea-
surement noise, the angular velocity ω(k), and consequently
A(k), cannot be obtained from the measurements. However,
there exists ∆i(k) ∈ R, such that matrix A(k) satisfies the
following sum

A(k) = A0(k) +
9∑

i=1

Ai(k)∆i(k), |∆i(k)| ≤ 1 (7)

where A0(k) = I3×3⊗ exp(T [ωr −b0]×), Ai(k) = I3×3⊗
γEm,n, m,n = 1, 2, 3, i = 3(n− 1)+m, and exploiting the
result from Appendix A

γ = 1
2 (
(
exp(2T (ω̄r + b̄0 + b̄δ + n̄))

)
− exp(2T (ω̄r + b̄0))),

where ω̄r = ∥ωr∥max, b̄0 = ∥b0∥max, b̄δ = ∥bδ∥max. From
(6) and (7), we obtain

x(k + 1) = A0(k)x(k) +
9∑

i=1

Ai(k)∆i(k)x(k). (8)

Assume that the state x(k) is not known but that it is
contained inside the compact and convex polytope defined
by the known matrix M(k) and vector m(k), i.e.,

x(k) ∈ Set(M(k),m(k)).

Due to the presence of noise in the angular velocity
measurements, which is reflected in the uncertainty in ∆i,
i = 1, . . . , 9, the set of feasible states at time k+1, x(k+1),
is not convex, in general.

Nevertheless, we will see next that, by considering specific
realizations of (8) and using SVOs to obtain the polytope

that contains the state for each particular realization, we can
derive a set containing the state x(k + 1).

As such, consider now a realization of (8) where ∆i(k) =
∆∗

i , |∆∗
i | ≤ 1, i = 1, . . . , 9 and denote by A∆∗ the corre-

sponding uncertainty map, i.e., A∆∗ = A∗
1∆

∗
1+· · ·+A∗

9∆
∗
9.

For each A∆∗ , the technique described in [24] can be used
to design an SVO which computes a set-valued estimate of
the state of the system. Indeed, if the matrix A0(k) +A∆∗

is non-singular1, we can write the following inequality as a
constraint for the state x(k + 1)[

M(k)(A0(k) +A∆∗)−1

Mm(k + 1)

]
︸ ︷︷ ︸

M∗(k+1)

x(k+1) ≤
[

m(k)
mm(k + 1)

]
︸ ︷︷ ︸

m∗(k+1)

. (9)

In other words, for ∆i(k) = ∆∗
i , i = 1, · · · , 9, x(k + 1) ∈

Set (M∗(k + 1),m∗(k + 1)).
Let vi, i = 1, . . . , 29 denote a vertex of the hyper-cube

H := {δ ∈ R9 : |δ| ≤ 1}, (10)

where vi = vj ⇔ i = j. Then, we denote by X̂vi(k + 1)
the set of points x(k+1) that satisfy (9) where A∆∗ = Avi

and with x(k) ∈ Set (M(k),m(k)). Notice that X̂vi(k+ 1)
can be obtained by resorting to (9).

Further define

X̂(k + 1) := co
{
X̂v1(k + 1), . . . , X̂v29

(k + 1)
}
, (11)

where co{p1, . . . , pm} is the smallest convex set contain-
ing the points p1, . . . , pm, also known as convex hull of
p1, . . . , pm. The set of all possible states at time k + 1 is,
in general, non-convex even if X(k) is convex, thus we are
going to use X̂(k + 1) to over bound it. Since X̂(k + 1) is
the convex hull of a finite number of polytopes, it can be
written in the form Set(M(k + 1),m(k + 1)).

The following theorem describes the proposed attitude
SVO, which considers the rate gyro bias and noise. This
estimator can be interpreted as generalization of the observer
proposed in [5].

Theorem 1: Assume that there is a triad of rate gyros that
measure the rigid body angular velocity corrupted by noise
and constant bias, that measurements Bvi , i = 1, . . . , Nv

under the conditions of Lemma 1 are available, and that there
exist a matrix M(k) and a vector m(k), such that

R(k) ∈ MatSet(M(k),m(k)) ∩ SO(3).

Then, the set MatSet(M(k+1),m(k+1))∩SO(3) as defined
previously contains all the matrices R(k+1) that satisfy (2)
and that are compatible with the observations at time k+1.

Proof: By assumption, the state of the system at time
k belongs to the set

X(k) :=
{
x ∈ R9 : M(k)x ≤ m(k),Mat(x) ∈ SO(3)

}
.

Also, define X(k+1) as the set of all possible states of the
system at time k + 1.

Equation (9) defines the set of states at time k + 1 that
satisfy (7) and are compatible with the measurements. By
evaluating (9) for ∆ = [∆1, . . . ,∆9] in the vertices of H ,

1See Remark 1 for the case where the matrix A0(k) +A∆∗ is singular.
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defined in (10), one obtains X̂v1(k + 1), ..., X̂v29
(k + 1).

It was shown in [20] that, since ∆(k) can be obtained by
convex combinations of the vertices of H, the state of the
system, x(k + 1), is inside the set generated by the convex
hull in (11). Thus, X̂(k+1), is an overbound of X(k+1) and
an overbound to the space of possible solutions of R(k+1),
and is given by

R(k + 1) ∈ MatSet(M(k + 1),m(k + 1)) ∩ SO(3).

Remark 1: If, A(k) +A∆∗ is singular or ill-conditioned,
one can write the inequality[

I −A0(k)−A∆∗ (k)
−I A0(k)+A∆∗ (k)

Mm(k+1) 0
0 M(k)

]
︸ ︷︷ ︸

M̃

[
x(k+1)
x(k)

]
≤

[
0
0

mm(k+1)
m(k)

]
︸ ︷︷ ︸

m̃

,

and then use the Fourier-Motzkin projection [9] to compute
M∗(k+1) and m∗(k+1) such that M∗(k+1)x(k+1) ≤
m∗(k + 1), i.e.,

(M∗(k + 1),m∗(k + 1)) = FM(M̃, m̃, 3).
If there is no uncertainties in the rate gyro measurements,

we know the exact model dynamics and the resulting set that
contains the solution is not conservative. The next corollary
highlights this result.

Corollary 1: Assume that there is a triad of rate gyros that
measure the rigid body angular without uncertainty, i.e.,

n̄ = 0, b̄δ = 0,

that measurements Bvi , i = 1, . . . , Nv under the conditions
of Lemma 1 are available, and that there exist a matrix M(k)
and a vector m(k), such that

R(k) ∈ MatSet(M(k),m(k)) ∩ SO(3).

Then, the estimator, at each time k, provides the smallest set
compatible with (2) and the vector observations.

Proof: Under the conditions of the corollary,

x(k + 1) = A0(k)x(k), (12)

where A0(k) is fully known. Let us now define the set X(k+
1) = {x̃ ∈ R9 : M(k+1)x̃ ≤ m(k+1), Mat(x̃) ∈ SO(3)},
where

M(k+1) =

[
M(k)A−1

0 (k)
Mm(k + 1)

]
, m(k+1) =

[
m(k)

mm(k + 1)

]
.

By Theorem 1, the set X(k+1) contain all the solutions of
(2) at k+1, which are compatible with the vector observation.

To show that we obtain the smallest set, we also need to
demonstrate that all the states x(k + 1) ∈ X(k + 1) are
compatible with (2) and with

x(k) ∈ {x̃ ∈ R9 : M(k)x̃ ≤ m(k),Mat(x̃) ∈ SO(3)}.

The state at k + 1 satisfies

M(k)A−
0 1(k)x(k + 1) ≤ m(k),

and by using (12), which, under the conditions of the
corollary, is equivalent to (2), in the previous equation, we
recover

M(k)x(k) ≤ m(k).

Finally, Proposition 1 ensures that if we consider x(k),x(k+
1) ∈ R9 instead of Mat(x(k)),Mat(x(k + 1)) ∈ SO(3) we
add no conservatism to the solution.

B. Bias estimation
We now propose an SVO for rate gyro bias estimation.

The measurements provided by the rate gyros, regardless of
its technology, are affected by noise and bias. The amplitude
of the bias is, for most rate gyros, not negligible and might
significantly deteriorate the attitude estimates [10]. The key
idea in estimating the gyro bias consists in exploiting the
sensor measurements to compute sets that, at each time,
contain the rate gyro bias, and intersect them as time goes
by, in order to reduce the associated uncertainty.

Recall that a polytope containing the states of the attitude
at time k is given by X̂(k), let Y (k+1) be the set containing
the rotation matrices compatible with the measurements, i.e.,

Y (k + 1) = Set(Mm(k + 1),mm(k + 1)),

and define Bm(k) as the convex set containing the rate
gyro bias based on the sensor measurements at time k and
computed as follows.

The set Bm(k) can be obtained by inverting the attitude
kinematics (2) and computing a set that contains the angular
velocity at time k

ω(k) = log(R(k + 1)R(k)T ),

where log(.) : SO(3) → so(3) is the inverse of the
exponential map in the special orthogonal group [2], which
can be computed by inverting the Rodrigues’ Formula [23,
p. 65], i.e.,

log(R) =

{
0 if θ = 0

θ
2 sin(θ) (R−RT ) if θ ̸= 0 and θ ∈ (0, π)

,

(13)
where R ∈ SO(3) and θ = arccos ((tr(R)− 1)/2) ∈ [0 π].
If θ = π, the result is not unique. However, as long as the
trace of R is different from minus one, this formula can be
used to obtain upper and lower bounds on log(R). To this
end, we over bound the sets X̂(k) and Y (k+1) by a hyper-
cube. We recall that Vec(R(k)) ∈ X̂(k) and Vec(R(k +
1)) ∈ Y (k+1). Equation (13) is then solved for R = R(k+
1)R(k)T by resorting to interval analysis [8], which results
in upper and lower bounds for ω(k). As the quotient θ

sin(θ)
is a monotonically increasing function in the domain θ ∈
[0 π], the corresponding bounds can be easily computed by
evaluating its value at the extremes of the interval of θ.

The rate gyro bias is related to the true and the measured
angular velocity through (3), which can be rearranged in
order to isolate the bias, i.e.,

b = ωr − ω − n, ∥n∥max ≤ n̄.

The set Bm(k) is then computed by the sum of the vectorial
angular velocity measurement with the polytopes containing
the true angular velocity (computed using (13)) and the
sensor noise. This sum can be accomplished using the
Fourier-Motzkin projection [9]. Finally, since the bias is
constant, this set is intersected with the one obtained in the
previous iteration B(k) = B(k − 1) ∩ Bm(k). From B(k),
we extract b0 and b̄δ , required in the attitude SVO.
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Fig. 1. Division of the uncertainty set into several sub-sets and selection
of the sub-set containing the true bias.

C. Attitude and bias estimation using more than one model

The rate gyro bias can also be seen as a parameter of (2).
This fact can be exploited to increase the rate of convergence
of the bias SVO and consequently of the attitude SVO. We
propose a divide-and-conquer strategy. Instead of one pair
of attitude SVO and bias SVO, we can have multiple pairs
running in parallel. For each pair, it is assumed that the
bias belongs to a different set, with the constraint that the
reunion of all sets must fully cover the uncertainty space of
the bias. However, only one pair contains the true value of
the bias. Hence, it may happen that, as time goes by, all
other pairs degenerate on empty sets for the estimates. At
this point, we divide again the uncertainty space of the bias.
With this approach, each pair of estimators has smaller model
uncertainty and, thus, the convergence of the uncertainty set
of the bias is likely to be faster.

This model invalidation strategy is typically known in the
literature as model falsification (see [18]). In particular, a
novel SVO-based approach to model falsification has been
recently proposed, that uses the aforementioned line-of-
thought. The interested reader is further referred to [18].

The selection of the number of estimators running in
parallel depends on a compromise between the available
computational power and the desired convergence rate. One
great advantage of this technique is the possibility of par-
allelization of the computational burden by exploiting the
recent advances in the multi-core processors and multi-
processors systems. This strategy, illustrated in Fig. 1, greatly
increases the computational speed.

Some practical considerations should be noted.
Remark 2: The vector observations often have norm con-

straints. Although we cannot impose such restrictions di-
rectly in the SVOs, some overbounds can be derived and
included in the formulation to decrease the uncertainty in
the measurements

Remark 3: The use of this estimation scheme in very
aggressive maneuvering vehicles may lead to some practical
problems, since the conservatism added to the exponential
map increases with the angular velocity.

Remark 4: The noise in sensors, like magnetometers, is
typically modeled by Gaussian distributions. In such circum-
stances, the 3σ empirical bound is a suitable choice, at least
for some practical situations.

IV. SIMULATION RESULTS

In this section, we present simulation results that illustrate
the performance of the proposed solution. The simulated
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Fig. 3. Error of the upper and lower bounds of the Euler angles (a), and
error of the mean of the Euler angles (b).
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Fig. 4. Upper and lower bounds of the rate gyro bias (a), and error of the
mean of the rate gyro bias bounds (b).

trajectory is characterized by an angular velocity with the fol-
lowing oscillatory profile ωx = 4.01 sin(2π0.05kT ) deg /s,
ωy = −2.86 sin(2π0.04kT ) deg /s, ωz =
3.44 sin(2π0.02kT ) deg /s, ω = [ωx ωy ωz]

T . The
sampling time, T , and the maximum rate gyros noise
∥n∥max = n̄, are set to 0.1 s, and 0.115 deg/s,
respectively. The initial uncertainty on the rate gyro
bias is ±5.73 deg/s in each channel, while the true rate
gyro bias is b = [0.03 − 0.01 0.02]T deg/s. The directions
for the vector observations in the inertial frame are given
by Iv1 = [1 4 0], Iv2 = [3 0 0]T , Iv3 = [0 0 6]T , and each
channel of the measurements is corrupted by noise bounded
by ±0.01.

Figure 2 depicts the true attitude trajectory using the Euler
angles representation. In Fig. 3(a), it is shown the error of
the upper and lower bounds. In Fig. 3(b), the estimation
error is illustrated, showing it is always below 0.2 deg. The
upper and lower bounds on the rate gyro bias, as well as its
true value are depicted in Fig. 4(a). This figure shows that
the initial uncertainty in the rate gyro bias is reduced from
11.46 deg/s in each component, to 1.25 deg/s, 1.35 deg/s,
2.08 deg/s in the x, y, z components, respectively. Finally,
Fig. 4(b) depicts the time-evolution of the error of the central
point of the bias polytope, b0, to the true bias.
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V. CONCLUSIONS

This paper proposed a solution for the problem of attitude
and rate gyro bias estimation, based on vector observations
and angular velocity, corrupted by bounded noise. We de-
veloped an SVO which considers uncertainties defined by
polytopes and which guarantees that the true state of the
system is inside the estimated set. The obtained solution
is conservative due to the uncertainty in the measurements
provided by the rate gyros. However, no linearization is
required and the attitude of the rigid body is parametrized
by a rotation matrix yielding estimates which are free of
singularities. We showed that the new multi-core processors
can be exploited to increase the estimator convergence rate
without compromising the execution time. Simulation results
attested the applicability of the proposed technique.

APPENDIX

A. Bound on the exponential map of the sum of two skew-
symmetric matrices

In this section, we derive a bound on the exponential
map of the sum of two skew-symmetric matrices when only
bounds are known for one of them.

Let k1 ∈ R3 and k2 ∈ R3 be two generic vectors, and de-
fine the skew-symmetric matrices K1 = [k1]×, K2 = [k2]×.
From the definition of matrix multiplication, we have that
[C]ij =

∑p
k=1[K1]ik[K2]kj , where C = K1K2 ∈ R3×3,

and [X]ij denotes the element of line i and column j of
matrix X ∈ Rm×n. Using the fact that, for skew-symmetric
matrices, at least one of the elements of each row and each
column is zero, we obtain the following inequalities

∥Kk
1∥max ≤ (2k̄1)

k

2
, ∥Kk

1K
l
2∥max ≤ (2k̄1)

k(2k̄2)
l

2
,

where k̄1 = ∥k1∥max and k̄2 = ∥k2∥max. From these
inequalities, we derive an upper bound for each element of
the power of the sum of two matrices

[
(K1 +K2)

k
]
ij

≤[
Kk

1 + 1
213×3((k̄1 + k̄2)

k − k̄k1 )
]
ij

. Consequently, the expo-
nential map of the sum of matrices K1 and K2 satisfies

[exp(K1 +K2)]ij =
∞∑
k=0

[
(K1 +K2)

k
]
ij

k!

≤ [exp(K1)]ij +
1

2
(exp(2k̄1 + 2k̄2)− exp(2k̄1)).

B. Property of the multiplication of elements of the Special
Orthogonal Group

The following proposition is used in Corollary 1 in order
to consider the particular case when the measurements of the
rate gyros are exact.

Proposition 1: For any matrix A ∈ SO(3), AB ∈ SO(3)
if and only if B ∈ SO(3).
The proof follows directly from the properties of SO(3),
however it is omitted due to space constraints.
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