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Abstract This chapter presents an overview of algorithms deeply rooted in a sensor-
based approach to the SLAM problem that provide global convergence guarantees
and allow for the use of partially observable landmarks. The presented algorithms
address the more usual range-and-bearing SLAM problem, either in 2-D using a
LiDAR or in 3-D using an RGB-D camera, as well as the range-only and bearing-
only SLAMproblems. For each of these formulations a nonlinear system is designed,
for which state and output transformations are considered together with augmented
dynamics, in such away that the underlying system structure can be regarded as linear
time-varying for observability analysis and filter design purposes. This naturally
allows for the design of Kalman filters with, at least, globally asymptotically stable
error dynamics, for which several experimental and simulated trials are presented to
highlight the performance and consistency of the obtained filters.
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1 Introduction

When navigating in an unknown environment, the mapping of that environment and
the localizationwithin thatmap have been shown to be dependent on each other, and a
more intricate solution than the traditional navigation strategies has to be considered:
the simultaneous localization and mapping (SLAM). The research community has
devoted significant effort to the study of this problem, for which the seminal works
that established the statistical foundations for describing the relationships between
landmarks and their correlations include [16, 34, 35]. Further research showed that
a full and consistent solution to this problem would require all the vehicle pose and
map variables to be considered together, which renders the problem intrinsically
nonlinear. Among the many technical solutions emerging from this challenge are the
extended Kalman filter (EKF) [11], the use of Rao-Blackwellized particle filters as
in FastSLAM [31], or the use of information filters [37]. A detailed survey on most
of the used techniques, sensors, applications, and challenges can be found in [9],
wherein several other more specialized surveys are referenced.

An important component of most SLAM algorithms is the association between
the landmarks measurements and the state landmarks, or when it is necessary to close
a loop, being one of the major sources of inconsistency in SLAM algorithms. Several
strategies are widely used, such as the simplistic nearest neighbor (NN) validation
gating, the joint compatibility branch and bound (JCBB) [33], and the combined
constrained data association (CCDA) [3], while other strategies such as those in [2]
use sensors that provide unique characteristics of each measured landmark.

The SLAM problem can also be characterized by the fundamental type of mea-
surements available for filtering, usually referred to as landmarks.When the landmark
measurements have a lower dimension than the considered mapping space (a single
noise-free observation provides only a line or surface as an estimate for the rela-
tive position of the landmark), the resulting subproblems are usually divided into
range-only SLAM (RO-SLAM) and bearing-only SLAM (BO-SLAM), while the
more usual SLAM problem is sometimes referred to as range-and-bearing SLAM
(RB-SLAM) to underline the case where all the relative coordinates of measured
landmarks are readily available.

A fundamental aspect of the RO-SLAM problem is the absence of association
errors, as the information carried by the ranging signals allows the unambiguous
association of measurements and the corresponding states at all times, which also
enables error-free loop closing. Conversely, the initialization of a RO-SLAM strat-
egy may represent a challenge, and most RO-SLAM solutions rely on some form of
initializing procedure in order to create a new landmark in the state, such as the trilat-
eration (in 2-D) with ranges from different instants [1]. As the RO-SLAM problem
bears resemblance to the sensor networks problem, in the sense that an agent receives
signals from a network of sensors, the two ideas have been used in conjunction in
works such as [14, 26].

The BO-SLAM problem is more challenging than the RO-SLAM, because an
observation of the former corresponds to an unbounded set. Besides triangulation,
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more advanced probabilistic approaches can be used to address this issue, such as
a sum of Gaussians [24], deterring the initialization until the obtained estimate is
well approximated by a Gaussian [4], or using multiple hypothesis [36]. Nowadays,
BO-SLAM is most associated with monocular vision [21], as there has been an
intense research effort in this particular application. One of the most relevant devel-
opments is presented in [12], being the first real-time SLAM algorithm using only a
camera as data source. Other interesting approaches include [15] which introduces
a closed-form pose-chain optimization algorithm that uses sparse graphs as well as
appearance-based loop detection, and ORB-SLAM [32], that uses ORB features,
which are rotation invariant and have faster extraction than SURF features [7].

In general, the SLAM problem has a nonlinear nature which can be tackled using
EKF-based solutions, as well as other similar filters that usually imply the lineariza-
tion of the dynamics or measurement models, resulting in lack of consistency and
convergence guarantees [20, 22]. To address these issues, several authors have ana-
lyzed the unobservable space of the error systemobtained after linearization, showing
that it has smaller dimensionality than that of the underlying nonlinear error system
[19]. This yields erroneous gains of information, and a possible solution proposed
by the same authors is to select the linearization points of the EKF that ensure the
same dimensions between the mentioned unobservable spaces. While focusing on
automatic calibration, [23] addresses the observability properties of nonlinear SLAM
based on differential geometry, as it is a necessary (but not sufficient) condition for
the convergence of any filtering algorithm. Another approach to this issue is to use
the so-called robocentric or sensor-based approach, as firstly proposed in the robo-
centric map joining algorithm [10]. This algorithm can improve the consistency of
the regular EKF, yet, as it still considers the estimation of the (unobservable) incre-
mental pose in the filter state, it cannot provide guarantees of convergence. Other
algorithms that provide some guarantees of convergence include methods that usu-
ally assume that the linearized systemmatrices are evaluated at the ideal values of the
state variables [13, 20], or other that resort to stochastic stability concepts assuming
access to both linear and angular velocity measurements [8]. Nevertheless, a formal
theoretical result on global convergence for EKF-based SLAM algorithms is still
absent from the literature.

This chapter presents an overview of algorithms that are rooted in a sensor-based
approach to the SLAM problem that can be used in aerial robots. The usual SLAM
approach requires a single filter to maintain estimates of the map and vehicle pose
along with the respective covariances and cross-covariances. However, it is possible
to use an alternate formulation that uses a Kalman filter (KF) that explores the
linear time-varying (LTV) nature of the sensor-based SLAM system and analyzing
its observability. This formulation is deeply rooted in the theory of sensor-based
control, exploring the fact that vehicle-fixed sensors provide measurements that in
this approach do not need to be transformed to an Earth-fixed frame [38]. The first
of these purely sensor-based SLAM filters was proposed for the two-dimensional
RB-SLAM problem [18], suppressing pose representation in the state and therefore
avoiding singularities and nonlinearities, subsequently extended for 3-D in [29] using
an RGB-D camera. These works have provided necessary and sufficient conditions
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for observability of the nonlinear error system, for which a KF can be designed that
yields global asymptotic stability (GAS).

Regarding the less straightforward formulations of the SLAM problem, the work
presented in [27] introduces a novel RO-SLAM algorithm that eliminates the land-
mark initialization problem through the establishment of global convergence results.
As in the previous algorithms, the proposed 3-D sensor-based formulation avoids
the representation of the pose of the vehicle in the state, allowing the direct use
of odometry-like information that is usually expressed in body-fixed coordinates.
Finally, [25] proposes a 3-D BO-SLAM algorithm with exponentially fast global
convergence and allows for undelayed initialization at any depth. Building on the
previous approaches, this algorithm uses a state augmentation and an output trans-
formation that lead to the design of an LTV system whose observability conditions
are given in a constructive analysis with clear physical insight. These two solutions
are influenced by the source localization algorithms proposed in [5, 6], as a similar
state augmentation is used to achieve the global convergence results.

Building on the results mentioned above, the main contributions of this chapter
include: (i) the consolidation and definition of a class of sensor-based SLAM prob-
lems such as 2-D and 3-D RB-SLAM, RO-SLAM, and BO-SLAM; (ii) a collection
of physically intuitive and constructive observability results; (iii) the filter imple-
mentation details that ensure a global asymptotic stability of the respective error
dynamics; (iv) an alternative method to obtain the Earth-fixed quantities from the
results of the sensor-based filters; (v) a collection of experimental and simulation
results that validate and illustrate the main properties and performance of the pro-
posed filters.

The remaining of the chapter is organized as follows. Section2 introduces the
sensor-based SLAMproblemswhile their observability analysis is detailed in Sect. 3.
The sensor-based filter implementation details are provided in Sect. 4 along with the
Earth-fixed trajectory and map algorithm. Finally, the main results stemming from
the proposed algorithms are depicted in Sect. 5 and some concluding remarks are
given in Sect. 6.

2 Sensor-Based SLAM

Following the previous discussion, this section details the design of dynamical sys-
tems as part of the sensor-based simultaneous localization and mapping filters using
only one source of external environment perception, capable of either measuring rel-
ative positions, ranges, or bearings, apart from vehicle motion information. Let {B}
denote the body-fixed frame and {E} denote the inertial/Earth-fixed frame, whereas(
R(t), Ep(t)

)
represents the transformation from {B} to {E} and, therefore, the pose

of the vehicle. The attitude is given by the rotationmatrixR(t) ∈ SO(n) and the posi-
tion is given by Ep(t) ∈ R

n , with n = 2, 3. The former satisfies Ṙ(t) = R(t)S(ωωω(t)),
whereωωω(t) ∈ R

nω , nω = 1, 3, is the angular velocity of the vehicle expressed in body-
fixed coordinates. The environment is characterized by point landmarks that may be
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Fig. 1 For RB-SLAM,
sensors measure the position
of a landmark relative to the
vehicle, for RO-SLAM, the
distance to a landmark, and
for BO-SLAM, the relative
direction to a landmark

BO-SLAMRB-SLAM RO-SLAM

naturally extracted or artificially placed. These N landmarks constitute the set M
and are denoted by Epi (t) ∈ R

n or pi (t) ∈ R
n , respectively describing the landmark

location in frame {E} or in frame {B}. As in the Earth-fixed frame landmarks are
assumed static, considering the motion of the landmark in {B}, it is possible to write

ṗi (t) = −S(ωωω(t))pi (t) − v(t) (1)

where S(.) is a skew-symmetric matrix that encodes the cross product for nω = 3,

S(ω) =
[
0 −ω

ω 0

]
for nω = 1, and v(t) ∈ R

n is the linear velocity of the vehicle

expressed in {B}. Typically, ωωω(t) and v(t) are both known inputs and need not
be estimated. However, this situation may change, depending on the information
provided by the system outputs.

Consider now that the N landmarks are divided in two different sets depending
on their visibility status:MO := {1, . . . , NO} containing the NO observed or visible
landmarks and MU := {NO + 1, . . . , N } containing the NU unobserved, or non-
visible, ones. Landmarks belonging to MO will have some kind of system output
associated, which leads to the definition of

yi (t) = f(pi (t)), i ∈ MO (2)

where yi (t) can be equal to pi (t), ‖pi (t)‖, or pi (t)
‖pi (t)‖ according to the version of

sensor-based SLAM to be designed (see Fig. 1). Combining this information it is
now possible to write the generic nonlinear system

{
ṗi (t) = −S(ωωω(t))pi (t) − v(t) i ∈ M

y j (t) = f(p j (t)) j ∈ MO
. (3)

Ifωωω(t) is an input and v(t) is either added as a state with constant dynamics or kept
as an input, then the first equation in (3) can be considered linear for observability
analysis purposes. The main problem rests with the output equation that may be
nonlinear. In that case, further action is necessary to obtain a linear-like system: state
augmentation and/or output transformation. This subject will be addressed in the
sequel.
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2.1 Range-and-Bearing SLAM

Range-and-bearing sensors provide the most information possible in terms of point-
based maps, and, therefore, may be exploited in order to estimate more quantities.
Following that line of reasoning, consider that the measured angular velocity is
corrupted with a constant bias, i.e.,

ωωωm(t) = ωωω(t) + bω(t). (4)

Further consider that the linear velocity is not directly measured, and, as such, needs
to be estimated. Then, the generic nonlinear system (3) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṗi (t) = −S(ωmωmωm(t))pi (t) − g(pi (t),bω(t)) − v(t) i ∈ M

v̇(t) = 0

ḃω(t) = 0

y j (t) = p j (t) j ∈ MO

, (5)

where

g(pi (t),bω(t)) :=
{

− S(1)pi (t)bω(t), n = 2

S(pi (t))bω(t), n = 3
. (6)

For the visible landmarks, the nonlinear term g(pi (t),bω(t)) can be written as
g(yi (t),bω(t)), which, even though it is still nonlinear it may be considered as lin-
ear time-varying for observability purposes as pi (t) is available. For the remaining
landmarks, this term is still nonlinear.

It should be mentioned that each 2-D landmark could be accompanied by addi-
tional features in the form of directional landmarks. That specific case is addressed
in [18], where more information on both the system and its observability analysis
can be found.

2.2 Range-only SLAM

In the case of range-only external perception, it is necessary to have somemeasure of
the linear movement, and therefore the linear velocity is here also used as an output
(it must be measured). Considering the measurement model, yi (t) = ‖pi (t)‖ for all
i ∈ MO , which in this case is nonlinear, a state augmentation is proposed, yielding
the new state ⎧

⎪⎨

⎪⎩

xLi (t) := pi (t)

xV (t) := v(t)

xRi (t) := ‖xLi (t)‖
. (7)
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It is a simple matter of computation to then write the full system dynamics for this
extended state, resulting in the new system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋLi (t) = −S(ωωω(t)) xLi (t) − xV (t) i ∈ M

ẋV (t) = 0

ẋRi (t) = − yTV (t)

xRi (t)
xLi (t) i ∈ M

yv(t) = xV (t)

y j (t) = p j (t) j ∈ MO

. (8)

As in range-and-bearing SLAM, there are still nonlinear terms in the dynamics

that need to be taken care of. In this case, the term yTV (t)
xRi

xLi (t) can be rewritten
for the visible landmarks, as the denominator is one of the system outputs, i.e.,
yTV (t)
xRi (t)

xLi (t) = yTV (t)
yi (t)

xLi (t) for all i ∈ MO . With this change, the system pertaining to
this subset of the landmarks is now linear time-varying for observability analysis
purposes, as the dynamics only depend on known system inputs and outputs.

2.3 Bearing-only SLAM

As in the previous situation, bearing-only measurements require the linear velocity
to be measured. In this case, it will be introduced as an input, accompanying the
angular velocity as the inputs of the dynamical system. As for the measurement
model, the output of the nonlinear system is now yi (t) = pi (t)

‖pi (t)‖ := bi (t). As this
output is nonlinear, the simple output transformation pi (t) − bi (t)‖pi (t)‖ = 0 is
considered together with the state augmentation,

{
xLi (t) := pi (t)

xRi (t) := ‖xLi (t)‖
, (9)

making it possible to avoid the nonlinearity in the output. This yields the new system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋLi (t) = −S(ωωω(t)) xLi (t) − v(t) i ∈ M

ẋRi (t) = −xTLi
(t)

xRi (t)
v(t) i ∈ M

0 = xL j − b j (t)xR j (t) j ∈ MO

(10)

which is still nonlinear in the dynamics. Notice that here ωωω(t) and v(t) are both
inputs, and that bi (t) is a measurement. With this in mind, it is possible to replace the
nonlinear term in the dynamics of the state xRi (t) with information that is measured,
thus yielding a linear time-varying structure to the system part that relates to the
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visible landmarks. This is performed by noting that
xTLi (t)

xRi (t)
v(t) = bT

i (t)v(t) for all

i ∈ MO .
With these manipulations, it is possible to obtain dynamical systems for sensor-

based SLAM that, when looking only at the visible landmarks, resemble linear time-
varying systems that mimic the original nonlinear systems. The following section
deals with their observability. It must be noted, however, that the state augmentations
are not enforced in any way, i.e., the relation xRi (t) = ‖xL(t)‖ is not explicitly used
in the dynamics.

3 Observability

The systems designed in the previous section resemble LTV systems. However, due
to the presence of non-visible landmarks in all of them, there are still nonlinear
terms that prevent the use of linear tools for analysis. The quantities associated
with the non-visible landmarks are, by definition, not observable. Therefore, it is
reasonable to discard them from the state when analyzing observability (see [18, 27,
29] for previous successful applications of this approach by the authors). This yields
a reduced system of the form

{
ẋ(t) = A(t, y(t),u(t))x(t) + B(t, y(t),u(t))u(t)

y(t) = C(t, y(t),u(t))x(t)
, (11)

whose dynamics, even though still nonlinear, do not depend on the state itself but
on inputs and outputs. As both the inputs and outputs are known functions of time,
then, for observability analysis and observer design purposes, the system (11) can in
fact be considered as linear time-varying.

Having reached this stage in the system design and analysis, it is possible to use
[5, Lemma1] to ascertain whether and in what conditions the system is observable by
studying its observabilityGramian. Figure2 summarizes thewhole process presented
in the previous section and further explained here.After analyzing the observability of
the LTV system, the next step is to study the observability of the original nonlinear
system, starting with a comparison between the state of the LTV system and that
of the nonlinear system. This includes investigating the conditions in which the
state augmentation relations become naturally imposed by the dynamics. It is in
that case that the states of the two systems become equivalent, which validates the
augmentation approach in the sense that a state observer with uniformly globally
asymptotically/exponentially stable error dynamics for the LTV system is also a
state observer for the underlying nonlinear system, and the estimation error converges
asymptotically/exponentially fast for all initial conditions.

The final step before proceeding to observer design is to study the uniform com-
plete observability (UCO) of the LTV system. This is a stronger form of observabil-
ity that is necessary to guarantee the global asymptotical/exponential stability of the
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Original systems:
nonlinear 
dynamics

Design

Analysis

Augmented 
systems:

LTV-like dynamics

Observability
Uniform complete observability

Equivalence of LTV and nonlinear systems

Observability

Filter Kalman Filter Globally exponentially stable error dynamics

Conditions on the 
motion of the vehicle 

in [t0,tf]

Persistent excitation

Include every nonlinear 
term in the dynamics as a 

new state until the 
dynamics are LTV. If 

necessary transform the 
output equation.

Fig. 2 Schematic description of the process of designing a globally convergent sensor-based SLAM
filter

Kalman filter. For this purpose, uniform bounds on the observability Gramian calcu-
lated on a moving time interval are investigated. Due to this uniformity, the resulting
conditions are more demanding, which can be regarded as persistent excitation-like
conditions.

In range-and-bearing SLAM, the conditions for observability depend on the num-
ber of landmarks observed, due to the fact that the nonmeasured quantities (linear
velocity and rate-gyro bias) affect all the landmarks. On the other hand, the condi-
tions for the observability of both bearing-only and range-only SLAM do not depend
on the number of landmarks, as they are independent of each other. There is another
important distinction between the two classes of problems pertaining the quantity
of information made available with each measurement. In range-and-bearing SLAM
one single measurement provides all the necessary information to estimate the posi-
tion of a landmark, even though several landmarks are needed for immediate full
state recovery, whereas in range-only and bearing-only SLAM measurements from
several viewpoints have to be acquired to allow for landmark estimation. This is also
the case for range-and-bearing SLAM when the number of available landmarks is
not enough to guarantee observability without motion.

The remainder of this section summarizes the theoretical results corresponding
to each version of SLAM designed previously and the associated necessary and
sufficient conditions.

2-D range-and-bearing SLAM [18, Theorems 2-4 and 6]

Observability Two landmarks are visible or one landmark is visible and
and there is an instant when its derivative is nonzero.
Equivalence
UCO Two landmarks are visible or one landmark is visible and

its derivative is sufficiently away from zero, uniformly in
time.
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p3(t1)

Vehicle

p1(t1)

p2(t1)

p1(t2)

Vehicle

p1(t1)

p2(t2)

p1(t2)

Vehicle

p1(t1)

p1(t3)

Fig. 3 Geometrical interpretation of the observability conditions for range-and-bearing SLAM in
3-D

3-D range-and-bearing SLAM [29, Theorems 1-4]

Observability Three landmarks form a plane in one observation, two obser
and vations of two landmarks form a plane or three observations of
Equivalence one landmark form a plane (see Fig. 3).
UCO The vectors defined by the three landmarks that form a plane

(regardless of the observation moment) are sufficiently away
from collinearity, uniformly in time.

3-D Range-only SLAM [27, Theorems 1-4]

Observability The linear velocity in three observation moments spans R3(see
and left side of Fig. 4 for an example of the bidimensional case).
Equivalence
UCO The vectors defined by the three velocity measurements are

sufficiently away from co-planarity so that the spanned
space does not degenerate in time.

3-D Bearing-only SLAM [25, Theorems 1-3]

Observability Two different absolute bearings to one landmark are measured
and (see right side of Fig. 4).
Equivalence
UCO The variation in the bearing measurement is sufficiently away

from zero to not degenerate in time.

These results allow for the design and implementation of a Kalman filter with
globally asymptotically/exponentially stable error dynamics.



New Design Techniques for Globally Convergent … 131

Ip(t1)

Landmark

Ip(t2)

Ip(t3)

Iv(t1)

Iv(t2)

Ip(t1) Ip(t2)

Landmark

Iv(t1)
Ib1(t1) Ib1(t2)

Fig. 4 Examples of trilateration (left) and triangulation (right) for positioning a landmark in 2-D.
These demonstrate the geometric interpretation of the derived observability conditions, i.e., the
importance of proper vehicle motion for univocal determination of the coordinates of a landmark

4 Filter Design and Implementation

Considering a discrete time implementation of the filter, let Ts denote the sampling
period of the synchronized array of sensors used in each solution, noting that a multi-
rate implementation can be devised. The system is discretized using the forwardEuler
discretization, with special care when there is a rotation of a landmark from one
instant to the following, where it is considered that the angular velocity is constant
over each sampling interval, i.e., RT

k+1Rk = exp (−S(ωωωk) Ts). Considering additive
disturbances, the generic discretized system is given by

{
xFk+1 = FFkxFk + GFkvk + ξξξ k

yk+1 = HFk+1xFk+1 + θθθ k+1
, (12)

where the dynamics matrices have the structure

FFk =
[

Fk 0nO×nU
FUOk FUk

]
, GFk =

[
TsBk

TsBUk

]
, HFk = [

Ck 0nO×nU

]
, (13)

and where Fk is the discretized version of matrix A in (11), which accounts for the
observable part of the system dynamics, whereas matrices with subscripts (.)U and
(.)UO denote the unobservable states and cross terms, respectively. Also, the vectors
ξξξ k and θθθ k represent the model disturbance and measurement noise, respectively,
assumed to be zero-mean discrete white Gaussian noise with covariances ���k and
���k . These will depend on the actual formulation of SLAM in question. However, in
all the formulations described in this chapter, the dynamics depends on the actual
inputs and outputs, which means that the noise characterization is not exact. As a
general rule of thumb, these noise parameters can be calibrated a priori with a Monte
Carlo analysis and with actual measurements to better cope with this issue.
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In particular, recalling the three presented SLAM problems, both the RB-SLAM
and BO-SLAM have similar structure for the system matrix, defined as

F̂Fk =
[

FLk 0nL×(nV +nR)

0(nV +nR)×nL I(nV +nR)

]
, (14)

although the state vectors have diverse variables and dimensions. On the other hand,
the RO-SLAM has a more intricate structure, defined as

Fk =
⎡

⎣
FLk TsALV 0nL×nR

0nV ×nL I3 0nL×nR

TsARLk 0nR×nV InR

⎤

⎦ , (15)

with FLk = diag
(
RT

k+1Rk, . . . ,RT
k+1Rk

)
, see [25, 27] for the remaining matrices.

From these discrete LTV systems, the filter prediction and update steps are com-
puted using the standard equations of the Kalman filter for LTV systems [17], with
the detail that the non-visible landmarks must be propagated in open loop. Neverthe-
less, particularly in RB-SLAM and BO-SLAM, prior to the update step it might be
necessary to associate the landmark measurements with the state landmarks, either
for a simple update step or for a more intricate loop closing procedure.

To complement the sensor-based filter, the authors proposed a strategy to obtain
estimates of the pose of the vehicle and the Earth-fixed landmark map, with uncer-
tainty characterization, denoted as Earth-fixed trajectory and map (ETM) estimation
algorithm. Considering the relation between landmarks expressed in the twoworking
frames and noting that Epi k is constant, it is possible to write the error function

Eeik = E p̂ik−1
− R̂k p̂ik − E p̂k, (16)

which can be minimized as in the optimization problem presented in [30, Sect. 3].
This yields the optimal rotation and translation given a map expressed in the Earth-
fixed frame and in the body-fixed frame and the combined uncertainty of (16). With
this information, the new Earth-fixed map can be computed using

E p̂ik = R̂k p̂ik + E p̂k . (17)

An important step in this algorithm is the initialization of the Earth-fixed map, which
can be computed directly from the sensor-based map in the first instant by assuming
that the transformation between Earth-fixed and sensor frames is known at time k0,
a traditional assumption in most SLAM strategies.

The pose estimates provided by this strategy are accompanied with uncertainty
characterizations, following a perturbation theory approach as described in [30]. The
same reasoning can be employed to obtain estimates with uncertainty description for
the Earth-fixed map (see [28]).
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5 Practical Examples

This section aims to provide several examples of practical implementations of the
sensor-based algorithms detailed along this chapter. In particular, the results pre-
sented in this section are obtained using four sensor-based SLAM algorithms: (i)
2-D Range-and-Bearing SLAM, (ii) 3-D Range-and-Bearing SLAM, (iii) Range-
Only SLAM, and (iv) Bearing-Only SLAM. It should also be stressed that each of
these experiments was originally designed as a proof of concept, and as such, alter-
native sensors or processes for obtaining measurements can be employed. Table1
summarizes the typical sensors used for each one of the SLAM variants discussed
here, pinpointing those employed in the first three examples shown below (further
details can be found in [18, 25, 27, 29] and references therein). The BO-SLAM
example consists of simulation results.

The Earth-fixed estimates of the maps and vehicle trajectories are also provided
for the range-and-bearing algorithms, which are obviously dependent on the perfor-
mance of the ETM algorithm, affected by the nonlinearity intrinsic to the problem of
translating and rotating a map arbitrarily between coordinate frames, also found in
EKF-based SLAM algorithms. As the sensor-based SLAM filter does not depend on
the ETM algorithm, it is argued that using this separate approach it may be possible
to obtain a less uncertain Earth-fixed trajectory and landmark map. As such, all the
landmark association, loop closing, control, and decision procedures can be made in
the sensor-based frame, minimizing the effects of nonlinearities in the consistency
of the filter estimates.

5.1 Range-and-Bearing SLAM

This subsection presents experimental results from two different implementations of
the sensor-based range-and-bearing SLAM filter coupled with the ETM algorithm,
one in two dimensions using a LiDAR [18] and other in three dimensions [29] using
an RGB-D camera.

Table 1 Measurements and their respective sensors

Quantities Sensors

Landmark position LiDAR (i) / RGB-D camera (ii) / Stereo or
trinocular camera

Landmark range Radio/acoustic transceivers (iii)

Landmark bearing Radio/acoustic transceivers / Single camera

Linear velocity Odometry / Optical flow (iii)

Angular velocity IMU (i-iii)
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When analyzing the convergence properties of any navigation filter, one of the
main goals is to observe a decreasing uncertainty in all variables. This can be seen
in Fig. 9 for the 3-D RB-SLAM filter, where the uncertainty of all the vehicle related
variables decreases over time, whereas the uncertainty of each landmark decreases
whenever visible and increases otherwise, as shown in Fig. 5 for the 2-D RB-SLAM
filter. In addition, both the sensor-based map and the result of the ETM algorithm
are presented in Fig. 6, featuring the final results of the 2-D RB-SLAM experimental
trials. It can be seen that both the sensor-based and ETMmaps are consistent, noting
also the small sensor-based uncertainty for the landmarks that were recently visible,
and the large uncertainty for the landmarks that are not visible for a long time, as the
vehicle progresses along environment.

As can be inferred fromFig. 5, there are several loop closure procedures during the
trials, adding relevant information about the consistency of the proposed algorithms.
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Fig. 5 2-DRB-SLAM:Uncertainty convergence in the sensor-based filter. STDof first 15 landmark
positions. c©2013 IEEE. Reprinted, with permission, from [18]
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(b) ETM map and trajectory.

Fig. 6 2-D RB-SLAM: Map of environment in the sensor and Earth frame. This figure shows the
current laser profile (in gray), the current/old/older landmarks in magenta/yellow/light blue, along
with their 95% confidence bounds. c©2013 IEEE. Reprinted, with permission, from [18]
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Fig. 7 2-D RB-SLAM: illustration of a loop closure. c©2013 IEEE. Reprinted, with permission,
from [18]

Fig. 8 3-D RB-SLAM: Earth-fixed estimates with ground truth. Reprinted from [29] with permis-
sion with permission of Springer

In one of the occasions, the moments just before and right after the loop closure
are captured in Fig. 7, where a detailed version of the map of Fig. 6a at the relevant
time instant is presented. The landmark associations between the current and older
landmarks are shown in solid black and the fused landmarks positions and uncertainty
bounds obtained after the loop closure are also depicted in solid black.

In Fig. 8a, a top view of the Earth-fixed map is shown along with the estimated
trajectory (solid line) and the ground truth trajectory (dashed line) obtained from a
VICON motion tracking system. The colored squares, that coincide by construction,
and triangles indicate the start and end of the run, respectively. The ellipses are the
2-D projection of the 2σ uncertainty ellipsoids. The small quadrotors represent the
pose of the vehicle in several instants, both with ground truth (dashed red) and SLAM
estimates (solid green).

The evolution of the position estimation error is depicted in the top of Fig. 8b. It is
noticeable that, even though the horizontal estimates are quite accurate, the vertical
ones are worse. These results are not unexpected since there was no motion in the
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Fig. 9 3-D RB-SLAM: Time evolution of the sensor-based estimates with 2σ bounds. Reprinted
from [29] with permission of Springer

vertical direction, and the horizontal angle-of-view of the Kinect is greater than the
vertical one, thus limiting the vertical separation of landmarks and consequently the
information extractable from that axis. Figure8b confirms this assertion, where the
Euler angles are presented, estimated with small error, except for the pitch angle
(θ ). The results of the sensor-based filter can be evaluated in Fig. 9, which depicts
the body-fixed velocity estimation errors and the angular rate measurement bias
estimates. The velocity estimation error is depicted alongside the 95% uncertainty
bounds, and, even though the velocity is modeled to be constant, it follows the veloc-
ity accurately (standard deviation of 0.02m/s in the vertical axis and 0.05m/s in the
horizontal ones). Furthermore, its uncertainty converges while generally maintaining
the consistency throughout the run. The measurement bias on the right is obviously
presented without ground truth, but its uncertainty can be seen to converge, confirm-
ing the results of Sect. 3.

5.2 Range-only SLAM

In opposition to the range-and-bearing and bearing-only examples presented here,
the landmarks used in the range-only experiments are artificially placed beacons in
the environment. Therefore, and taking into account the observability requirements,
the trajectory of the vehicle was intended to maximize the exposure to each of the
beacons, as well as to provide sufficient excitation to the filter.

As explained in Sect. 1, the initialization of the landmarks is one of the more
challenging issues in RO-SLAM procedures. In this work, however, the global con-
vergence results imply that this issue is solved as whichever the initial guess the
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Fig. 10 RO-SLAM: One estimated landmark through time against the ground truth and the obser-
vation moments (left). The top view of the sensor-based map at the end of the run. Both include 3σ
uncertainty bounds. Reprinted from [27] with permission from Elsevier

filter will converge. Figure10a depicts exactly this, showing the estimated position
(solid blue) with 3σ uncertainty bounds of one landmark against the ground truth
provided by VICON (dashed red), and it can be seen that the convergence is very
fast in the horizontal plane. Moreover, after converging, the estimates are very close
to ground truth. However, in the vertical axis, the estimation is much worse, and
the convergence is also slower, which is due to the less rich trajectory in that axis.
The optical flow procedure employed is somewhat noisy, and as its measurements of
the linear velocity are directly used in the dynamics matrix as if they were the true
value, the noise can make that direction appear observable, even if the information
is sparse.

Finally, an example of the estimated map in the body-fixed frame is presented in
Fig. 10b. The top view of the sensor-basedmap is shown alongwith the true landmark
positions and the vehicle path rotated and translated to the body-fixed frame. The
colored ellipses represent orthogonal cross sections of 3σ uncertainty ellipsoids, i.e.,
the estimation uncertainty, and the small circles mark the true landmark positions.
These experiments show the good performance of the proposed algorithm in realistic
conditions, especially in the horizontal variables. The filter has some problems in
the vertical coordinates due to the less rich velocity profile and noisy optical flow
measurements, although with a proper trajectory the algorithm was shown to behave
well [27]. Therefore, these experiments underpin the need for appropriate trajectories.

5.3 Bearing-only SLAM

This example of a sensor-based bearing-only application is performed on a simulated
scenario with known association between measurements and landmarks. Figure11
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Fig. 11 BO-SLAM: The
estimated map at the end of
the experiment, along with
the true path. c©2015 IEEE.
Reprinted, with permission,
from [25]

Fig. 12 BO-SLAM: The
evolution of the norm of the
estimation error for all the 36
landmarks. c©2015 IEEE.
Reprinted, with permission,
from [25]
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depicts a top view of the estimated sensor-based map at the end of the run with the
95% uncertainty ellipses in green and blue depending whether they are observed
in that instant or not, including the real trajectory of the vehicle in dashed red, and
the pose of the vehicle at that moment, that is represented by the yellow quadrotor.
Note that the ellipses surround the true values, as they should in a consistent filter.
Furthermore, it can be seen that the recently or currently (re)-observed landmarks
havemuch tighter uncertainty ellipses than older ones, demonstrating the uncertainty
convergence when the observability conditions are satisfied. Finally, in Fig. 12 the
estimation error for all the 36 landmarks is shown. It is noticeable that even though
the initial estimate may be far off, the error will converge until after 2 laps, it is under
40 centimeters depending on how long each landmark is observed.

In an experimental application using natural landmarks extracted from the envi-
ronment, it is not straightforward to guarantee observability while moving as was
attempted for the range-only counterpart and many features will not have enough
time to converge. However, preliminary results have shown that the landmark state
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still convergeswithout being initializedwith any special care, while also showing that
loop closures occur naturally throughout the runs. Hence, the algorithm recognizes
previously visited places, even without a specially tailored procedure, providing a
good measure of the consistency and validity of the algorithm.

6 Concluding Remarks

This chapter aimed at a broad presentation of the fundamentals behind a class of
sensor-based simultaneous localization and mapping filters with global convergence
guarantees, providing the necessary and sufficient conditions for observability, and
thus convergence, in a constructive and physical intuitive manner. Several experi-
mental examples of practical implementations were provided, illustrating the perfor-
mance and consistency of the proposed sensor-based SLAM strategies, together with
the ETM algorithm that also provides the vehicle trajectory and map in Earth-fixed
coordinates.
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