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Abstract— The main contribution of this paper is the devel-
opment of a novel attitude observer based on a triaxial high-
grade rate gyro and single body-fixed vector measurements of
a constant inertial vector, in contrast with typical solutions that
require two of these vectors. The proposed structure consists
in a cascade observer, where the angular velocity of the Earth
around its own axis is extracted in the first block and the
attitude is estimated in the second. The stability of the system
as a whole is analyzed and the error dynamics are shown
to be globally exponentially stable (GES). Simulation results
are presented that illustrate the achievable performance of
this solution. In a companion paper an alternative observer
is proposed on the special orthogonal group and both solutions
are compared.

I. INTRODUCTION

The problem of attitude estimation has received much

attention for decades now. On one hand, the knowledge of

the attitude of a robotic platform is usually an essential re-

quirement for its successful operation. On the other hand, the

problem is, per se, a very interesting one from a theoretical

point of view. The solution of the Wahba’s problem [1]

gives an algebraic estimate of the rotation matrix from body-

fixed to inertial coordinates based on the vector observations

provided by the sensor suite installed in the robotic platform.

However, there is no filtering process involved and as such

information from the angular velocity is not incorporated into

the estimate of the attitude of the platform. In the survey [2]

many different filtering solutions are discussed. The extended

Kalman filter (EKF) and variants have been widely exploited,

see for instance [3], [4], and [5]. Divergence due to the

linearization of the system dynamics [2] has paved the way

for the pursuit of alternative designs, in particular nonlinear

observers, see e.g. [6], [7], [8], and references therein. In

[9] a deterministic attitude estimator is presented based on

uncertainty ellipsoids. Previous work by the authors includes

[10] and [11], where two different solutions for attitude

estimation are presented that avoid common problems of atti-

tude estimation such as singularities, unwinding phenomena,

or topological limitations for achieving global asymptotic

stabilization, see [12] for a thorough discussion of these

issues.

This work was partially supported by the FCT [PEst-
OE/EEI/LA0009/2013].

The authors are with the Institute for Systems and Robotics, Laboratory of
Robotics and Systems in Engineering and Science, Portugal. Pedro Batista
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Most attitude determination solutions assume the avail-

ability of, at least, two body-fixed measurements of cor-

responding constant vectors in inertial coordinates. Recent

exceptions to this approach can be found in [13], [14], and

[15], where time-varying reference vectors are considered.

In this paper, a single direct measurement, in body-fixed

coordinates, of a constant inertial vector is assumed available.

However, an estimate of a second vector is dynamically

obtained from the measurements of high-grade rate gyros,

which allow to estimate the angular velocity of the Earth

around its own axis.

The main contribution of this paper is the design of a

novel attitude estimation solution, with globally exponen-

tially stable (GES) error dynamics, that is based on high-

grade rate gyros and single body-fixed measurements of a

constant inertial vector. The solution proposed in the paper

for the problem of attitude estimation is built considering

essentially two strategies: i) a cascade structure is envisioned

such that in the first block an estimate of the angular velocity

of the Earth, expressed in body-fixed coordinates, is obtained

which, together with the second measurement, allows for the

estimation of the rotation matrix in the second block; and ii)

the topological characteristics of some variables are ignored,

embedding those in linear spaces, such that topological

obstacles to obtain global stability are avoided. However,

additional constructs are provided such that the topological

characteristics are recovered without affecting the stability

of the algorithm.

The idea of extracting the angular velocity of the Earth

around its own axis from measurements of high-grade rate

gyros is not novel. Indeed, for the initial alignment of

an inertial navigation system (INS), gyro compassing is

usually performed. However, the initial alignment requires

specific maneuvers, including positions where the platform

is static. Moreover, from time to time, the INS needs to

be re-calibrated, otherwise errors accumulate over time and

become prohibitive. The novelty introduced in this paper is

that the attitude of the platform is estimated without any

particular maneuver requirements. Furthermore, the estimate

of the angular velocity of the Earth around its own axis is

continuously updated, therefore eliminating the accumulation

of errors over time.

In terms of attitude estimation solutions, there exist

presently many alternatives in the literature, that range from

EKFs to nonlinear observers. In the case of nonlinear ob-

servers, a popular trend is to directly consider the topological

properties of the rotation matrix and therefore restrict, by



construction, the estimates of the rotation matrix to the

special orthogonal group SO(3). Examples of this type of

approach can be found in [7] and [8], which have the

advantage that, by construction, all the estimates correspond

to elements of SO(3). The main drawbacks are the existence

of topological obstructions to achieve global stability by con-

tinuous feedback and the relatively small convergence speed

near unstable and saddle points, as convincingly argued in

[16]. A more recent trend, which can be found, e.g., in

[6], [10], [11], and [15] consists in embedding the estimates

in linear spaces, thus avoiding the topological obstructions

to achieve global stability. The advantage is that the error

dynamics feature global asymptotic (or exponential) stability,

while the disadvantage is that the direct estimates of the

observers do not necessarily belong to the special orthogonal

group SO(3). However, additional estimates can be built,

that belong to SO(3), without loss of global convergence,

and several approaches are available, see e.g. [6] and [15].

In this paper the latter approach is considered, although

another attitude observer could be used in the second block of

the cascade system, provided that the stability analysis held

when the attitude observer is fed by variables corrupted by

disturbances converging globally exponentially fast to zero.

An alternative solution is presented in the companion paper

[17], where an observer directly built on SO(3) is proposed,

and both solutions are discussed and compared.

The paper is organized as follows. The problem statement

and the nominal system dynamics are introduced in Section

II, while the observer design is detailed in Section III.

Simulation results are presented in Section IV and Section

V summarizes the main results of the paper.

A. Notation

Throughout the paper the symbol 0 denotes a matrix

of zeros and I an identity matrix, both of appropriate

dimensions. A block diagonal matrix is represented by

diag(A1, . . . ,An). For x ∈ R
3 and y ∈ R

3, x · y and

x × y represents the inner and cross product, respectively.

The special orthogonal group is denoted by SO(3) :=
{

X ∈ R
3×3 : XXT = XTX = I ∧ det (X) = 1

}

. For con-

venience, define also the transpose operator (.)
T

, and notice

that x · y = xTy, x,y ∈ R
3.

II. PROBLEM STATEMENT

Consider a robotic platform where a set of three, high-

grade, orthogonally mounted rate gyros are mounted, in

addition to another sensor, possibly inertial, that measures, in

the reference frame of the platform, a vector that is constant

in some inertial frame. Further consider that the rate gyros

also measure the angular velocity of the Earth, expressed

in the frame of the sensors. Loosely speaking, the problem

addressed in the paper is that of determining the attitude of

the platform with these sensor measurements.

To properly set the problem framework, let {I} denote a

local inertial coordinate reference frame, e.g. the North-East-

Down (NED) coordinate frame with origin fixed to some

point of the Earth, and denote by {B} the so-called body-

fixed frame, attached to the platform. Notice that due to

the rotation and curvature of the Earth, the NED coordinate

frame is not truly inertial but for local navigation it can be

considered so. It is assumed, without loss of generality, that

this is also the frame of the sensors. Let R(t) ∈ SO(3)
denote the rotation matrix from {B} to {I}, which satisfies

Ṙ(t) = R(t)S [ω(t)] , (1)

where ω(t) ∈ R
3 is the angular velocity of {B} with respect

to {I}, expressed in {B}, and S [ω(t)] ∈ R
3×3 is the

skew-symmetric matrix that encodes the cross product, i.e.,

S (x)y = x× y for x,y ∈ R
3.

The measurements of the high-grade set of rate gyros are

given by

ωm(t) = ω(t) + ωE(t), (2)

where ωE(t) ∈ R
3 is the angular velocity of the Earth around

its own axis, expressed in {B}. Denote by I
ωE ∈ R

3 the

angular velocity of the Earth around its own axis expressed

in {I}. Then,
I
ωE = R(t)ωE(t) (3)

for all time.

Let m(t) ∈ R
3 denote the measurements of the second

sensor, which measures, in body-fixed coordinates, a vector

that, when expressed in inertial coordinates, is assumed

known and constant. Let Im ∈ R
3 denote the inertial vector

corresponding to m(t). Then, in a similar fashion to the

angular velocity of the Earth around its own axis, one has

that
Im = R(t)m(t) (4)

for all time.

The following assumptions are considered throughout the

paper.

Assumption 1: The inertial vector Im is not parallel to the

angular velocity of the Earth I
ωE , i.e., I

ωE × Im 6= 0.

Assumption 2: The rate gyro measurements are bounded

for all time.

The first is a mild assumption and can be considered

standard as most attitude estimation solutions assume the

existence of at least two known non-parallel inertial vectors,

which are measured in body-fixed coordinates. The differ-

ence in this paper is that ωE(t) is not measured. Instead,

it is also explicitly estimated. The second is a technical as-

sumption that is evidently verified for all systems in practice,

as one cannot have arbitrarily large angular velocities.

The problem addressed in the paper is that of designing an

observer, with globally exponentially stable error dynamics,

for the rotation matrix R(t) from {B} to {I} based on the

rate gyro measurements ωm(t), the additional measurements

m(t) and the knowledge of both I
ωE and Im.

III. OBSERVER DESIGN

A. Earth rotation observer

This section presents the derivation and stability analysis

of the observer for the angular velocity of the Earth around



its own axis. In order to do so, take the time derivative of

the vector measurement m(t), which using (1), (2), and (4)

can be written as

ṁ(t) = −S [ωm(t)− ωE(t)]m(t). (5)

Similarly, take the time derivative ωE(t), which from (1)-(3)

can be written as

ω̇E(t) = −S [ωm(t)]ωE(t). (6)

From (5) one is suggested that, with measurements of m(t)
and ωm(t), it might be possible to estimate ωE(t)×m(t).
This is indeed the case, as it is shown next.

Define x1(t) := m(t) and x2(t) := ωE(t)×m(t). Then,

from (5) and (6) one may write
{

ẋ1(t) = −S [ωm(t)]x1(t) + x2(t)
ẋ2(t) = −S [ωm(t)− ωE(t)]x2(t)

. (7)

The form of the time derivative of x2(t) in (7) is undesirable

as it still depends on ωE(t), when one at this time has chosen

to estimate ωE(t)×m(t). Consider as an orthonormal basis

the set of vectors
{

x1(t)

‖x1(t)‖
,

x2(t)

‖x2(t)‖
,

x1(t)× x2(t)

‖x1(t)× x2(t)‖

}

. (8)

Notice that this set is always well-defined under Assumption

1. Define also

A21 :=

(

I
ωE · Im

)2 −
∥

∥

I
ωE

∥

∥

2 ∥
∥

Im
∥

∥

2

‖Im‖2

and

A22 :=

(

I
ωE · Im

) ∥

∥

I
ωE × Im

∥

∥

2

‖Im× (IωE × Im)‖2
.

Then, using norm, rotation, and cross-product properties,

as well as the three-dimensional case of the Binet-Cauchy

identity, decomposing the term S [ωE(t)]x2(t) using the

orthonormal basis (8) it is possible to rewrite the system

dynamics (7) as
{

ẋ1(t) = −S [ωm(t)]x1(t) + x2(t)
ẋ2(t) = A21x1(t)− S [ωm(t)−A22x1(t)]x2(t)

. (9)

Consider the observer for (9) given by














˙̂x1(t) = −S [ωm(t)] x̂1(t) + x̂2(t)
+α1 [x1(t)− x̂1(t)]

˙̂x2(t) = A21x1(t)− S [ωm(t)−A22x1(t)] x̂2(t)
+α2 [x1(t)− x̂1(t)]

,

(10)

where x̂1(t) ∈ R
3 and x̂2(t) ∈ R

3 correspond to the

estimates of x1(t) and x2(t), respectively, and α1 ∈ R and

α2 ∈ R are observer gains. Let x̃1(t) := x1(t) − x̂1(t) and

x̃2(t) := x2(t) − x̂2(t) denote the estimation errors. Then,

from (9) and (10) one may write the error dynamics
{

˙̃x1(t) = − (α1I+ S [ωm(t)]) x̃1(t) + x̃2(t)
˙̃x2(t) = −α2x̃1(t)− S [ωm(t)−A22x1(t)] x̃2(t)

.

(11)

The following theorem addresses the stability and conver-

gence properties of (11).

Theorem 1: Consider the state observer (10) and suppose

that the observer gains α1 and α2 are positive. Further

suppose that Assumptions 1 and 2 hold. Then, the origin

of the error dynamics (11) is a globally exponentially stable

equilibrium point.

Proof: Due to space limitations, only a sketch of the

proof is presented. Consider the compact error definition

z1(t) :=

[

x̃1(t)
x̃2(t)

]

∈ R
6

and notice that the error dynamics (11) can be written as the

linear time-varying system ż1(t) = A1(t)z1(t), with

A1(t) :=

[

− (α1I+ S [ωm(t)]) I

−α2I −S [ωm(t)−A22x1(t)]

]

.

Define the Lyapunov-like function

V (z1(t)) := zT1 (t)Pz1(t),

with

P =

[

1
2I 0

0 1
2α2

I

]

∈ R
6×6.

The proof now follows in a similar fashion to that of [18,

Example 8.11].

The observer (10) allows to estimate the component of the

angular velocity of the Earth that is orthogonal to the vector

measurement m(t). This is sufficient to obtain an algebraic

estimate of the rotation matrix R(t), as at this point one

has access to two vectors in body-fixed coordinates, m(t)
and ωE(t)×m(t) whose counterparts in inertial coordinates

are also available, given by Im and I
ωE × Im, respectively.

However, that is not sufficient to obtain a filtered estimate

of the rotation matrix as the complete angular velocity of

the Earth is required, not just the component orthogonal to

m(t). Indeed, notice that from (1) and (2) one has

Ṙ(t) = R(t)S [ωm(t)− ωE(t)] . (12)

Nevertheless, one already has all the elements that allow to

reconstruct the angular velocity of the Earth, as established

in the following proposition.

Proposition 1: Consider the estimates x̂1(t) and x̂2(t)
given by the state observer (10) and define an estimate of

the angular velocity of the Earth as

ω̂E(t) =
I
m·IωE

‖I
m‖2 x̂1(t)

+
‖I

m‖2‖I
ωE‖2

−(Im·IωE)
2

‖I
m×(IωE×I

m)‖2 x̂1(t)× x̂2(t). (13)

Denote by ω̃E(t) := ωE(t)− ω̂E(t) the estimation error of

the angular velocity of the Earth. Then, under the conditions

of Theorem 1, ω̃E(t) converges exponentially fast to zero

for all initial conditions x̂1 (t0) and x̂2 (t0).

Proof: Using the orthonormal basis (8) and several

norm, rotation, and cross product properties, the error of the

estimate of the angular velocity of the Earth can be written



as

ω̃E(t) =
I
m·IωE

‖I
m‖2 x̃1(t)

+
‖I

m‖2‖I
ωE‖2

−[Im·IωE]
2

‖I
m×(IωE×I

m)‖2 x̃1(t)× x2(t)

+
‖I

m‖2‖I
ωE‖2

−[Im·IωE]
2

‖I
m×(IωE×I

m)‖2 x1(t)× x̃2(t)

−‖I
m‖2‖I

ωE‖2

−[Im·IωE]
2

‖I
m×(IωE×I

m)‖2 x̃1(t)× x̃2(t). (14)

Using simple norm inequalities, one can now write, from

(14), that

‖ω̃E(t)‖ ≤ |Im·IωE|
‖I
m‖2 ‖x̃1(t)‖

+
‖I

m‖2‖I
ωE‖2

−[Im·IωE]
2

‖I
m×(IωE×I

m)‖2 ‖x2(t)‖ ‖x̃1(t)‖

+
‖I

m‖2‖I
ωE‖2

−[Im·IωE]
2

‖I
m×(IωE×I

m)‖2 ‖x1(t)‖ ‖x̃2(t)‖

+
‖I

m‖2‖I
ωE‖2

−[Im·IωE]
2

‖I
m×(IωE×I

m)‖2 ‖x̃1(t)‖ ‖x̃2(t)‖ . (15)

Recall that both x1(t) and x2(t) have constant norm. More-

over, under the conditions of Theorem 1, both x̃1(t) and

x̃2(t) converge globally exponentially fast to zero. Therefore,

as the upper bound in (15) consists in a sum of decaying

exponentials, it follows that there is a single decaying expo-

nential that bounds the sum from above, therefore concluding

the proof.

B. Attitude observer

In the previous section an observer was proposed that

allows one to obtain filtered estimates of two vectors in

body-fixed coordinates, m̂(t) and x̂2(t), whose counterparts

in inertial coordinates, i.e., Im and I
ωE × Im, respectively,

are also known. In addition, a filtered estimate of the angular

velocity of the Earth was also obtained. In this section, the

latter is used to drive the dynamics of a filtered estimate

of the rotation matrix, while the two vectors in body-

fixed coordinates, along with their counterparts in inertial

coordinates, are used in the error injection term to drive the

estimation error to zero.

At this point, any attitude observer that uses directly vector

measurements could be employed, provided that the design

is robust to exponentially decaying perturbations. Indeed, the

attitude observer is fed with estimates whose error converges

to zero exponentially fast, not with the actual quantities. One

such design is provided in [10] and it is employed in this

section with the appropriate adaptations. The design is here

streamlined and further details can be found in [10].

Consider a column representation of the rotation matrix

R(t) given by

z2(t) =





r1(t)
r2(t)
r3(t)



 ∈ R
9,

where

R(t) =





rT1 (t)
rT2 (t)
rT3 (t)



 , ri(t) ∈ R
3, i = 1, . . . , 3.

Then, from (12), it follows that

ż2(t) = −S3 [ωm(t)− ωE(t)] z2(t),

where

S3 (x) := diag (S (x) ,S (x) ,S (x)) ∈ R
9×9, x ∈ R

3.

Let Im =
[

Ix11
Ix12

Ix13
]T
, I

ωE × Im =
[

Ix21
Ix22

Ix23
]T
, and Im ×

(

I
ωE × Im

)

=
[

Ix31
Ix32

Ix33
]T
. Notice that

I
ωE × Im = R(t)x2(t) (16)

and
Im×

(

I
ωE × Im

)

= R(t) [x1(t)× x2(t)] . (17)

From (4), (16), and (17) it is possible to write

v(t) = C2z2(t),

where

v(t) =





x1(t)
x2(t)

x1(t)× x2(t)



 ∈ R
9

and

C2 =





Ix11I
Ix12I

Ix13I
Ix21I

Ix22I
Ix23I

Ix31I
Ix32I

Ix33I



 .

Notice that, under Assumption 1, matrix C2 has full rank.

Consider the attitude observer given by

˙̂z2(t) = −S3 [ωm(t)− ω̂E(t)] ẑ2(t)

+CT

2 Q
−1 [v̂(t)−C2ẑ2(t)] , (18)

where Q = QT ∈ R
9×9 is a positive definite matrix and

v̂(t) =





x̂1(t)
x̂2(t)

x̂1(t)× x̂2(t)



 .

Define the error variable z̃2(t) = z2(t) − ẑ2(t). Then, the

observer error dynamics are given by

˙̃z2(t) = [A2(t)− S3 [ω̃E(t)]] z̃2(t) + u2(t), (19)

where

A2(t) = −CT

2 Q
−1C2 − S3 [ω(t)]

and

u2(t) = S3 (ω̃E(t)) z2(t) +CT

2 Q
−1ṽ(t),

with ṽ(t) := v(t)− v̂(t).
The following theorem is the main result of this section.

Theorem 2: Consider the attitude observer (18), where

the estimates of the vector observations, v̂(t), are obtained

using the state observer (10) and the estimates of the angular

velocity of the Earth, ω̂E(t), are given by (13). Then, under

the conditions of Theorem 1, and assuming that Q is a

positive definite matrix, it follows that the origin of the error

dynamics (19) is a globally exponentially stable equilibrium

point.

Proof: The proof is similar to that of [10, Theorem 3].

It is ommitted due to space limitations.



C. Further discussion

The estimates of the rotation matrix provided by the

attitude observer (18) do not necessarily belong to SO(3),
although they converge asymptotically to elements of SO(3).
As previously discussed, this is a choice of design that allows

one to achieve global stability. Nevertheless, if one insists

in having explicit estimates on SO(3), there exist several

methods in the literature to obtain such constructs from

the estimates provided by (18). As this has been discussed

previously, the reader is referred to [10] and [15] for such

alternatives.

IV. SIMULATION RESULTS

Simulation results are presented in this section to demon-

strate the performance achieved with the proposed solution.

These are only preliminary results and extensive Monte

Carlo simulations will be carried out in the future, prior to

experimental validation.

The local inertial frame was considered as the NED frame,

centered at a latitude of ϕ = 38.7138°, a longitude of

ψ = 9.1394°, and at sea level. The norm of the angular

velocity of the Earth was set to
∥

∥

I
ωE

∥

∥ = 7.2921150 ×
10−5 rad/s, which corresponds approximately to 15 de-

grees per hour. Thus, in the NED frame, one has I
ωE =

∥

∥

I
ωE

∥

∥

[

cosϕ 0 − sinϕ
]T
. As for the vector measure-

ment m(t), it is assumed that magnetic field measurements

are available. However, any other inertial vector could have

been considered. In this case, Im was set according to

the 11th generation of International Geomagnetic Reference

Field for the latitude, longitude, and altitude previously

described. Notice that, with this choice, Assumption 1 is

satisfied.

The initial attitude of the platform was set to R (0) = I

and the evolution of the angular velocity is given by

ω(t) =





5 π

180 sin
(

2π
60 t

)

π

180 sin
(

2π
180 t

)

−2 π

180 sin
(

2π
300 t

)



 (rad/s) .

In the simulations, the measurements of the magnetometer

were assumed to be corrupted by zero-mean white Gaussian

noise, with standard deviation of 150 nT, which corresponds

to the worst case specification of the triaxial magnetometer

of the nanoIMU NA02-0150F50. The rate gyro measure-

ments noise is characterized by an angle random walk of

4°/hr/
√
Hz, which corresponds to the KVH DSP-3000 fiber

optic gyro. A sampling frequency of 100 Hz was considered

and the fourth-order Runge-Kutta method was employed in

the simulations.

In order to ensure both fast convergence speed and good

steady-state performance of the first observer, a set of piece-

wise constant gains was chosen. Notice that this does not

impact the stability of the error dynamics as a finite set of

transitions is considered. Indeed, for each particular choice

of observer gains, the error dynamics are stable, and once the

final gain is set, the results previously derived apply. These

gains are described in Table I. As for the second observer,

TABLE I

OBSERVER GAINS

Time interval (s) α1 α2

[0, 60[ 100 10
[60, 120[ 10 1

[120, 240[ 5 10−1

[240, 300[ 5 5× 10−2

[300, 600[ 5 25× 10−3

[600, 720[ 2.5 10× 10−3

[720,+∞[ 2.5 5× 10−3

its gain was set to Q = 105C2QDCT

2 , with

QD = diag

(

20

‖Im‖I,
2× 10−2

‖IωE × Im‖I,
103

‖Im× (IωE × Im)‖I
)

.

As in most nonlinear observers, these gains were chosen em-

pirically, although the relative gains of the second observer

are related to the error noise of its observations. The initial

estimates of the first observer were set to zero, while the

initial attitude estimate was set to R̂ (0) = diag (−1,−1, 1).
The initial convergence of the errors x̃1(t) and x̃2(t) is

depicted in Fig. 1. While the convergence of the observer is
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Fig. 1. Initial convergence of the errors of the first observer

fast, different gains are required, as detailed in Table I, in

order to ensure an adequate steady-state level of error, as it

will be detailed shortly. The initial convergence of the error

ω̃E(t) is depicted in Fig. 2. Finally, the initial convergence

of the attitude error, expressed as z̃2(t), is shown in Fig. 3.

These plots show that the error converges to a neighborhood

of zero. In the absence of noise, the errors converge to zero.

This is not shown in the paper only due to space limitations.

In order to evaluate the performance of the attitude

observer, the steady-state standard deviation of the errors

is depicted in Table II. These values should be compared
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to the magnitude of the corresponding variables, which is

roughly 4.5 × 104 nT for x1(t), 3.27 nT/s for x2(t), and

15°/hour for ωE(t). Evidently, the observer achieves very

good results. Finally, an additional error variable is defined

as R̃(t) = RT (t)R̂e(t), which corresponds to the rotation

matrix error. Here, R̂e(t) corresponds to the projection of

the obtained attitude estimate on SO(3). Using the Euler

angle-axis representation for this new error variable,

R̃(t) = I cos
(

θ̃(t)
)

+
[

1− cos
(

θ̃(t)
)]

d̃(t)d̃T (t)

−S
(

d̃(t)
)

sin
(

θ̃(t)
)

,

where 0 ≤ θ̃(t) ≤ π and d̃(t) ∈ R
3,
∥

∥

∥
d̃(t)

∥

∥

∥
= 1,

are the angle and axis that represent the rotation error,

the performance of the filter is easily identified from the

evolution of θ̃. The mean angle error, computed for t ≥ 2400
s, is 0.586°, which is a very good result.

V. CONCLUSIONS

This paper presented a novel attitude observer based on

measurements of a single body-fixed vector, in addition to

angular velocity measurements provided by a triaxial high-

grade rate gyro, that has as key feature the explicit estimation

of the angular velocity of the Earth around its own axis. By

explicitly estimating this vector, one is endowed in the end

TABLE II

STANDARD DEVIATION OF THE STEADY-STATE ERROR

Variable Standard deviation

x̃1(t) (nT) 17
x̃2(t) (nT/s) 0.044

ω̃E(t) (°/hour) 0.18
z̃2(t) 0.044

with two body-fixed vector observations, whose counterparts

in inertial coordinates are known, which thus allows to

estimate the attitude of a platform. The proposed observer

has a cascade structure, it is computationally efficient, and

the overall error dynamics were shown to be globally ex-

ponentially stable. The extension to more than one vector

observation can be envisioned and simulations results were

presented that illustrate the achievable performance. Future

work will include extensive Monte Carlo simulations prior

to experimental evaluation.
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