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Abstract— This paper presents a novel cascade attitude
observer based on measurements of a single body-fixed vector,
in addition to high-grade rate gyro readings. First, a second
body-fixed vector, related to the angular velocity of the Earth
around its own axis, is dynamically estimated. Then, an attitude
observer is built based upon the measured body-fixed vector,
the estimated one, and the angular velocity provided by the rate
gyros. The topological characteristics of the attitude estimates
are preserved by construction and the estimation error is shown
to converge to zero. The region of convergence is characterized
and the result is best described as semi-global. Simulation
results are included that show the achievable performance of
the proposed solution. Finally, the results and characteristics of
the observer are compared with that proposed in a companion
paper, which considers attitude estimates on R

3×3.

I. INTRODUCTION

Attitude estimation has been a hot topic of research

for the past decades, and not by mere chance. Indeed,

the attitude of an autonomous robotic platform is usually

a key requirement for its successful operation. Moreover,

the problem is both interesting and challenging. Algebraic

solutions, using body-fixed vector measurements of at least

two known non-parallel inertial vectors, have long existed,

see e.g. the Wahba’s problem [1]. However, this solution does

not incorporate any filtering process and all the imperfections

of the vector measurements are reflected in the resulting

algebraic estimates. This can be highly mitigated using angu-

lar velocity measurements, readily available from rate gyros,

and designing appropriate filtering processes. Many different

filtering alternatives have been reviewed in the survey paper

[2]. As in many nonlinear problems, the extended Kalman

filter (EKF) provided an earlier solution, see e.g. [3], [4],

and [5]. However, the divergence due to the linearization

errors of the EKF has compelled the research community

to pursue different solutions with convergence guarantees,

such as those presented in [6], [7], [8], [9], and references

therein. In [10] a deterministic attitude estimator is presented

based on uncertainty ellipsoids. Previous work by the authors

includes [11] and [12], where two different solutions for

attitude estimation are presented with global convergence

results.

This work was partially supported by the FCT [PEst-
OE/EEI/LA0009/2013].

The authors are with the Institute for Systems and Robotics, Laboratory of
Robotics and Systems in Engineering and Science, Portugal. Pedro Batista
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For attitude estimation it is usually considered that there

are available, at least, two body-fixed measurements of

corresponding known constant vectors in inertial coordinates.

Recent exceptions to this approach are [13], [14], and

[15], where time-varying reference vectors are considered.

In this paper, a single direct measurement, in body-fixed

coordinates, of a constant inertial vector is assumed available.

Yet, a second vector is dynamically computed from the

measurements of high-grade rate gyros, which ultimately

allow one to estimate the angular velocity of the Earth around

its own axis.

In the companion paper [16] a novel cascade attitude

observer is proposed that is based on high-grade rate gyros

and single body-fixed measurements of a constant inertial

vector. In short, estimates of direction vectors are considered,

in the first stage of the observer, in R
3, while the attitude

estimates are obtained on R
3×3, and solutions on how to

later obtained attitude estimates from the observer estimates

are later mentioned. This paper presents an alternative cas-

cade attitude observer for the same problem. However, the

structures of both the first and the second observer in the

present approach are such that the topological characteristics

of the quantities are preserved. First, an estimate of a second

body-fixed vector is obtained, related to the angular velocity

of the Earth, whose counterpart in inertial coordinates is

known. Then, a second observer fuses the measurements

of the high-grade rate gyros and the two vectors available

to obtain a filtered version of the attitude of the platform.

The error of the estimate of the second vector required

for attitude estimation, provided by the first observer, is

shown to converge to zero for all initial conditions. The

attitude error of the second observer, considering the cascade

structure, is shown to converge to zero, with a large region

of convergence. As previously mentioned, the characteristics

of the quantities are preserved. In particular, for the first

observer, the norm of the estimate of the measured vector is

constant by construction, while for the attitude observer the

estimates provided by the observer belong, by construction,

to the special orthogonal group. The caveat of this approach,

as of those presented in [8] and [9], is that it is not possible to

achieve global asymptotic stability by continuous feecback,

see [17]. The advantage is that the attitude estimates belong

to the special orthogonal group and no additional projections

or other computations are applied to the estimates provided

by the observer.

The paper is organized as follows. The problem statement

and the nominal system dynamics are introduced in Section



II, while the observer design and stability analysis are

detailed in Section III. Simulation results are presented in

Section IV and Section V summarizes the main results of

the paper.

A. Notation

Throughout the paper the symbol 0 denotes a matrix

of zeros and I an identity matrix, both of appropriate

dimensions. For x ∈ R
3 and y ∈ R

3, x · y and

x × y represents the inner and cross product, respectively.

The special orthogonal group is denoted by SO(3) :=
{

X ∈ R
3×3 : XXT = XTX = I ∧ det (X) = 1

}

. For con-

venience, define also the transpose operator (.)
T

, and notice

that x · y = xTy, x,y ∈ R
3.

II. PROBLEM STATEMENT

For the purpose of attitude estimation, assume that a

platform is equipped with a set of three, high-grade, orthogo-

nally mounted rate gyros, which are sensitive to the angular

velocity of the Earth around its own axis. Further assume

that measurements of a known constant inertial vector are

also available, in body-fixed coordinates. Roughly speaking,

this paper aims at determining the attitude of the platform

with these sensor measurements.

In order to clearly describe the problem framework, let {I}
denote a local inertial coordinate reference frame, e.g. the

North-East-Down (NED) coordinate frame with origin fixed

to some point of the Earth, and denote by {B} the so-called

body-fixed frame, attached to the platform. It is assumed,

without loss of generality, that this is also the frame of the

sensors. Let R(t) ∈ SO(3) denote the rotation matrix from

{B} to {I} and ω(t) ∈ R
3 be the angular velocity of {B}

relative to {I}, expressed in {B}. Then,

Ṙ(t) = R(t)S [ω(t)] , (1)

where S [ω(t)] ∈ R
3×3 is the skew-symmetric matrix that

encodes the cross product, i.e., S (x)y = x × y for x,y ∈
R

3.

The measurements of the high-grade set of rate gyros are

given by

ωm(t) = ω(t) + ωE(t), (2)

where ωE(t) ∈ R
3 is the angular velocity of the Earth around

its own axis, expressed in {B}. Denote by I
ωE ∈ R

3 the

angular velocity of the Earth around its own axis expressed

in {I}. Then,
I
ωE = R(t)ωE(t) (3)

for all time.

Let m(t) ∈ R
3 denote the measurements of the second

sensor, which measures, in body-fixed coordinates, a vector

that, when expressed in inertial coordinates, is assumed

known and constant. Let Im ∈ R
3 denote the inertial

vector corresponding to m(t). Then, similarly to the angular

velocity of the Earth around its own axis, one can write

Im = R(t)m(t) (4)

for all time.

The following assumptions are considered throughout the

paper.

Assumption 1: The inertial vector Im is not parallel to the

angular velocity of the Earth I
ωE , i.e., there exists a constant

cv > 0 such that
∥

∥

I
ωE × Im

∥

∥

2 ≥ cv.
Assumption 2: The signal ωm(t) and its derivative ω̇m(t)

are bounded for all time.

The first assumption is mild and it is rather standard as

most attitude estimation solutions assume the existence of

at least two known non-parallel inertial vectors, which are

measured in body-fixed coordinates. Yet, in this paper, of the

two vectors, ωE(t) is not even measured. Instead, it is also

explicitly estimated. The second is a technical assumption

that is evidently verified for all systems in practice, as one

cannot have arbitrarily large angular velocities or angular

accelerations.

The problem addressed in the paper is that of designing

an observer, with convergence guarantees, for the rotation

matrix R(t) from {B} to {I} based on the rate gyro

measurements ωm(t), the additional measurements m(t) and

the knowledge of both I
ωE and Im.

III. OBSERVER DESIGN

A. Auxiliary observer

As briefly discussed in the introduction, the idea of the

paper is to obtain an estimate of a second vector, in body-

fixed coordinates, whose counterpart, in inertial coordinates,

is constant and known, so that two vectors are available for

attitude estimation purposes. The observer for this second,

auxiliary vector, is detailed in this section.

First, take the time derivative of the vector measurement

m(t), which from (1), (2), and (4) can be written as

ṁ(t) = −S [ωm(t)− ωE(t)]m(t). (5)

Next, notice that, under Assumption 1, the set
{

m(t)

‖m(t)‖ ,
m(t)× ωE(t)

‖m(t)× ωE(t)‖
,

m(t)× [m(t)× ωE(t)]

‖m(t)× [m(t)× ωE(t)]‖

}

.

provides an orthonormal basis in R
3, which can be used to

write the angular velocity of the Earth as

ωE(t) = c1m(t)− c2v(t), (6)

with

c1 :=
I
ωE · Im
‖Im‖2

and

c2 :=

∥

∥

Im× I
ωE

∥

∥

2

‖Im× (Im× I
ωE)‖2

,

and where

v(t) := m(t)× [m(t)× ωE(t)]

is an auxiliary vector. Here, several norm, rotation, and cross

product properties were employed. Notice that, using (3),

(4), and some rotation and cross product properties, one can

establish that

v(t) = RT (t)Iv, (7)



with
Iv := Im×

(

Im× I
ωE

)

.

Taking the time derivative of (7), and using (1) and (2), yields

v̇(t) = −S [ωm(t)− ωE(t)]v(t). (8)

This is an undesirable expression as the angular velocity

of the Earth is not estimated directly. Instead, consider the

decomposition (6) in (8), as well as in (5), which allows to

write the nominal system dynamics
{

ṁ(t) = −S [ωm(t) + c2v(t)]m(t)
v̇(t) = −S [ωm(t)− c1m(t)]v(t)

. (9)

Consider the observer for (9) given by

{

˙̂m(t) = −S [ωm(t) + c2v̂(t) + α1m(t)× m̂(t)] m̂(t)
˙̂v(t) = −S [ωm(t)− c1m(t)] v̂(t) + α2m(t)× m̂(t)

,

(10)

where m̂(t) ∈ R
3 and v̂(t) ∈ R

3 correspond to the estimates

of m(t) and v(t), respectively, and α1 ∈ R and α2 ∈ R

are positive observer gains. Let m̃(t) := m(t) − m̂(t) and

ṽ(t) := v(t)− v̂(t) denote the estimation errors. Then, from

(9) and (10) one may write the error dynamics























˙̃m(t) = −S [ωm(t) + c2v(t)− c2ṽ(t)] m̃(t)
+S [α1m(t)× m̃(t)] m̃(t)
+α1 [m(t)× m̂(t)]×m(t)
−c2ṽ(t)×m(t)

˙̃v(t) = −S [ωm(t)− c1m(t)] ṽ(t) + α2m(t)× m̃(t)

.

(11)

Before stating the main result of this section, compute the

time derivative of m(t)× m̂(t), which will be useful in the

proof. This is given, using (9), (10), and the vector triple

product by

d
dt
m(t)× m̂(t) = − [ωm(t) + c2v(t)]× [m(t)× m̂(t)]

−α1 [m(t) · m̂(t)] [m(t)× m̂(t)]

+c2 [m(t) · m̂(t)] ṽ(t)− c2 [m(t) · ṽ(t)] m̂(t). (12)

The following theorem addresses the stability and conver-

gence properties of (11).

Theorem 1: Consider the state observer (10), with positive

observer gains α1 and α2. Further assume that Assumptions

1 and 2 hold. Then, for all initial conditions such that

‖m̂ (t0)‖ =
∥

∥

Im
∥

∥, it is true that:

i) the error variables m̃(t) and ṽ(t) are bounded;

ii)

lim
t→∞

m(t)× m̂(t) = 0;

and

iii)

lim
t→∞

m(t)

‖Im‖ ×
(

ṽ(t)× m(t)

‖Im‖

)

= 0.

Proof: Consider the Lyapunov candidate function

V (t) :=
1

2
‖m̃(t)‖2 + 1

2

c2
α2

‖ṽ(t)‖2 ,

which is positive definite as both c2 and α2 are positive

scalars. Its time derivative can be shown to be given by

V̇ (t) = −α1 ‖m(t)× m̂(t)‖2 .
As V̇ (t) ≤ 0 and V (t) ≥ 0, it follows that V (t) is bounded,

which in turn implies the first statement of the theorem,

i.e., the error variables m̃(t) and ṽ(t) are bounded. Next,

compute the time derivative of V̇ (t), which is given by

V̈ (t) = −2α1 [m(t)× m̂(t)] · d
dt

m(t)× m̂(t).

Notice that, by definition, m(t) has constant norm. As m̃(t)
is bounded, it follows that so are the estimates m̂(t). In

addition, v(t) also has constant norm and, by assumption,

ωm(t) is bounded. Also, it has already been shown that ṽ(t)
is bounded. Therefore, one can conclude that all terms in (12)

are bounded and, consequently, V̈ (t) is also bounded. Thus,

one further concludes that V̇ (t) is uniformly continuous.

Moreover, as V̇ (t) ≤ 0 and V (t) ≥ 0, it follows that

V (t) converges to a limit. Now, using Barbalat’s lemma, one

concludes that V̇ (t) converges to zero, which establishes the

second statement of the theorem. Next, notice that the time

derivative of (12) is, under the assumptions of the theorem,

bounded, which means that (12) is uniformly continuous.

Moreover, from the second statement of the theorem, m(t)×
m̂(t) converges to a limit. Therefore, invoking the Barbalat’s

lemma again, one can conclude that

lim
t→∞

d

dt
m(t)× m̂(t) = 0. (13)

Now, taking the limit of both sides of (12) and noticing that

all quantities therein are bounded, and using (13) as well as

the second statement of the theorem, allows one to conclude

that

lim
t→∞

([m(t) · m̂(t)] ṽ(t)− [m(t) · ṽ(t)] m̂(t)) = 0

or, equivalently,

lim
t→∞

([

m(t)

‖Im‖ · m̂(t)

‖Im‖

]

ṽ(t)−
[

m(t)

‖Im‖ · ṽ(t)
]

m̂(t)

‖Im‖

)

= 0.

(14)

To establish the final result of the theorem, is is important

to notice that the observer (10) preserves the norm of the

estimates m̂(t), which can be verified by computing its time

derivative, which gives

d

dt
‖m̂(t)‖ = 0.

Therefore, from the second statement of the theorem, one

can conclude that, in the limit, either i) m̂(t) = m(t) or ii)

m̂(t) = −m(t). Either way, one can conclude, from (14),

that

lim
t→∞

([

m(t)

‖Im‖ · m(t)

‖Im‖

]

ṽ(t)−
[

m(t)

‖Im‖ · ṽ(t)
]

m(t)

‖Im‖

)

= 0,

which using the vector triple product property finally allows

to demonstrate the third statement of the theorem.

At this point, it is important to explain that one already

has all the required information for attitude estimation, even



though it was not shown that the error of (11) converges to

zero. Indeed, it can be shown that

m(t)

‖Im‖ ×
(

v(t)× m(t)

‖Im‖

)

= v(t)

and hence

m(t)

‖Im‖×
(

ṽ(t)× m(t)

‖Im‖

)

= v(t)−m(t)

‖Im‖×
(

v̂(t)× m(t)

‖Im‖

)

.

(15)

An estimate of v(t), whose error converges to zero under

the conditions of Theorem 1, is effectively provided by

m(t)

‖Im‖ ×
(

v̂(t)× m(t)

‖Im‖

)

.

This estimate provides not only the second body-fixed vector

required for attitude estimation but it also allows to obtain

an estimate of the angular velocity of the Earth.

B. Attitude observer

This section presents the design and stability analysis of an

attitude observer based upon the estimates of v(t), provided

by the observer (10), the rate gyro measurements ωm(t),
and the body-fixed vector measurements m(t), in addition

to the information of the corresponding vectors in inertial

coordinates, Iv and Im. First, substitute (2) in (1), which

gives

Ṙ(t) = R(t)S [ωm(t)− ωE(t)] .

Further using the decomposition of the angular velocity of

the Earth (6), one can write the nominal rotation dynamics

as

Ṙ(t) = R(t)S [ωm(t)− c1m(t) + c2v(t)] . (16)

Consider the attitude observer given by

˙̂
R(t) = R̂(t)S [ωo(t)] , (17)

where R̂(t) is the attitude estimate, with

ωo(t) := ωm(t)− c1m(t) + c2
m(t)

‖Im‖ ×
(

v̂(t)× m(t)

‖Im‖

)

+α3m(t)×
[

R̂
T
(t)Im

]

+α4

[

m(t)

‖Im‖ ×
(

v̂(t)× m(t)

‖Im‖

)]

×
[

R̂
T
(t)Iv

]

,

where α3 and α4 are positive scalar observer gains and v̂(t)
is an estimate provided by (10). Define the error variable

R̃(t) = R(t)R̂
T
(t). (18)

Notice that, by construction, R̃(t) ∈ SO(3) and the estima-

tion error converges to zero if an only if R̃(t) converges to

an identity matrix. Its time derivative can be written, after

some computations and simplifications, as

˙̃
R(t) = −S [ωf (t) + ω̃f (t)] R̃(t),

with

ωf (t) := α3
Im×

[

R̃(t)Im
]

+ α4
Iv ×

[

R̃(t)Iv
]

and

ω̃f (t) := −c2R(t)
[

m(t)
‖I
m‖

×
(

ṽ(t)× m(t)
‖I
m‖

)]

−α4

(

R(t)
[

m(t)
‖I
m‖

×
(

ṽ(t)× m(t)
‖I
m‖

)])

×
[

R̃
T
(t)Iv

]

.

Before proceeding to the main result of the paper, it

is convenient to introduce the equivalent error in terms of

quaternions [18]. Let ((s̃(t), r̃(t)) denote the unit quaternion

corresponding to the rotation error R̃(t), where s̃(t) and r̃(t)
are the so-called scalar and vector parts. The equivalence can

be expressed by

R̃(t) = I+ 2s̃(t)S (r̃(t)) + 2 [S (r̃(t))]
2

(19)

and the corresponding quaternion dynamics are given by
{

˙̃s(t) = 1
2 [ωf (t) + ω̃f (t)] · r̃(t)

˙̃r(t) = − 1
2 [s̃(t)I− S (r̃(t))] [ωf (t) + ω̃f (t)]

. (20)

The following theorem is the main result of the paper.

Theorem 2: Define the parameterized set

R(ǫ) :=
{

R̃ (s̃, r̃) ∈ SO(3) : |s̃| ≥ ǫ
}

and consider the attitude observer (17), where the estimates

v̂(t) are obtained using the state observer (10). Further

assume that the conditions of Theorem 1 hold and suppose

that both α3 and α4 are positive gains. Fix 0 < ǫ < 1. Then,

for all initial conditions such that R̃(t) ∈ R(ǫ), the attitude

error R̃(t) converges to the identity, i.e., R̂(t) converges to

R(t).
Proof: The proof consists essentially in showing that

the error dynamics of r̃(t) are locally input-to-state stable

with ṽ(t) as input. As under the conditions of the theorem

ṽ(t) converges to zero, it follows that, for all initial condi-

tions such that R̃ (t0) ∈ R(ǫ), r̃(t) converges to zero, which

is equivalent to say that R̃(t) converges to the identity matrix,

or R̂(t) converges to R(t), therefore concluding the proof.

The demonstration is done considering the Lyapunov-like

function

V (t) :=
1

2
‖r̃(t)‖2 .

Notice that, in the definition of the region of convergence

R(ǫ) in Theorem 2, ǫ can be chosen as an arbitrarily

small positive constant, which is equivalent to say that the

initial error rotation angle must be smaller than π by an

arbitrarily small positive margin. Therefore, the result is

better characterized as semi-global.

Finally, in this paper only one body-fixed vector mea-

surement was considered, as it is the most demanding case

from the theoretical point of view. Nevertheless, the design

can be extended to include additional body-fixed vector

measurements.

IV. SIMULATION RESULTS

This section presents simulation results in order to show

the performance achieved with the proposed solution. The

local inertial frame was considered as the NED frame,

centered at a latitude of ϕ = 38.7138°, a longitude of



TABLE I

OBSERVER GAINS

Time interval (s) α1

∥

∥
I
m

∥

∥

2
α2

[0, 300[ 10 10× 10−1

[300, 420[ 10 5× 10−2

[420, 600[ 5 2.5× 10−2

[600, 720[ 2.5 1× 10−2

[720,+∞[ 2.5 5× 10−3

ψ = 9.1394°, and at sea level. The norm of the angular

velocity of the Earth was set to
∥

∥

I
ωE

∥

∥ = 7.2921150×10−5

rad/s, which is about 15 degrees per hour. In the NED

frame, one has I
ωE =

∥

∥

I
ωE

∥

∥

[

cosϕ 0 − sinϕ
]T
.

As for the vector measurement m(t), it is assumed that

magnetic field measurements are available. However, any

other inertial vector could have been considered. In this case,
Im was set according to the 11th generation of International

Geomagnetic Reference Field for the latitude, longitude, and

altitude previously described. Notice that, with this choice,

Assumption 1 is satisfied.

The initial attitude of the platform was set to R (0) = I

and the evolution of the angular velocity is given by

ω(t) =





5 π
180 sin

(

2π
60 t

)

π
180 sin

(

2π
180 t

)

−2 π
180 sin

(

2π
300 t

)



 (rad/s) .

In the simulations, the measurements of the magnetometer

were assumed to be corrupted by zero-mean white Gaussian

noise, with standard deviation of 150 nT, which corresponds

to the worst case specification of the triaxial magnetometer

of the nanoIMU NA02-0150F50. The rate gyro measure-

ments noise is characterized by an angle random walk of

4°/hr/
√
Hz, which corresponds to the KVH DSP-3000 fiber

optic gyro. A sampling frequency of 100 Hz was considered

and the fourth-order Runge-Kutta method was employed in

the simulations.

In order to ensure both fast convergence speed and good

steady-state performance of the first observer, a set of piece-

wise constant gains was chosen. Notice that this does not

impact the stability of the error dynamics as a finite set of

transitions is considered. Indeed, for each particular choice

of observer gains, the error dynamics are stable, and once the

final gain is set, the results previously derived apply. These

gains are described in Table I. As for the second observer, the

gains were set to α3 = 0.02/
∥

∥

Im
∥

∥

2
and α4 = 0.4/

∥

∥

Iv
∥

∥

2
.

Additional tweaking could have ensured faster convergence

rate with two sets of gains. As in most nonlinear observers,

these gains were chosen empirically, although the relative

gains of the second observer are related to the error noise

of its observations. The initial estimate of the first observer

m̂(0) was set identical to the first measurement, while v̂(0)
was set to zero. The initial attitude estimate was set such that

the initial angle rotation error is very close to 180 degrees.

The initial convergence of the errors m̃(t) and ṽ(t) is

depicted in Fig. 1. While the convergence of the observer

is fast, different gains are required, as detailed in Table I,

in order to ensure an adequate steady-state level of error,
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Fig. 1. Initial convergence of the errors of the first observer

as it will be detailed shortly. The initial convergence of the

attitude error R̃(t)− I is shown in Fig. 2. These plots show

that the error converges to a neighborhood of zero. In the

absence of noise, the errors converge to zero.
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Fig. 2. Initial convergence of the error R̃(t)− I

In order to evaluate the performance of the attitude ob-

server, the steady-state standard deviation of the errors is

depicted in Table II. These values should be compared to the

magnitude of the corresponding variables, which is roughly

4.5×104 nT for m(t) and 1.5×105 nT2/s for v(t). Evidently,

the observer achieves very good results. Using the Euler

angle-axis representation for the rotation error,

R̃(t) = I cos
(

θ̃(t)
)

+
[

1− cos
(

θ̃(t)
)]

d̃(t)d̃T (t)

−S
(

d̃(t)
)

sin
(

θ̃(t)
)

,

where 0 ≤ θ̃(t) ≤ π and d̃(t) ∈ R
3,
∥

∥

∥
d̃(t)

∥

∥

∥
= 1, are



TABLE II

STANDARD DEVIATION OF THE STEADY-STATE ERROR

Variable Standard deviation

m̃(t) (nT) 15

ṽ(t) (nT2/s) 1700

R̃(t)− I 0.01

the angle and axis that represent the rotation error, the

performance of the proposed solution is identified from the

evolution of θ̃. The mean angle error, computed for t ≥ 2400
s, is 0.636°, which is a very good result.

Finally, a brief comparison between the observer presented

in this paper and the one proposed in the companion paper

[16] is offered. Both observers have cascade structures and

they are both computationally efficient and equivalent, with

the same number of states. In the first stage of both observers

one of the states corresponds to the measured body-fixed

vector, with both observers achieving very similar levels of

performance. The only difference is that in this paper the

norm of the vector is preserved, while in the companion

paper [16] the norm characteristics are not imposed by the

observer, although it converges exponentially to the true

value. The other state of the first stage of both observers

is not comparable as it corresponds to different quantities.

In terms of attitude estimation performance, both observers

achieve very similar results, with a mean angle error of

0.636° for the observer proposed herein, against 0.586°

obtained in the companion paper [16]. This is so in spite

of very different approaches to the problem: in the compan-

ion paper the topological characteristics are discarded (but

verified asymptotically) and globally exponential stability

is obtained; in the solution proposed herein, the design is

explicitly made on SO(3) and as a consequence only semi-

global asymptotic stability was shown.

V. CONCLUSIONS

The problem of attitude estimation has long received

the attention of the research community, as it is vital to

the successful operation of robotic platforms. This paper

proposes a novel attitude estimation solution that is based

solely on measurements of a single body-fixed vector and

the angular velocity provided by a set of three high-grade

rate gyros, sensitive to the angular velocity of the Earth

around its own axis. In short, an estimate of a second body-

fixed vector is obtained, with an auxiliary observer that

preserves the norm of the estimates of the measured body-

fixed vector. This second body-fixed vector, together with

the first, allows not only to obtain an estimate of the angular

velocity of the Earth, required for attitude filtering purposes,

but it also works as a second vector for attitude estimation.

An attitude observer that preserves the topological properties

of the attitude estimates is then proposed and the overall

stability of the system was detailed, where it was shown

that, for all initial errors such that the error rotation angle

is smaller than π by an arbitrarily small positive margin,

the attitude error converges to zero. Simulations results were

presented that illustrate the achievable performance. Future

work will include extensive Monte Carlo simulations prior

to experimental evaluation.
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