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a b s t r a c t

In this work, a cascade of two estimators is proposed as the solution for a joint parameter and state
estimation problem associated with a target maneuvering in three-dimensional space. A model for the
target that depends on its angular speed is considered and only the target position is measured. A
parameter identifier is used to obtain estimates of the target angular speed, which are then fed into
an adaptive filter that estimates the position, linear velocity, and linear acceleration of the target. The
synthesis of the parameter identifier resorts to Lyapunov techniques and the adaptive filter is synthesized
using H2 optimization strategies. Under persistence of excitation conditions, the error in the angular
speed identification and the error in the target state estimates provided by the H2 adaptive filter are: (i)
proved to converge exponentially fast to zero in the deterministic setup, i.e., in the absence of noise, and
(ii) proved to be bounded when bounded stochastic disturbances are considered and there is an upper
bound on the target linear velocity and angular speed. To assess the proposed methods, simulations
showing that the aforementioned stability and convergence properties hold, even when the estimates
provided by an Extended Kalman Filter (EKF) diverge, are presented.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of 3D target positioning and tracking has been
widely studied over recent decades, mainly due to the great im-
pact that the availability of reliable estimates for the position of a
target has on the performance of many robotic applications. Some
examples of such applications appear, for instance, in the con-
texts of security and surveillance, trajectory determination, hu-
man–computer interaction, and air traffic control, see Bar-Shalom,
Rong-Li, and Kirubarajan (2001), Kolodziej and Hjelm (2006), Lep-
etit and Fua (2005), and Saeedi, Lawrence, and Lowe (2006).

Positioning and tracking consist in using measurements pro-
vided by one or more sensors, at fixed locations or at moving plat-
forms, to estimate the state of a moving object, which is usually
composed of its position, velocity, and sometimes acceleration.
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To estimate such quantities, a dynamical model for the maneu-
vering target is usually considered, see the comprehensive survey
in Rong Li and Jilkov (2003). Typical models depend on the tar-
get angular velocity, or on its magnitude, the target angular speed.
However, most of the time this quantity is not known and mea-
surements of its value are not available. In fact, in most applica-
tions, only the target position is measured. Therefore, strategies
that consider several models for the target differing, for instance,
in their structure or in the value of the target angular speed have
been used. In Bar-Shalom et al. (2001) and Gaspar and Oliveira
(2011), tracking systems based on InteractingMultipleModels and
on aMultipleModel Adaptive Estimator can be found, respectively.
In this work, an alternative approach based on parameter identi-
fication strategies and on adaptive filtering is proposed.

The problem of estimating the position, velocity, and accelera-
tion of a target maneuvering in 3D space using onlymeasurements
of its position is tackled by resorting to a cascade of a parameter
identifier and an H2 adaptive filter. The first estimates the target
angular speed and the second combines these estimates withmea-
surements of the target position to estimate the target state.

The problem at hand could have been addressed using other
strategies, such as robust linear filtering, for instance. However,
the model considered for the target, like other state-space mod-
els used in target tracking, is unstable. In this case, the system has
three eigenvalues at the origin of the complex plane and three pairs
of complex conjugate eigenvalues in the imaginary axis. The work
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in Xie, de Souza, and Soh (1994) addresses the problem of robust
filtering design for uncertain linear systems with unstable modes
and subject to norm-bounded parameter uncertainty in both the
state and the output matrices. However, it is assumed that the un-
certainty does not affect the unstable modes of the system, which
is not the case. Moreover, it is easy to show that any linear filter
designed for the system considered in this work using a wrong
model for the target dynamics will be biased. Other approaches in-
spired, for instance, in Lyapunov theory or backstepping, see Krstic,
Kanellakopoulos, and Kokotovic (1995), have also failed, since both
strategies require the observation of the target velocity and accel-
eration, which are not available for measurement.

The main contributions of this work are:
(1) a new H2 adaptive filter that estimates the position, linear

velocity, and linear acceleration of a target using only position
observations;

(2) a new parameter identifier that estimates the (assumed con-
stant) target angular speed — the structure of this identifier
is different from the usual approaches, since there is only one
unknown parameter, but there are several measurements de-
pending on its value;

(3) a guarantee that, under persistence of excitation conditions,
the errors in the angular speed identification and in the state
estimates provided by the adaptive filter converge exponen-
tially fast to zero in the deterministic setup, i.e., in the absence
of noise, and are bounded when bounded stochastic distur-
bances are considered and there is an upper bound on the tar-
get linear velocity and angular speed.
The proposed framework is also appropriate for systems with

sensors that do not measure the target 3D position in Euclidean
coordinates, such as RADAR or SONAR, see Bar-Shalom et al. (2001)
and Delgado and Barreiro (2003), as long as their measurements
can be transformed into 3D Euclidean position measurements.

This brief paper is organized as follows. The problem addressed
in this work is formulated in Section 2, and the design and analy-
sis of the identification procedure that estimates the target angular
speed are provided in Section 3. In Section 4, an H2 adaptive filter
for the state of the target is derived, and its stability and perfor-
mance are discussed. Simulations illustrating the performance of
the proposed estimators, in comparison with an Extended Kalman
Filter (EKF), are presented in Section 5. Finally, in Section 6, con-
cluding remarks are provided.

Nomenclature

In this brief paper, |x| denotes the absolute value of the scalar
x, ∥x∥ the Euclidean norm of the vector x, and ∥X∥ the induced 2-
norm of the matrix X. If the vector x is a function of time in Rn,
x ∈ L2 and x ∈ L∞ mean, respectively, that ∥x∥2 = (


∞

0 ∥x(t)∥2

dt)1/2 and ∥x∥∞ = supt≥0 ∥x(t)∥ are finite. The notation Xi,j is
used to represent the entry of X in the i-th line and j-th column.
The vector ei, i = {1, 2, 3}, denotes the i-th vector of the canoni-
cal basis of R3; tr[X] stands for the trace of a square matrix X, and
diag[a1, . . . , an] corresponds to a diagonal matrix whose diagonal
entries, starting in the upper left corner, are a1, . . . , an (when these
entries are matrices, the resulting matrix is block diagonal). The
identity and zeromatrices are denoted respectively by Ik and 0m×n,
where k corresponds to the number of rows and columns of the
identity matrix, andm and n correspond, respectively, to the num-
ber of rows and columns of the matrix of zeros. Finally, ⊗ denotes
the Kronecker product, δ(t) the Dirac delta function, and min[a, b]
the minimum of the elements a and b.

2. Problem formulation

The problem addressed in this brief paper is that of tracking and
locating a target maneuvering in three-dimensional space using
observations of its position. The target position, linear velocity, and
Fig. 1. Parameter identifier and adaptive filter connection.

linear acceleration in the inertial (Cartesian) frame are denoted by
p = [x y z]T , v = [ẋ ẏ ż]T , and a = [ẍ ÿ z̈]T , respectively,
where the dot represents the time derivative. Using this notation,
the state x = [x ẋ ẍ y ẏ ÿ z ż z̈]T ∈ R9 of the target is considered
to evolve according to the 3D Planar Constant-Turn Model

ẋ(t) = F(ω)x(t)+ Bd(t), (1)

as presented in Rong Li and Jilkov (2003), where

F(ω) = diag

F(ω), F(ω), F(ω)


, F(ω) =

0 1 0
0 0 1
0 −ω2 0

 ,

B = I3 ⊗ b, b = e3,

and ω ≥ 0 is the (assumed constant, unknown, and bounded)
angular speed (norm of the target angular velocity vector). The
process noise is denoted by d(t) ∈ R3 and time is represented by
t . The eigenvalues of F(ω) are 0 and ±ωj, where j =

√
−1 is the

imaginary unit. Thus, the nominal trajectories considered by this
model are straight lines, parabolic trajectories, and ellipses.

Themeasurements ym(t) ∈ R3 of the position of the target with
respect to the inertial reference frame are a linear function of the
target state, and can be written as

ym(t) = p(t)+ Dn(t) = Cx(t)+ Dn(t), (2)

where n(t) ∈ R3 denotes the measurement noise, C = I3 ⊗ eT1 ,
and D = I3. Both the process and the observation noises are
assumed to be bounded stochastic disturbances, i.e., βd = ∥d∥∞

and βn = ∥n∥∞ are finite.
The problem addressed in this brief paper is stated next.
Problem statement. Consider a target maneuvering in 3D space

according to the model in (1), with constant, unknown, and
bounded angular speed. Moreover, assume that measurements
of the target position, as described in (2), are available. In this
case, design two estimators, one for the target state and the
other for its angular speed, such that the errors in both cases
(i) converge exponentially fast to zero when no process and
observation noises are present, and (ii) are boundedwhenbounded
noise is considered and there is an upper bound on the target linear
velocity.

To solve this problem, a cascade of a parameter identifier and
an adaptive filter is proposed, see Fig. 1. In the figure, ω̂(t) denotes
the estimates of the target angular speed ω and x̂(t) the estimates
of the target state x(t).

3. Angular speed identification

In this section, the design and analysis in continuous-time
of a parameter identifier that estimates the angular speed of a
target moving according to the model in (1) are provided. This
identifier resorts only to position measurements obtained as in
(2), and builds on strategies commonly used in adaptive control,
see Ioannou and Fidan (2006) and Sastry and Bodson (1989).

The design of the parameter identifier uses the convolution
differentiation properties in Proposition 1.

Proposition 1 (Convolution Differentiation Rules). If the convolution
of the functions f (t) and g(t), over the range [0, t], is given by f (t)
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∗ g(t) =
 t
0 f (τ )g(t − τ)dτ , then

ḟ (t) ∗ g(t) = f (t) ∗ ġ(t)+ f (t)g(0)− f (0)g(t) (3)
...
f (t) ∗ g(t) = f (t) ∗

...
g (t)+ f (t)g̈(0)− f (0)g̈(t)

+ ḟ (t)ġ(0)− ḟ (0)ġ(t)+ f̈ (t)g(0)− f̈ (0)g(t). (4)

Proof. Using the product and chain rules of differentiation, it is
easy to obtain (3) since

ḟ (t) ∗ g(t) =

 t

0

d
dτ


f (τ )g(t − τ)


dτ −

 t

0
f (τ )

d
dτ

g(t − τ)dτ

= f (t)g(0)− f (0)g(t)−

 t

0
f (τ )

d
dτ

g(t − τ)dτ .

If this relation is applied successively to
...
f (t)∗g(t), then (4) follows

immediately. �

From themodel in (1), it is easy to conclude that ȧ(t) = αv(t)+
d(t), i.e., that

...
p(t) = αṗ(t) + d(t), where α = −ω2. To avoid

the use of differentiators, let us start by filtering the entries of
the vectors in the previous expression with a filter with impulsive
response hf (t), which leads to
...
p(t) ∗ hf (t) = αṗ(t) ∗ hf (t)+ d(t) ∗ hf (t).

Note that u(t) ∗ hf (t), where u(t) represents a generic vector,
denotes the convolution of each one of the entries of u(t)with the
impulsive response hf (t), over the finite range [0, t]. According to
(3) and (4), the previous expression can be rewritten in the form

p(t) ∗
...
h f (t)+ δ(t)ḧf (0)


= αp(t) ∗


ḣf (t)+ δ(t)hf (0)


+ p(0)ḧf (t)+ ṗ(0)ḣf (t)

+

p̈(0)− αp(0)


hf (t)− ṗ(t)ḣf (0)

−p̈(t)hf (0)+ d(t) ∗ hf (t), (5)

given that p(t) = p(t) ∗ δ(t), since δ(t − τ) = 0, ∀τ>t .
For simplicity, consider the notation

h1(t) = hf (t), H1(s) = Hf (s)
h2(t) = ḣf (t)+ δ(t)hf (0), H2(s) = sHf (s)
h3(t) =

...
h f (t)+ δ(t)ḧf (0), H3(s) = s3Hf (s)− s2hf (0)− sḣf (0)

where s is the Laplace operator, Hf (s) the Laplace transform of
hf (t), and Hi(s) the Laplace transform of the impulsive response
hi(t), i = 1, 2, 3.

In (5), the target velocity and acceleration are not measured,
thus the terms ṗ(t)ḣf (0) and p̈(t)hf (0) are unknown. These
quantities can be removed from the equation by designing the
impulsive response hf (t) in such a way that hf (t) and ḣf (t) verify
hf (0) = ḣf (0) = 0. Moreover, for h1(t), h2(t), and h3(t) to be
impulsive responses of filters that are realizable by linear time-
invariant state-space systems, H1(s), H2(s), and H3(s) must be
proper rational functions, see Rugh (1996). Since s3 has degree 3,
this can be accomplished by choosing Hf (s) to be a stable filter
of the form Hf (s) = 1/Λ(s), where Λ(s) is a third-order monic
Hurwitz polynomial, e.g., Λ(s) = (s + λ)3, λ > 0. By calculating
the inverse Laplace transform of Hf (s), the functions hf (t) =

t2e−λtu(t)/2 and ḣf (t) = t(1−λt/2)e−λtu(t), where u(t) denotes
the continuous-time unit step function, see Oppenheim, Willsky,
and Hamid (1983), result. Note that the condition hf (0) = ḣf (0) =

0 is verified. The transfer function Hf (s) = 1/Λ(s) leads to

H1(s) =
1

Λ(s)
, H2(s) =

s
Λ(s)

, and H3(s) =
s3

Λ(s)
.

According to the notation and reasoning above, the relation in
(5) can be rewritten as a function of ym(t):

ym(t) ∗ h3(t)  
ψ(t)

= α ym(t) ∗ h2(t)  
φ(t)

+ n(t) ∗

h3(t)− αh2(t)


+ d(t) ∗ h1(t)  

ξ(t)

+ p0ḧf (t)+ v0ḣf (t)+ (a0 − αp0)hf (t)  
q(t)

, (6)

where p0, v0, and a0 denote the initial values of p(t), v(t), and a(t),
respectively. In this formula, q(t) is a term that comes from the ini-
tial conditions and ξ(t) ∈ R3 is a signal that results from filtering
the process and observation noises with filters with impulsive re-
sponses h1(t) and h3(t)−αh2(t), i.e., with filterswith transfer func-
tions 1/Λ(s) and (s3−αs)/Λ(s), respectively. Since the process and
observationnoises, aswell as the quantitiesp0, v0, a0, andα, are not
known, the signals ξ(t) and q(t) are also not known. It is straight-
forward to show that ∥q(t)∥ converges exponentially fast to zero,
thus this term vanishes with time. Some properties will also be in-
ferred for ∥ξ(t)∥ in Section 3.3, which will ensure that having the
two unknown terms ξ(t) and q(t), in (6), is not a problem. More-
over,ψ(t) ∈ R3 and φ(t) ∈ R3 are signals obtained by filtering the
entries of the measurement vector ym(t)with filters with transfer
functions H3(s) and H2(s), respectively. Considering a state-space
framework, the i-th entry ψi(t) of ψ(t) and the i-th entry φi(t) of
φ(t) are obtained by filtering the i-th entry ymi(t) of the measure-
ments ym(t)with the following causal linear time-invariant filters:
ẋψi(t) = Aψxψi(t)+ Bψymi(t)
ψi(t) = Cψxψi(t)+ Dψymi(t),

xψi(0) = 03×1, (7)

and
ẋφi(t) = Aφxφi(t)+ Bφymi(t)
φi(t) = Cφxφi(t),

xφi(0) = 03×1, (8)

where xψi(t) ∈ R3 and xφi(t) ∈ R3 denote the state vectors of each
filter. ForΛ(s) = (s + λ)3, λ > 0, we have

Aψ = Aφ =

−3λ −3λ2 −λ3

1 0 0
0 1 0

 , Bψ = Bφ = e1,

Cψ =

−3λ −3λ2 −λ3


, Cφ = eT2 ,

and Dψ = 1, see Rugh (1996).
In this work, no probability distribution is considered for the

unknown parameter. This is to keep the proposed methods as
general as possible, without particularizing the algorithms for a
given target or experiment.

3.1. Angular speed adaptive law

In order to derive an adaptive law that provides estimates for α,
consider the estimate ψ̂(t) of ψ(t), with expression

ψ̂(t) = α̂(t)φ(t), (9)

obtained resorting to an estimate α̂(t) of the unknown parameter
α, at time t . Since the value of α is unknown, the error α̃(t) =

α− α̂(t) in its estimation is not available. However, the estimation
error ε(t) = (ψ(t) − ψ̂(t))/m2

φ(t) can be computed using the
position measurements and reflects the difference between α and
α̂(t):

ε(t) =
α̃(t)φ(t)
m2
φ(t)

+
ξ(t)
m2
φ(t)

+
q(t)
m2
φ(t)

. (10)
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The term m2
φ(t) is a normalization signal that guarantees that the

entries of φ(t)/mφ(t) are bounded, and is sometimes used in the
context of parameter identification, see examples in Ioannou and
Fidan (2006) and Sastry and Bodson (1989). This property is useful
in the analysis of the convergence of the estimates α̂(t) to the real
parameter α, when φ(t) is not guaranteed to be bounded. In this
work, the signalm2

φ(t) = 1 + µφT (t)φ(t), µ > 0, is used.
Estimates α̂(t) of the unknown parameter α can be obtained by

minimizing the cost function

J(α̂(t)) =
∥ε(t)∥2 m2

φ(t)

2
=

∥ψ(t)− α̂(t)φ(t)∥2

2m2
φ(t)

, (11)

whichdepends quadratically on the estimation errorε(t). Themin-
imization of this function with respect to α̂(t) is performed using
the normalized (the normalization signalm2

φ(t) is considered) gra-
dientmethod ˙̂α(t) = −γ∇J(α̂(t)), where γ > 0 is a constant usu-
ally referred to as the adaptation gain and ∇J(α̂(t)) is the gradient
of J(α̂(t))with respect to α̂(t). The following adaptive law results:

˙̂α(t) = γ εT (t)φ(t), α̂(0) = α̂0, (12)

where α̂0 denotes the initial estimate of α.

3.2. Angular speed convergence—deterministic framework

For convergence study purposes, let us start by considering
a deterministic framework, i.e., consider that the process and
observation noises introduced in Section 2 are not present (the
influence of these noises is addressed in Section 3.3). In this case,
the proposed adaptive law ensures that the estimation error ε(t)
converges to zero, but does not imply that α̂(t) converges to α. In
order to guarantee this property, some conditionsmust be imposed
on φ(t). These conditions are derived in Theorem 4, whose proof
depends on Definition 2 and Lemma 3.

Definition 2 (Rugh, 1996). The linear state equation ẋ(t) = A(t)x
(t), x(t0) = x0, is called uniformly exponentially stable (UES) if
there exist finite positive constants γu, λu such that for any initial
time instant t0 and any initial condition x0, the corresponding
solution satisfies ∥x(t)∥ ≤ γue−λu(t−t0)∥x0∥, t ≥ t0.

Lemma 3 (Zhang, Ioannou, & Chien, 1994). Consider the system
ẋ(t) = A(t)x(t) + u(t). If ẋ(t) = A(t)x(t) is UES and ∥u(t)∥ is
exponentially decaying, then ∥x(t)∥ converges to zero exponentially
fast.

In Ioannou and Fidan (2006), stability and convergence guar-
antees for identification algorithms where several parameters are
considered, and ψ(t) is a scalar, can be found. In this work, these
properties are generalized for cases where there is only one un-
known parameter, butψ(t) is a vector, see Theorem 4. The reason-
ing used to prove this generalization is completely different from
that in Ioannou and Fidan (2006).

Theorem 4. In the deterministic case, the identifier structure de-
scribed previously, combined with the normalized gradient algo-
rithm (12), guarantees that α̂(t) converges to the nominal parameter
α exponentially fast, if ∥φ(t)∥ = ||

φ(t)
mφ (t)

|| is persistently exciting.

Proof. Let the parameter estimation error be given by α̃(t) =

α − α̂(t). Since α is constant, when the process and observation
noises are not considered we have

˙̃α(t) = −γ εT (t)φ(t) = −γ
∥φ(t)∥2

m2
φ(t)

α̃(t)− γ
qT (t)φ(t)
m2
φ(t)

, (13)
with α̃(t0) = α̃0, where t0 denotes the initial time instant and
α̃0 the initial parameter estimation error. Moreover, if ∥φ(t)∥ is
persistently exciting (PE), there exist θ0 > 0 and T0 > 0 such that t+T0
t ∥φ(τ )∥2dτ ≥ θ0T0, ∀t ≥ 0, see the definition of persistence

of excitation in Ioannou and Fidan (2006).
To prove this theorem, let us start by proving that the homoge-

neous part of (13) is UES if ∥φ(t)∥ is PE. Consider the continuously
differentiable function

V (t, α̃(t)) =

 t+T0

t
α̃2(τ )dτ , ∀ t ≥ 0. (14)

Since the solution of the homogeneous equation is given by

α̃(τ ) = α̃(t)e−γ
 τ
t ∥φ(σ )∥2dσ , τ ≥ t , (15)

the function in (14) can be written in the form

V (t, α̃(t)) =

 t+T0

t
α̃2(t)e−2γ

 τ
t ∥φ(σ )∥2dσdτ , ∀ t ≥ 0. (16)

Moreover, ∥φ(t)∥ is bounded, i.e., β = supτ≥0 ∥φ(τ )∥ is a finite
constant, thus 0 ≤

 τ
t ∥φ(σ )∥2dσ ≤ β2(τ − t), τ ≥ t . Using

these inequalities and the expression in (16), it is possible to con-
clude that

1 − e−2γ β2T0

2γ β2
α̃2(t) ≤ V (t, α̃(t)) ≤ T0α̃2(t), ∀ t ≥ 0.

From (14), the derivative of V (t, α̃(t)) with respect to time is
V̇ (t, α̃(t)) = α̃2(t + T0)− α̃2(t). If ∥φ(t)∥ is assumed to be PE and
(15) is usedwith τ = t+T0, it is straightforward to show that there
exist θ0 > 0 and T0 > 0 such that

V̇ (t, α̃(t)) ≤ −

1 − e−2θ0T0


α̃2(t), ∀ t ≥ 0.

If such θ0 > 0 and T0 > 0 are considered, then there exist positive
constants k1 = (1 − e−2γ β2T0)/(2γ β2), k2 = T0, and k3 = 1 −

e−2θ0T0 , such that k1α̃2(t) ≤ V (t, α̃(t)) ≤ k2α̃2(t) and V̇ (t, α̃(t))
≤ −k3α̃2(t), for all t ≥ 0. Therefore, if ∥φ(t)∥ is PE, the homoge-
neous equation associated with the time-varying system in (13) is
UES, see Theorem 4.10 in Khalil (2002).

Since ∥q(t)∥ is exponentially decaying, ∥φ(t)/mφ(t)∥ is
bounded, and mφ(t) ≥ 1, the norm of the term −γ qT (t)φ(t)/
m2
φ(t), in (13), converges exponentially fast to zero. Therefore, ac-

cording to Lemma 3, |α̃(t)| also converges to zero exponentially
fast. �

When v(0) and a(0) are not both null, the signal ∥φ(t)∥ is PE,
which is easily understood by analyzing the trajectories associated
with the model in (1). Therefore, according to Theorem 4, in
a deterministic framework α̂(t) is guaranteed to converge to α
exponentially fast unless v(0) = a(0) = 0, i.e., unless the target
does not move, which was expected since trying to identify the
target angular speed ω does not make sense in such a situation.

3.3. Angular speed convergence—stochastic framework

When a stochastic framework is considered, i.e., when the
process and observation noises, d(t) and n(t) respectively,
introduced in Section 2 are taken into account, the error α̃(t)
associated with the estimation of the target angular speed cannot
be expected to converge exactly to zero. However, it is possible
to prove that this error converges to the vicinity of zero if some
conditions are imposed on d(t), n(t), and ∥φ(t)∥. These conditions
are stated in Theorem 5.

Theorem 5. If the process and observation noises, d(t) and n(t)
respectively, are bounded and ∥φ(t)∥ is PE, then the normalized
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gradient algorithm (12) guarantees that there exist finite positive
constants γ1, λ1, and βα̃ such that

|α̃(t)| ≤ γ1e−λ1(t−t0) + βα̃ , ∀ t ≥ t0. (17)

Proof. In the stochastic setup, we have

˙̃α(t) = −γ
∥φ(t)∥2

m2
φ(t)

α̃(t)− γ
qT (t)φ(t)
m2
φ(t)

− γ
ξT (t)φ(t)
m2
φ(t)

, (18)

with α̃(t0) = α̃0, where t0 denotes the initial time instant and
α̃0 the initial parameter estimation error. The term ξ(t) results
from filtering the process and observation noiseswith causal linear
time-invariant filters that are UES, which implies that they are
also uniformly bounded-input, bounded-output stable, see Rugh
(1996). Therefore, if the noises are bounded, i.e., if βd = ∥d∥∞ and
βn = ∥n∥∞ are finite, then there exist finite positive constants ηd
and ηn such that the forced responses of the filters guarantee that
∥ξ(t)∥ ≤ ηdβd + ηnβn, for any t0.

As argued in the proof of Theorem 4, the homogeneous part
of (18) is UES if ∥φ(t)∥ is PE. Thus, in this case there exist finite
positive constants γα̃ and λα̃ such that the state transition matrix
associated with this equation verifies ∥Φα̃(t, τ )∥ ≤ γα̃e−λα̃(t−τ)

for all t , τ such that t ≥ τ , see Rugh (1996). Since ∥q(t)∥ is
exponentially decaying, there exist γq > 0 and λq > 0 such
that ∥q(t)∥ ≤ γqe−λq(t−t0)∥q(t0)∥. Moreover, ∥φ(τ )∥ ≤ β and
mφ(τ ) ≥ 1, therefore the solution of (18) verifies

|α̃(t)| ≤ γα̃e−λα̃(t−t0)|α̃(t0)| + γ γα̃β

×

 t

t0
e−λα̃(t−τ)


γqe−λq(τ−t0)∥q(t0)∥ + ηdβd + ηnβn


dτ .

By computing the integral, it is easy to show that the previous
expression can be written as a sum of several terms that converge
exponentially fast to zero and a term that is an upper bound for
the parameter estimation error after the initial transient. Thus,
there exist finite positive constants γ1, λ1, and βα̃ such that (17)
holds. �

According to Theorem 5, when the process and observation
noises are bounded, ∥φ(t)∥ is PE, and the initial transient vanishes,
the norm of the error in the estimation of the unknown parameter
verifies |α̃(t)| ≤ βα̃ , which guarantees that the angular speed
estimates converge to the vicinity of the target angular speed.

3.4. Gradient projection method

The parameter α = −ω2 to be estimated cannot be positive.
Therefore, instead of minimizing (11) for all α̂(t) ∈ R, we want
to constrain the estimation to be within the convex subset S ,
{α̂(t) ∈ R : α1 ≤ α̂(t) ≤ α2} of R, where α1 ≤ α2 ≤ 0. This
is done using the gradient projection method (GPM), see Ioannou
and Fidan (2006). According to this method, instead of (12), the
new adaptive law

˙̂α(t) =


γ εT (t)φ(t), if α1 < α̂(t) < α2

or if α̂(t) = α1 and εT (t)φ(t) ≥ 0,
or if α̂(t) = α2 and εT (t)φ(t) ≤ 0,

0, otherwise,

(19)

is used. This law retains the properties derived in the absence of
projection, while guaranteeing that α̂(t) ∈ [α1, α2], for all t , as
long as α̂0 ∈ S and α ∈ S. The proof of this statement is omitted
here due to space constraints.

The angular speed estimation strategy described in this section
is summarized below and illustrated in Fig. 2.
Fig. 2. Angular speed estimation strategy.

Algorithm 1. Estimation of the target angular speed:
(1) obtainψ(t) and φ(t) by filtering themeasurements ym(t)with

the filters presented in (7) and (8);
(2) compute the estimation error ε(t) = (ψ(t)−α̂(t)φ(t))/m2

φ(t),
α̂(0) = α̂0;

(3) compute α̂(t) using the gradient projection method presented
in (19);

(4) obtain the target angular speed estimates ω̂(t) =


−α̂(t).

4. H2 adaptive filter

In this section, a continuous-time H2 adaptive filter that
estimates the state of a target moving according to (1), resorting
only to measurements of the target position and estimates of its
angular speed, is proposed. The stability and performance of the
filter are studied.

If, instead of the target angular speed ω, α = −ω2 is used, the
model in (1) for the target can be written as an affine parameter
dependent system

ẋ(t) = A(α)x(t)+ Bd(t), (20)

where A(α) = diag

A(α), A(α), A(α)


∈ R9×9 and

A(α) =

03×1 e1 e2

  
A0

+α

03×1 e3 03×1

  
A1

.

Moreover, consider that the target angular speed is bounded,
i.e., that there exist α1 ≤ 0 and α2 ≤ 0 such that α ∈ [α1, α2].
If estimates α̂(t), obtained according to (19), and measurements
ym(t), as defined in (2), of the target position are used, the following
adaptive filter for the state x(t), with structure motivated by a
linear filter, results:

˙̂x(t) = A(α̂(t))x̂(t)+ L(ym(t)− ŷ(t)), x̂(0) = x̂0, (21)

where x̂(t) is an estimate of x(t), ŷ(t) = Cx̂(t), and x̂0 denotes the
initial conditions of the filter. The vector L ∈ R9×3 is the gain of the
filter.

The dynamics of the state estimation error x̃(t) = x(t) − x̂(t)
associated with the filter can be written in the form
˙̃x(t) = (A(α)− LC − α̃(t)A1)x̃(t)

+ α̃(t)A1x(t)+ Bd(t)− LDn(t), (22)

where A1 = diag

A1, A1, A1


∈ R9×9.

4.1. Filter stability—deterministic framework

In order to study the stability of the proposed filter, let us start
by considering a deterministic framework, i.e., consider that the
process and observation noises introduced in Section 2 are not
present. In this case, conditions on the gain L that ensure that
the error of the filter in (21) converges exponentially fast to zero
can be imposed. These conditions are provided in Theorem 6. The
influence of the noise on the stability of the filter is addressed in
the next section.

Theorem 6. When a deterministic framework is considered and
∥φ(t)∥ is persistently exciting, the error of the filter in (21), with α̂(t)
computed resorting to (19) and gain L chosen to guarantee that both
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˙̃x(t) = [A(α1)− LC] x̃(t) and ˙̃x(t) = [A(α2)− LC] x̃(t) are UES for
given values of α1 ≤ 0 and α2 ≤ 0, converges to zero exponentially
fast.

Proof. In the deterministic case, the dynamics of the error of the
filter in (21), presented in (22), has the form

˙̃x(t) = (A(α̂(t))− LC)x̃(t)+ α̃(t)A1x(t).

If ∥φ(t)∥ is PE, there exist finite positive constants cp, λp such that
∥α̃(t)A1x(t)∥ ≤ cpe−λp(t−t0), ∀t ≥ t0, given that ∥α̃(t)A1x(t)∥ ≤

∥α̃(t)∥.∥A1∥.∥x(t)∥ and that ∥x(t)∥ is either bounded or domi-
nated by a polynomial of degree two, due to the trajectories consid-
ered by the target model in (1). Since, according to Theorem 4 and
Section 3.4, α̃(t) converges to zero exponentially fast when ∥φ(t)∥
is PE and no noise is considered, and ∥A1∥ is a finite positive con-
stant, the exponential dominates the other terms in the expression.
Therefore, according to Lemma 3, if ∥φ(t)∥ is PE and L is chosen in
such a way that ˙̃x(t) = (A(α̂(t)) − LC)x̃(t) is UES, then the error
of the filter is guaranteed to converge to zero exponentially fast.

Consider that there exist a symmetric positive definite matrix
P ∈ R9×9 and a matrix W ∈ R9×3 such that the linear matrix in-
equalities (LMIs)
AT (α1)P + PA(α1)− CTWT

− WC < −Q
AT (α2)P + PA(α2)− CTWT

− WC < −Q (23)

are verified for a given symmetric positive semidefinite matrix
Q ∈ R9×9, i.e., consider that there exists a gain L = P−1W
such that ˙̃x(t) = [A(α1)− LC] x̃(t) and ˙̃x(t) = [A(α2)− LC] x̃(t)
are UES. In this case, according to Theorem 3.2 in Amato (2006),
L = P−1W makes ˙̃x(t) = [A(α)− LC] x̃(t) quadratically stable
for α ∈ [α1, α2], see details about quadratic stability in Amato
(2006). Moreover, from Theorems 2.6 and 3.1 in Amato (2006), if
˙̃x(t) = [A(α)− LC] x̃(t) is quadratically stable for α ∈ [α1, α2],
then ˙̃x(t) =


A(α̂(t))− LC


x̃(t) is uniformly asymptotically sta-

ble, since α̂(t) ∈ [α1, α2]. For linear time-varying systems, uni-
form asymptotic stability is equivalent to uniform exponential
stability, see Rugh (1996); therefore, under the stated assumptions,
˙̃x(t) =


A(α̂(t))− LC


x̃(t) is UES, which, according to Lemma 3,

guarantees that the error of the filter converges to zero exponen-
tially fast. �

In Theorem 6, conditions to be imposed on L that ensure the
convergence of the filter error exponentially fast to zero, in the
deterministic case, were presented. It is possible to show that there
always exists a gain L verifying these conditions if ∥φ(t)∥ is PE. The
proof of this statement is omitted here due to space constraints.

4.2. Filter stability—stochastic framework

When both the process and the observation noise are consid-
ered, it is possible to prove that the filter estimation error con-
verges to the vicinity of zero and that, after the initial transient,
its maximum norm has an upper bound if some conditions are im-
posed on d(t), n(t), ∥φ(t)∥, and on the target maximum linear ve-
locity, see Theorem 7.

Theorem 7. Consider the filter in (21), with α̂(t) computed resorting
to (19) and gain L chosen to guarantee that both ˙̃x(t) = [A(α1)−

LC] x̃(t) and ˙̃x(t) = [A(α2)− LC] x̃(t) are UES for given values of
α1 ≤ 0 and α2 ≤ 0. Moreover, assume that ∥φ(t)∥ is persistently
exciting and that the process noise d(t), the observation noise n(t),
and the target linear velocity v(t) are bounded. In this case, there exists
a finite positive constant βx̃ such that, after an initial transient, the
filter estimation error verifies

∥x̃(t)∥ ≤ βx̃, ∀ t ≥ t0. (24)
Proof. Consider that the process and observation noises are
bounded, i.e., that βd = ∥d∥∞ and βn = ∥n∥∞ are finite, and
that ∥φ(t)∥ is PE. If the target angular speed estimates are ob-
tained using the gradient adaptive law in (19), which guarantees
that |α̃(t)| ≤ |α2 − α1|, for all t ≥ t0, then, according to Theo-
rem 5, there exist finite positive constants γ1, λ1, and βα̃ such that

|α̃(t)| ≤ min

|α2 − α1|, γ1e−λ1(t−t0) + βα̃


, ∀ t ≥ t0. (25)

Moreover, if the gain L is chosen so that both ˙̃x(t) = [A(α1)− LC]
x̃(t) and ˙̃x(t) = [A(α2)− LC] x̃(t) are UES for any given values of
α1 ≤ 0 and α2 ≤ 0, then, as argued in the proof of Theorem 6,
˙̃x(t) =


A(α̂(t))− LC


x̃(t) is also UES. Therefore, there exist fi-

nite positive constants γx̃ and λx̃ such that the state transition ma-
trix associatedwith this linear state equation verifies ∥Φx̃(t, τ )∥ ≤

γx̃e−λx̃(t−τ) for all t , τ such that t ≥ τ .
When noise is considered, the target state estimation error

evolves according to (22). Due to the structure of A1, this expres-
sion can be written as

˙̃x(t) = (A(α̂(t))− LC)x̃(t)+ B (d(t)+ α̃(t)v(t))− LDn(t).

If the target linear velocity v(t) is bounded, i.e., if βv = ∥v∥∞

is finite, then, using the variation of constants method, see Rugh
(1996), yields

∥x̃(t)∥ ≤ ∥Φx̃(t, t0)∥.∥x̃(t0)∥ + βv∥B∥

×

 t

t0
∥Φx̃(t, τ )∥min


|α2 − α1|,γ1e−λ1(τ−t0) + βα̃


dτ

+ (∥B∥βd + ∥L∥.∥D∥βn)

 t

t0
∥Φx̃(t, τ )∥dτ

for all t ≥ t0. By computing the integrals it is straightforward to
show that, under the stated assumptions, there exists a finite pos-
itive constant βx̃, given by

βx̃ =
γx̃

λx̃


∥B∥βv min [|α2 − α1|, βα̃] + ∥B∥βd + ∥L∥.∥D∥βn


,

(26)

such that, after an initial transient, the filter estimation error veri-
fies (24). �

In Theorem7, some assumptions necessary to ensure the existence
of a finite positive constant βx̃ such that, after an initial transient,
(24) is verified, were presented. It is possible to prove that, under
these assumptions, a gain L guaranteeing the existence of such
a constant can always be found. The proof of this statement is
omitted here due to space constraints.

4.3. Design of the gain of the H2 filter

In this section, a LMI-based strategy for the design of the gain
of the H2 adaptive filter is proposed, see Boyd, El Ghaoui, Feron,
and Balakrishnan (1994) and Oliveira (2002) for details about the
design of H2 filters using LMIs.

When noise is considered, the dynamics of the error x̃(t) =

x(t)− x̂(t) associated with the estimates provided by the filter in
(21) can be written in the form

˙̃x(t) = (A(α)− LC) x̃(t)+ B[d(t)+ α̃(t)v̂(t)] − LDn(t),

where v̂(t) corresponds to the target linear velocity estimates,
i.e., v̂(t) = [x̂2(t) x̂5(t) x̂8(t)]T , where x̂k(t) denotes the k-
th entry of x̂(t). The value of α̃(t)v̂(t) ∈ R3 is unknown, as it
depends on the error α̃(t) in the estimation of α, whose impact
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on the filter performance we want to minimize. This term af-
fects the estimation error x̃(t) in the same way d(t) does (through
B), i.e., they both corrupt directly the error associated with the
target acceleration estimates. Thus, for design purposes, a single
disturbance vector δ(t) = d(t) + α̃(t)v̂(t), comprising the con-
tribution of both terms, is considered. By concatenating this dis-
turbance with the noise that corrupts the measurements of the
target position into a single vector, the generalized disturbance
vector w(t) = [δT (t) nT (t)]T ∈ R6 results. Rewriting the dy-
namics of the error as a function of this disturbance yields

˙̃x(t) = (A(α)− LC) x̃(t)+

Bw − LDyw


w(t), (27)

where Dyw = [03×3 D] and Bw = [B 09×3].
For performance purposes, only the target position estimation

error e(t) = Cx̃(t) ∈ R3 is considered. The gain L of the filter is
found byminimizing the maximum of the H2 norm of the systems
obtained from w(t) to e(t) when α, in (27), is replaced by α1 and
α2; see Oliveira (2002) for details about the design of H2 filters
using LMIs. The H2 norm obtained with this strategy is an upper
bound for the H2 norm of the real system since α ∈ [α1, α2],
see Becker and Packard (1994).

It is straightforward to conclude that the gain L found using
this method guarantees that both ˙̃x(t) = [A(α1)− LC] x̃(t) and
˙̃x(t) = [A(α2)− LC] x̃(t) are UES for given values of α1 ≤ 0 and
α2 ≤ 0. Therefore, this gain ensures that the error of the filter in
(21), with α̂(t) obtained as in (19), verifies (24) if the assumptions
stated in Theorem 7 hold.

5. Simulation results

In this section, continuous-time simulation results illustrating
the performance of the proposed parameter identification proce-
dure and adaptive filter are presented.

For comparison purposes, results obtained with an Extended
Kalman Filter, see Gelb (2001), are also provided. This filter was
designed for the nonlinear system that results from augmenting
the state x(t) ∈ R9, of (1), with the target angular speed ω. The
new state variable was modeled as a Wiener process, see Rong Li
and Jilkov (2003). Themodel considered for themeasurementswas
the one introduced in (2).

In this section, measurements of the target position in spheri-
cal coordinates obtained with a single PTZ (acronym for pan, tilt,
and zoom) camera are used. These measurements can be obtained
using the strategies proposed in Gaspar and Oliveira (2011), for in-
stance, and are transformed to Cartesian coordinates using a non-
linear transformation, see examples in Bar-Shalom et al. (2001),
which leads to the model in (2) for the position measurements.

In the simulations presented in this section, the intrinsic param-
eters are the ones from a 215 PTZ camera from AXIS, and the target
angular speed is considered to belong to the interval [0, 0.5] rad/s.
The parameters µ = γ = 10−10 and the Hurwitz polynomial
Λ(s) = (s + λ)3, λ = 0.2, were used in the design of the param-
eter identifier. In the design of the H2 filter, the intensities of the
process and observation noises were tuned by replacing b = e3
and D = I3 by b = 10 e3 and D = 100 I3. This strategy led to a
gain Lwith non-null entries of the form L1,1 = L4,2 = L7,3 = 1.33,
L2,1 = L5,2 = L8,3 = 0.77, and L3,1 = L6,2 = L9,3 = 0.13.

The measurements of the center of the target in the images
and the measurements of its distance with respect to the camera
are corrupted by uniformly distributed noise, with values in the
intervals [−10, 10]pixel and [−1, 1]m, respectively. For the design
of the EKF, the process noise that affects the target acceleration
and the measurement noise that corrupts the measurements of
the target position are considered to have power spectral density
matrices 102I3 mm2Hz5 and 1002I3 mm2Hz−1, respectively. The
Fig. 3. Trajectories described by the target.

power spectral density considered for the noise that affects the
target angular speed is 10−6 rad2 Hz3.

In the following, two experiments are reported. The first illus-
trates the performance of the proposed estimators when the target
moves along a straight line (ω = 0 rad/s), and the second illus-
trates their performancewhen the target angular speed varies over
time. The trajectories described by the target in the two situations
are shown in Fig. 3.

In Fig. 4(a), the target angular speed estimates provided by the
identification procedure proposed in Section 3 and by the EKF, for
the first experiment, are depicted. As can be seen, the estimates
provided by the parameter identifier converge to the vicinity of the
target real angular speed ω = 0 rad/s, whereas the EKF diverges.

The results obtained with the H2 adaptive filter in the first ex-
periment are depicted in Fig. 4(b). These results are comparedwith
the estimates provided by the EKF and with the measurements of
the target position computed resorting to the aforementioned non-
linear transformation. As expected from the performance of the
EKF in the estimation of the target angular speed, its estimates for
the target position diverge. Even though the EKF diverges, the er-
ror in the position estimates provided by theH2 adaptive filter, and
the error in the estimation of the target angular speed, converge to
the vicinity of zero. These results are in accordance with the stabil-
ity guarantees derived in Theorems 5 and 7. Moreover, the steady-
state performance of the adaptive filter is significantly better than
that obtained with the measurements of the target position.

The results obtained in the second experiment, which considers
a trajectory for the target with three different angular speed
values, are presented in Fig. 5. As can be seen, the angular
speed identification strategy proposed in Section 3 is robust to
variations in the parameter to be estimated, since the angular
speed estimates converge to the real angular speed even after
abrupt changes in its value. The degradation in the performance of
the position estimates obtainedwith theH2 adaptive filter, around
time instants 100 and 200 s, is due to the transients observed in
the estimates provided by the parameter identifierwhen the target
changes its angular speed.

6. Conclusions

In this work, the problem of estimating the position, linear
velocity, and linear acceleration of a target maneuvering in 3D
space was addressed. A model for the target that depends on
its angular speed was considered and only measurements of the
target position were used. This problem was tackled resorting to
a cascade of a parameter identifier, which estimates the angular
speed of the target, and an H2 adaptive filter, which combines the
angular speed estimates with measurements of the target position
to estimate the target state. Under persistence of excitation
conditions and for experiments where the process noise, the
observation noise, the target linear velocity, and the target angular
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(a) Angular speed identification. (b) Position estimation.

Fig. 4. Performance analysis for ω = 0 rad/s.
(a) Angular speed identification. (b) Position estimation.

Fig. 5. Performance analysis for a target with changing angular speed.
speed are bounded, the errors associated with the proposed
estimators were proved to converge to the vicinity of zero.
Simulations showing that the convergence and stability guarantees
derived in this brief paper hold, even when the estimates provided
by an Extended Kalman Filter diverge, were presented.

References

Amato, F. (2006). Robust control of linear systems subject to uncertain time-varying
parameters (1st ed.). Springer.

Bar-Shalom, Y., Rong-Li, X., & Kirubarajan, T. (2001). Estimation with applications to
tracking and navigation: theory algorithms and software. John Wiley & Sons, Inc.

Becker, G., & Packard, A. (1994). Robust performance of linear parametrically
varying systems using parametrically-dependent linear dynamic feedback.
Systems and Control Letters, 23(3), 205–215.

Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities
in system and control theory. SIAM.

Delgado, E., & Barreiro, A. (2003). Sonar-based robot navigation using nonlinear
robust observers. Automatica, 39(7), 1195–1203.

Gaspar, T., & Oliveira, P. (2011). Depth estimation in active monocular vision
systems for indoor 3D tracking. In Proceedings of the 18th IFAC world congress,
(pp. 9470–9475).

Gaspar, T., & Oliveira, P. (2011). Single pan and tilt camera indoor positioning and
tracking system. European Journal of Control, 17(4), 414–428.

Gelb, A. (2001). Applied optimal estimation. Cambridge, Massachusetts: MIT Press.
Ioannou, P., & Fidan, B. (2006). Adaptive control tutorial (advances in design and

control). SIAM.
Khalil, H. (2002). Nonlinear systems (3rd ed.). Prentice Hall.
Kolodziej, K., & Hjelm, J. (2006). Local positioning systems: LBS applications and

services. CRC Press.
Krstic, M., Kanellakopoulos, I., & Kokotovic, P. (1995).Nonlinear and adaptive control

design. John Wiley and Sons.
Lepetit, V., & Fua, P. (2005). Monocular model-based 3D tracking of rigid objects.

Foundations and Trends in Computer Graphics and Vision, 1(1), 1–89.
Rong Li, X., & Jilkov, V. P (2003). Survey of maneuvering target tracking. Part

i: dynamic models. IEEE Transactions on Aerospace and Electronic Systems,
1333–1364.
Oliveira, P. (2002). Periodic and non-linear estimators with applications to the
navigation of ocean vehicles. Ph.D. Thesis, Instituto Superior Técnico.

Oppenheim, A., Willsky, A., & Hamid, S. (1983). Signals and systems. Prentice-Hall.
Rugh, W. (1996). Linear system theory (2nd ed.). Prentice Hall.
Saeedi, P., Lawrence, P. D., & Lowe, D. G. (2006). Vision-based 3-D trajectory tracking

for unknown environments. IEEE Transactions on Robotics, 22(1), 119–136.
Sastry, S., & Bodson, M. (1989). Adaptive control: stability, convergence, and

robustness. Prentice Hall.
Xie, L., de Souza, C., & Soh, Y. (1994). Robust filtering for uncertain systems with

unstable modes. In Proceedings of the 33rd IEEE conference on decision and
control: vol. 4 (pp. 3929–3930).

Zhang, Y., Ioannou, P., & Chien, C. (1994). Parameter convergence of a class
of adaptive controllers. In Proceedings of the American control conference,
1248–1252.

Tiago Gaspar received the M.Sc. degree in Electrical and
Computer Engineering in 2008 from Instituto Superior
Técnico, Lisbon, Portugal, where he is currently pursuing
the Ph.D. degree in the same field. His research interests
include Positioning and Tracking Systems, Sensor and
Signal Fusion, and Adaptive Filtering.

Paulo Oliveira completed the Ph.D. in 2002 from the
Instituto Superior Técnico, Lisbon, Portugal. He is Associate
Professor of the Department of Mechanical Engineering,
Instituto Superior Técnico, ULisboa, Lisbon, Portugal and
senior researcher in the Institute for Systems and Robotics
of LARSyS. The areas of scientific activity are Robotics
and Autonomous Vehicles with special focus on the
fields of Sensor Fusion, Navigation, Positioning, and Signal
Processing. He participated in more than 15 Portuguese
and European Research projects, over the last 20 years.

http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref1
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref2
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref3
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref4
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref5
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref7
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref8
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref9
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref10
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref11
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref12
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref13
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref16
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref17
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref18
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref19
http://refhub.elsevier.com/S0005-1098(13)00481-0/sbref20

	Model-based  H2  adaptive filter for 3D positioning and tracking systems
	Introduction
	Problem formulation
	Angular speed identification
	Angular speed adaptive law
	Angular speed convergence---deterministic framework
	Angular speed convergence---stochastic framework
	Gradient projection method

	 H2  adaptive filter
	Filter stability---deterministic framework
	Filter stability---stochastic framework
	Design of the gain of the  H2  filter

	Simulation results
	Conclusions
	References


