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Abstract— In this paper a trajectory planner for n au-
tonomous vehicles following a common leader is presented,
with the planning being accomplished in real time and in a
three dimensional setting. The trajectory planner is designed
such that n follower vehicles behave as n distinct points of
a unique two dimensional trailer attached to a single leader
vehicle. We prove that for a wide range of initial conditions
the trailer reference frame converges to a unique solution,
thus guaranteeing that each follower can plan its trajectory
independently from its peers, thereby reducing the need for
communications among vehicles. Additionally, convergence to
a fixed formation of n+1 vehicles with respect to the trailer ref-
erence frame is also guaranteed. Finally, we present bounds on
the planned velocity and acceleration, which provide conditions
for the feasibility of the planned trajectory. An experimental
validation of the planner’s behavior is presented with quadrotor
vehicles, demonstrating the richness of the planned trajectories.

I. INTRODUCTION

Robot coordination has been the scope of a significant

amount of research over the last decade. Coordination of

multiple vehicles is particularly useful in a variety of ap-

plications, such as mapping, coverage, and surveillance of

large areas like the sea floor [1], [2], providing results

in a faster and more efficient manner. Coordinated motion

is also required in transportation via multiple vehicles, in

cases when the loading capacity of an individual vehicle

is surpassed [3]. Sensing robots moving in a coordinated

manner can also be perceived as a distributed network of

sensors, altogether accomplishing a larger sensing task or

alternatively providing robustness to sensor loss in critical

environments [4].

Different approaches to formation control have been pro-

posed in the literature. In a behavior based approach, a

desired behavior results from a weighting between different

goal oriented behaviors but guaranteeing convergence to a

desired configuration proves difficult [5], [6]. In a virtual

This work was partially supported by the Fundação para a Ciência e
a Tecnologia (FCT) under the project PEst-OE/EEI/LA0009/2013 and by
Project MYRG118(Y1-L3)-FST12-SSW of the University of Macau. The
work of Pedro Pereira was supported by a Research Student Grant under
the FCT project PEst- OE/EEI/LA0009/2011. The work of Rita Cunha was
supported by the FCT Investigator Programme (IF/00921/2013).

The authors are with the Institute for Robotics and Systems in En-
gineering and Science (LARSyS), Instituto Superior Técnico, Univer-
sidade de Lisboa, 1049-001 Lisboa, Portugal. R. Cunha is also with
the Department of Electrical Engineering and Computer Science, In-
stituto Superior Técnico, Universidade de Lisboa. D. Cabecinhas and
C. Silvestre are also with the Department of Electrical and Com-
puter Engineering, Faculty of Science and Technology, University of
Macau, Macau, China. P. Oliveira is also with the Department of
Mechanical Engineering, Instituto Superior Técnico, Universidade de
Lisboa, Portugal. {ppereira,rita}@isr.ist.utl.pt and
{dcabecinhas,cjs,pjcro}@isr.ist.utl.pt

structure approach [7], the vehicles move as points of a

virtual rigid body, whose motion is prescribed in a global

manner. Another approach is leader following, which is the

one we tackle in this paper.

In the leader-follower approach to formation control, the

objective is for a follower vehicle to remain at a fixed relative

position, in a given reference frame, w.r.t. the leader vehicle.

The problem is completely characterized by the relative

position vector and the reference frame where it is defined.

The choice of reference frame plays an important role in

the definition of the follower’s trajectory and in the sensory

information necessary for computing such trajectory.

Several leader following strategies have been proposed in

the literature. The simplest approach to leader following is

to specify the relative position vector in the inertial reference

frame as in [8]. The planned trajectory is simple in the sense

that both the leader and the follower describe an identical

path, apart from a translation. Because the follower’s path

can overlap with the leader’s path, a reduced efficiency gain

when using multiple vehicles is expected.

Defining the relative position vector in a reference frame

attached to the leader, such as the leader’s Serret-Frenet

frame, results in follower trajectories with more complex

behavior. This approach has been proposed by several au-

thors [10], [11], [12] and because the chosen reference frame

is uniquely defined, no convergence analysis is required.

However, its implementation requires more information than

should be expected, since vehicle control at the velocity

level requires the knowledge of the leader’s velocity and

acceleration (in the form of the angular velocity of the Serret-

Frenet reference frame).

In this paper, we design an intuitive leader following

strategy where the relative position vector between leader and

follower is specified in the reference frame of a virtual trailer

attached to the leader. The work shares similarities with those

in [15], [16], however we provide new and rigorous proofs

on the convergence to a unique formation for n followers

and additionally bounds that can be used in studying the

feasibility of the planned trajectory.

A two part solution to the leader-follower formation prob-

lem is here proposed. First, a desired trajectory is computed

for an ideal follower vehicle, hereafter called virtual follower,

with the help of the proposed trajectory planner. The planned

trajectory is then used as a reference to a trajectory tracking

controller that drives the real follower vehicle to the virtual

follower. In this paper, we focus on the problem of generating

the follower trajectory and providing conditions for its feasi-

bility. We also present experimental results for the complete

planning/tracking problem using quadrotor vehicles.



Quadrotors are aerial vehicles ideal for testing algorithms,

due to their simplicity, high maneuverability, VTOL/hover

capability and ability to track any trajectory within the

limits of their actuation dynamics. Tracking controllers for

quadrotor vehicles have been extensively studied in the

literature, c.f. the survey article [17], and the virtual follower

trajectory generated by our planner can be used as reference

for any generic tracking controller applied to the follower

vehicle.

The remainder of this paper is structured as follows. Sec-

tion II presents some mathematical notation used throughout

the paper. Section III describes the leader-follower problem.

Section IV derives the trajectory planner and studies its

properties. Section V presents and examines the obtained

experimental results.

II. NOTATION

The configuration of a reference frame {B} w.r.t. a frame

{A} is represented as an element of the Special Euclidean

group of order n, (A
B
R , ApB) ∈ SE(n), where ApB ∈ R

n

is the position, A
B
R ∈ SO(n) is the rotation matrix, and

n is either 2 or 3. For points in the inertial frame {I}, the

superscript frame letter is often omitted, i.e. pB := IpB. The

vectors ei ∈ R
n with i = {1, ... , n} are used to denote the

unit vectors from the canonical basis for R
n. The matrix

S (x) = x
[

e2 −e1
]

∈ R
2×2 is a cross product skew-

symmetric matrix and it satisfies bTS (x) b = 0. The map

Π(x) : {x ∈ R
3 : xTx = 1} 7→ R

3×3 yields a matrix

that represents the orthogonal projection operator onto the

subspace perpendicular to x. We write as f (i)(t) the ith time

derivative of function f(t) for i = {1, 2, . . .}.

III. PROBLEM STATEMENT

In a leader following problem, a leader vehicle moves

freely and it is the goal of one or more followers to proceed

so as to see the leader vehicle at a constant relative position.

This simple problem cannot be accomplished by most real

vehicles as full position control is not available, i.e. a real

follower vehicle cannot follow a leader at all times. This

inspires the introduction of a virtual follower vehicle as one

with full position control and consequently one which can

meet the leader following goal at all times.

The goal of the virtual follower is to remain at a fixed

relative position w.r.t. the leader from its own point of view,

such that
FpL|F ≡ F

I
R (pL − pF) ≡ d, (1)

with d ∈ R
3 as a constant vector. According to (1), once the

kinematics of I
FR are established then the virtual follower’s

reference frame, { I
F
R , pF}, becomes completely defined.

Thus, the design challenge lies on finding an appropriate

kinematic behavior.

The virtual follower’s position can then be considered as

the desired position for a real follower. As such, the problem

of leader following can be addressed in two steps. The

primary step is that of trajectory planning which is vehicle

independent and is solved with the help of a virtual follower.

A secondary step is that of trajectory tracking which depends

on the selected vehicle and its dynamics and is solved with

the help of a trajectory tracking controller. Here, we focus

on the problem of trajectory planning but we present bounds

on the planned velocity and acceleration that can be used to

guarantee that the planned trajectory is indeed tractable.

In order to generate three dimensional trajectories, con-

sider the standard inertial reference frame {I} defined in

3D space, such that the third axis is aligned with the

acceleration due to gravity. Additionally, consider a second

inertial reference frame {I⋆} that coincides with {I} apart

from a constant rotation, so that its configuration w.r.t. {I}
is given by ( I

I⋆R ,0) ∈ SE(3). The unit vector I
I⋆R e3 ≡

n ∈ R
3 shall be selected and considered the preferred vertical

direction (for example, if a leader is scanning a vertical wall,

n should be selected as the normal to such wall). With that in

mind, the leader’s motion is decomposed into a planar motion

living in the plane orthogonal to n and a motion along the

direction n, i.e. p
(i)
L = Π(n) p

(i)
L + (nT p

(i)
L )n, where the

leader’s Frenet reference frame {L} ∈ SE(2) is associated

to Π(n) p
(i)
L . Two separate leader following strategies will

be accomplished, one along the plane orthogonal to n and

one along the direction n.

Next, focus on the two dimensional Leader following

strategy. With an obvious abuse of notation, consider the

inertial reference frame {I} ∈ SE(2), the leader’s Frenet

reference frame {L} defined by the pair ( I
LR , pL) ∈ SE(2)

and the virtual follower reference frame {F} defined by the

pair ( I
FR , pF) ∈ SE(2). The kinematics of the leader are

given by ṗL = vL ≡ ‖vL‖ I
L
R e1 and I

L
Ṙ = I

L
RS (ωL),

where vL ∈ R
2 is the linear velocity expressed in inertial

coordinates and ωL ∈ R is the angular velocity expressed in

body coordinates. Using the path curvature κL(t) the leader’s

angular velocity can be written as

ωL(t) = ‖vL(t)‖κL(t). (2)

The kinematics of the follower are similarly defined.

The trajectory planning here proposed is to be imple-

mented for n followers with one common leader. The objec-

tive is for the n+1 vehicles to move in a cohesive manner,

i.e. to move in a fixed configuration w.r.t. to some known

reference frame. However, in order to minimize communi-

cations among vehicles, we require each follower to move

independently from its peers. Under certain conditions, we

guarantee the n+1 vehicles asymptotically move in a fixed

formation requiring at the kinematic level solely information

about the leader’s position and velocity expressed in their

reference frame.

IV. TRAJECTORY PLANNER

Two virtual followers will be designed, one in a one

dimensional setting, p1D

F
∈ R, and another in a two dimen-

sional setting p2D

F ∈ R
2. The desired position for the real

follower is the combined position of both previous virtual

followers, i.e. pF = I
I⋆R

[

(p2D

F )T p1D

F

]T

, with the leader’s

motion also being decomposed in a one and two dimensional

motions, i.e. pL = I
I⋆
R

[

(p2D

L
)T p1D

L

]T

.
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Fig. 1: Standard 1-Trailer System

A. Motion along n

For the one dimensional virtual follower, consider the

leader p1D

L
= nT pL. The virtual follower is constrained to

be at a constant distance dz ∈ R from the leader along the

direction n, i.e. p1D

F
= p1D

L
−dz. This planning is a static one

(given p
(i)
L for i = {0, 1, 2, ...} as inputs) thus n followers

can independently apply this algorithm.

B. Motion along the plane orthogonal to n

For the two dimensional virtual follower, consider the

leader defined by p2D

L , which, from the previous definitions,

satisfies
[

(p2D

L )T 0
]T

= Π(e3)
I⋆

I R pL (the superscript 2D

will hereafter be dropped). As explained in Section III, the

design problem lies in finding kinematics that produce an

intuitive leader following behavior.

The proposed strategy is simple and intuitive. We model

each virtual follower as a point of a trailer attached to the

leader vehicle, as illustrated in Figure 1. In this case, the

virtual follower reference frame is identical to the trailer

reference frame, apart from a constant position offset q.

Equivalently1,

pF = pT + I

TRq ≡ pT + I

FRq, (3)

where pT is the trailer hinge rigidly connected to the leader,

q represents a point in the trailer rigid body (specified in the

trailer reference frames) and by definition I
T R ≡ I

FR .

It should be clear now, that if n followers, each one with

a different q, follow a common leader, then they behave

as n distinct points of a trailer rigid body as long as they

share the same trailer reference frame {T }. Later, we will

show that, under certain conditions, there is a unique trailer

reference frame to which all other reference frames converge

to. As a consequence, n followers can independently plan

their trajectories and they will asymptotically behave as n

points of a common trailer rigid body.

A trailer vehicle is one that can only move along the axis

that rigidly connects its hinge to the leader. Without loss of

generality, the axis of motion is assumed to be the trailer’s

first axis (see Figure 1) so that (1) takes the form

pL = pT + dx
I

TR e1, (4)

1In (3), the notation I⋆

T R should be used instead of I
T R because the

trailer is defined in the x-y plane of {I⋆}. However and without hindering
comprehension, the notation I

T R is used throughout this Section.

and vT = vT
I
T
R e1, where vT ≡ ‖vT ‖. Notice that with

this definition, the trailer’s reference frame {T }, like the

leader’s, becomes a Frenet reference frame. Taking the time

derivative of (4) yields

vL = vT + dx
I

T RS (ωT ) e1 ⇔ I

T R
[

vT ωT dx

]T

= vL

The trailer’s speed is then vT = eT1
T
I
R vL while the trailer’s

angular velocity is

ωT = eT2
T

I
R vLd−1

x . (5)

As explained in Section III, the kinematics of I
F
R (which

are those of I
T R ) defines the leader following behavior, thus

(5) completes our planning strategy.

Hereafter, we will dedicate efforts to studying the plan-

ner’s behavior, more specifically we will show under what

conditions there is a unique nominal trailer reference frame.

Additionally, we will also present bounds on the follower’s

speed and acceleration which are necessary in guaranteeing

the planned trajectory is indeed feasible.

C. Trajectory Planner Properties for the 2D Setting

The planning along the direction n is a static one. How-

ever, the planning in the 2 dimensional space orthogonal to

n is a dynamic one. Notice the trailer configuration with

respect to {I} belongs to the domain

{(pT ,
I

T
R ) : pT = pL−dxRe1,

I

T
R = R ∈ SO(2)}. (6)

The problem at hand is simple: can we guarantee that for a

wide range of initial conditions the trailer reference frame

converges to a unique (possibly time varying) reference

frame. This problem shares similarities with contraction

analysis, whose objective is to determine convergence to a

nominal solution which is independent of initial conditions

[18]. We will provide conditions under which such nominal

solution {T } exists. As a result, if those conditions are

met, we guarantee n followers can independently perform

their trajectory planning while asymptotically behaving as n

points of a common rigid trailer. In that case, the leader and

n followers form a fixed configuration that rotates in space

with the trailer reference frame.

The trailer reference frame is not unique (see (6)), but the

leader reference frame is, which is the reason for conducting

all analysis w.r.t. {L}. Having said this, consider L
T
R ∈

SO(2) as the rotation matrix from {T } to {L} given by
L
T
R ≡ L

I
R I

T
R and let L

T
R be parametrized by the angle

ψ, presented in Figure 1. In that case, the leader position

w.r.t. the trailer position specified in {L} can be rewritten as

LpL|T = dx
L

T
R e1 = dx

[

cos(ψ) sin(ψ)
]T

. (7)

and, using (2) and (5), the kinematics of ψ can be written as

ψ̇ = ωT − ωL = −‖vL‖ d−1
x (sin(ψ) + κLdx). (8)

We will show the non-autonomous system (8) (with ex-

ogenous terms ‖vL(t)‖ and κL(t)) converges to a unique

nominal solution for a wide range of initial conditions.

This answers the problem posed in the beginning of this



Subsection.

Remark 1: In order to guarantee the leader Frenet refer-

ence frame is always well defined, we require vL(t) ∈ C(R2)
with ‖vL‖ ≥ vmin

L > 0. Hereafter and for obvious reasons,

we shall assume those conditions are always met.

1) Pulled vs Pushed Trailer: Before we study the exis-

tence of a nominal solution ψ(t), we present a result which is

of extreme importance in later proofs and also of interesting

physical interpretation.

Lemma 2: Consider a leader with bounded curvature sat-

isfying |κL(t)dx|∞ ≤ 1 − ǫ2 (for ǫ ∈ (0, 1]) and a trailer

attached to such leader with kinematics described by (8).

Then the set Ω = {ψ : cos(ψ) ≥ ǫ} is positively invariant

with respect to (8) and, for all initial conditions such that

| cos(ψ(0))| < ǫ, the solutions of the system will enter Ω in

finite time.

Proof: Consider the positive definite Lyapunov function

V = 1 − cos(ψ), which decreases with cos(ψ) and whose

time derivative, with the help of (8), yields

V̇ = −‖vL‖ d−1
x (sin2(ψ) + sin(ψ)κL(t)dx).

Consider −ǫ < cos(ψ(t)) < ǫ for t ∈ [0 T ], which implies

sin2(ψ(t)) > 1 − ǫ2 for that same time interval. Given the

condition |κL(t)dx|∞ ≤ 1− ǫ2 it then follows

V̇ < −‖vL‖ d−1
x (1 − ǫ)(1−

√

1− ǫ2)V ∀t ∈ [0 T ] ,

which means there exists a finite time T such that

cos(ψ(t)) ≥ ǫ for all t > T .

Notice, from (7), that eT1
LpL|T = cos(ψ). Then Lemma 2

has a very interesting physical interpretation. It says that

given an upper bound on the curvature (whose interpretation

will be provided later) and a proper initialization, the trailer

will be forever pulled after a finite time, i.e. eT1
LpL|T (t) > 0

for t > T . In a weaker form, it says that if a trailer is initially

being pulled then it will be forever pulled.

2) Leader path with constant curvature: We now consider

the simplest case where a leader describes a circular or

rectilinear path. For these paths the curvature is constant and

we prove that ψ has a unique stable equilibrium point ψ⋆

for κLdx < 1, a unique equilibrium point ψ⋆ for κLdx = 1
and no equilibrium points for κLdx > 1. A quick analysis

of equation (8) reveals that if κL is a constant satisfying

κLdx < 1 then two equilibrium solutions exist,

cos(ψ⋆) = +
√

1− (κLdx)2 ∧ sin(ψ⋆) = −κLdx, (9a)

cos(ψ†) = −
√

1− (κLdx)2 ∧ sin(ψ†) = −κLdx. (9b)

Lemma 2 suggests that an equilibrium point can only be

stable if it satisfies cos(ψ) > 0. If κLdx = 1 then only one

equilibrium solution exists (cos(ψ⋆) = 0 ∧ sin(ψ⋆) = −1)

and it lacks asymptotic stability (which we do not prove in

this paper).

System (8) also reveals that no equilibrium solution exists

for κLdx > 1, with a very clear interpretation. According

to (5)), ωT is bounded by
‖vL‖

dx
whereas ωL = ‖vL‖ κL;

this means that if dx is too large (compared with the leader

path radius or κ−1
L

) the trailer will not have enough angular

velocity to keep up with the leader’s rotation. In that case,
L
T R can never stabilize.

Remark 3: The absence of an equilibrium solution for

κLdx > 1 should not be interpreted as a disadvantage but

rather as an advantage. A leader describing a path with

κLdx ≫ 1 is a leader which is almost at rest w.r.t. to the

trailer and we do not want the virtual follower to rotate with

the leader but rather to stay at rest (in which case ψ has no

equilibrium solution).

Theorem 4: Consider a leader describing a path with

constant curvature satisfying κLdx < 1 and a trailer attached

to such leader with kinematics described by (8). Let ψ⋆ and

ψ† be given by (9a) and (9b), respectively. If ψ(0) 6= ψ† then

ψ(t) converges exponentially fast to the stable equilibrium

point ψ⋆, i.e. (8) has an almost globally exponentially stable

(AGES) equilibrium point at ψ = ψ⋆.

Proof: Consider the positive semi-definite Lyapunov

function V = 1
2 (sin(ψ(t)) + κLdx)

2
, which is positive every

where expect for the two equilibrium points ψ⋆ and ψ† and

bounded, more specifically V < 2. From (8) and recalling

that κ̇L = 0, the Lyapunov time derivative yields

V̇ = −2 ‖vL‖ d−1
x cos(ψ(t))V. (10)

where V (0) 6= 0 from the conditions of the Theorem.

Assume cos(ψ(t)) ≤ −ǫ ≡ −
√
1− κLdx for all t. Then

from (10), V (t) > V (0) exp
(

2
vmin

L

dx
ǫt
)

, which means the

Lyapunov function grows unbounded with time. However,

this scenario is not possible since that same Lyapunov

function is upper bounded (by 2). The logical conclusion is

that cos(ψ(t)) > −ǫ ≡ −
√
1− κLdx will have to be verified

after some finite time at which point we recall Lemma 2 to

conclude that cos(ψ(t)) will be forever positive after some

finite time. From that point on, (10) is definite negative

which means V converges exponentially fast to origin for

the equilibrium point in (9a).

Theorem 4 says there are two equilibrium solutions, one

unstable and the other AGES. The stable solution corre-

sponds to a trailer being pulled while the unstable solution

corresponds to a trailer being pushed.

Thus for a leader describing a circular or a rectilinear path

and given the conditions mentioned in Theorem 4, the trailer

will converge to a unique solution for all initial conditions

excluding a single unstable equilibrium point. Naturally, a

question arises whether a similar result can be obtained for

arbitrary paths.

3) Leader describing an arbitrary path: Previously, for a

leader describing a circular path, a solution corresponding to

an equilibrium point was found and its stability was proven.

For a leader describing an arbitrary path, and under some

conditions, we can also prove the existence of a unique

attracting solution. The analytic expression for this solution

(which is not an equilibrium point) will not be provided (as

it is unknown) but, later on, we will be able to determine

what this solution resembles or looks like.

Theorem 5: Consider a leader describing a path with a

time-varying curvature satisfying |κL(t)dx|∞ ≤ κmax

L
dx < 1



and a trailer attached to such leader, initialized such that

cos(ψ(0)) ≥ −
√

1− κmax

L dx. Then, cos(ψ(t)) has a unique

attracting solution.

Proof: Under the conditions of the Theorem, Lemma 2

may be used to conclude that after a finite time cos(ψ(t)) will

enter and not leave the interval ]
√

1− κmax

L
dx 1]. Consider

now ψ1(t) and ψ2(t) as two solutions to (8) with differ-

ent initial conditions. Without loss of generality, consider

ψ1(0), ψ2(0) ∈] − π
2

π
2 [ which is a positively invariant set

as a consequence of Lemma 2. Now define the error angle,

ψe(t) = ψ2(t) − ψ1(t) (with ψe(0) 6= 0) whose dynamics,

with the help of the mean value Theorem, can be written as

ψ̇e = −‖vL‖ d−1
x (sin(ψ2)− sin(ψ1)) = −‖vL‖ d−1

x cos(ψ′)ψe,

where ψ′ ∈ [min(ψ2, ψ1),max(ψ2, ψ1)] ⊂] − π
2

π
2 [. Thus

ψe = 0 is an exponentially stable equilibrium point.

From Theorem 5 one may conclude that the initialization

of the trailer reference frame (under the upper mentioned

conditions) does not influence the final trailer reference

frame, which means n followers can independently plan their

trajectories as they will asymptotically behave as n points

of a common trailer body. However, this is only valid for

an upper bounded leader path curvature (for reasons already

discussed) and the trailer must be properly initialized (from

Lemma 2, it is enough to initialize the trailer in a pulling

position, which provides a wide range of initializations).

The next Theorem, whose proof is omitted due to paper

length limitations, provides useful insight into the closeness

of ψ to ψ⋆.

Theorem 6: Consider a leader describing a path with a

time-varying curvature satisfying −1 ≤ κmin

L
dx ≤ κL(t)dx ≤

κmax

L dx < 1, and |κ′L| ≤ κ′∞L and a trailer attached to the

leader with kinematics described by (8). Then,

cos(ψ(t) − ψ⋆(t)) ≥ (1 − C2)(1 + C2)−1, (11)

where C = 1
2

κ′∞
L d2x

1−(κmax

L dx)2
and ψ⋆(t) is given by (9a), defines

an invariant set. Additionally, the conditions −κmax

L dx ≤
sin

(

ψ(t)
)

≤ −κmin

L
dx also define an invariant set.

D. Bounds on Velocity and Acceleration

As explained in Section III, the planned trajectory must

be fed to a trajectory tracking controller that guarantees

a real follower asymptotically tracks the virtual follower.

However, the planning is vehicle independent, as such it is

not guaranteed that the planned trajectory is indeed feasible.

The proposed planner does not mimic the leader’s motion,

thus higher velocities and accelerations than the leader’s may

be required from the real follower. Hence, for vehicles of the

same family, for example quadrotors, a logical conclusion is

that if a leader describes trajectories close to the limits of its

flight envelope, then the real follower’s flight envelope must

be broader than the leader’s. In general and for heterogeneous

vehicles, the restrictions in a follower’s envelope will impose

some upper bounds on the leader’s trajectories.

Here, we provide bounds on the planned velocity, v̄max

F
,

and planned acceleration, āmax

F
, for the complete 3D plan-

ning, which are given by

v̄max

F ≤
√

vmax2

F + (nT vL)2max, (12a)

āmax

F
≤

√

amax2

F
+ (nT aL)2max, (12b)

where n is the preferred vertical direction and vmax

F and amax

F

are the maximum velocity and acceleration of the trailer,

vmax

F ≤vmax

L

√

1 +
(

‖q‖ d−1
x (κmax

L dx)
)2
, (13a)

amax

F
≤amax

L
C2 + vmax2

L
d−1

x C3(κ
max

L
dx), (13b)

which can be found by differentiating (3) once and twice,

respectively. (C2 and C3 are bounded coefficients that depend

exclusively on dx and ‖q‖ - which we omit - and the term

(κmax

L dx) in (13) must be replaced by 1 if the trailer is not

properly initialized).

By imposing the bounds defined in (12), we extract bounds

to impose on the leader’s velocity and acceleration.

V. EXPERIMENTS

A. Experimental Set-Up

The proposed trajectory planner was tested with two

radio controlled Blade mQX quadrotor vehicles [19]. A

VICON Bonita motion capture system [20], composed of

12 cameras and markers attached to the quadrotors, provides

highly accurate position and orientation measurements for

the leader and follower at a rate of 100Hz. The trajectory

planner is implemented in a Matlab/Simulink model, which

computes the follower’s position reference and feeds it to

the quadrotors’s trajectory tracker controller developed in

[21] which requires a time-parametrized position reference

of class C3. Consequently, the trajectory planner requires the

knowledge of p
(i)
L (t) for i = {1, 2, 3}, which are obtained

from the raw position measurements by means of dynamic

differentiators.

B. Experiments

One experiment is presented, where the leader’s path

is depicted in red, the real follower’s path in blue and

the virtual follower’s path in magenta, with the magenta

reference frame being that of the virtual follower, i.e. I
FR .

In Figures 2(a)-2(c), the vehicles’ positions are shown five

times, using the symbol ♦ for the initial position and the

symbol  for the other positions, equally spaced in time

(elapsed time divided by four). The leader’s velocity was set

at 0.5ms−1

The angles ψ and ψ⋆ are presented in dashed and full lines,

in Figure 2(e), with ψ⋆ computed from (9a) and ψ computed

from L
TR = L

IR I
T R , where I

LR is the leader frenet

reference frame for the motion along the plane orthogonal

to n.

Figures 2(a)-2(c) depict the paths for dx = 0.4m, q =
[

0 0.4
]T

m, dz = 0m and n = e3. The leader quadrotor

describes a path composed of two circular paths: one in a

horizontal plane and the other in a plane tilted 45◦. As a

consequence, for the circular path in the horizontal plane,

the leader pulling the trailer is describing a circle (thus
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(a) Trajectories from 0 to 11s
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(b) Trajectories from 11 to 35s
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(c) Trajectories from 35 to 48.5s
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(d) Complete trajectories (top view)
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(f) Tracking position error between
virtual and real follower

Fig. 2: Leader describing (in red) circular path in planes

tilted 0◦ and 45◦

Theorem 4 applies). However, for the circular path in the

tilted plane, the leader pulling the trailer is describing an

ellipse, which is better seen in Figure 2(d). For the first case,

the virtual follower converges to a circular path as expected

and ψ⋆ is a constant (≈ −23.6◦) to which ψ converges to,

as can be seen in Figure 2(e). For the second case, ψ⋆ is

not a constant (in an ellipse, the path curvature changes) and

ψ tries to follow it, which can also be verified in Figure

2(e). The planning along n is very trivial, with the virtual

follower keeping the same altitude as the leader’s, clearly

perceptible in Figures 2(a)-2(c). In Figure 2(f), the position

error between virtual and real follower is seen converging

to zero corresponding to the convergence of the blue line to

the magenta line.

VI. CONCLUSIONS

In this paper, a real-time three dimensional trajectory plan-

ner for leader following is presented. The proposed trajectory

planner is intuitive and can be implemented independently

by each follower, thus reducing the need for communications

among vehicles. Each follower vehicle behaves as a point

of a two dimensional rigid body trailer rigidly attached

to a leader vehicle. We prove that under a wide range

of conditions, there is a unique attractive solution for the

trailer reference frame to which all solutions converge, which

demonstrates the robustness of the planning to disturbances

and perturbations. Additionally, we provide bounds on the

planned velocity and acceleration, which can be used in

limiting the leader’s velocity and acceleration with the intent

of guaranteeing the planned trajectories are feasible for all

followers. Experiments performed with quadrotor vehicles

were conducted that demonstrate the richness and suitability

of the generated trajectories. Directions for future work

include studying a sequence of n-trailers and incorporating

a collision avoidance strategy.
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