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Abstract— This paper addresses the problem of optimizing
the uncertainty in an active simultaneous localization and
mapping algorithm. This is done by designing an optimiza-
tion problem that weighs the final uncertainty, the average
uncertainty in the horizon considered, and the cost of the
control. Using the Pontryagin minimum principle and building
on [1] and [2], the optimization problem is transformed into
a two-point boundary value problem that encodes necessary
conditions for the input that minimizes the uncertainty. The
problem is solved numerically, and several particular examples
are analysed in depth.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the
problem of navigating a vehicle in an unknown environment,
by building a map of the area and using this map to deduce
its location, without the need for a priori knowledge of
location. Research efforts on this problem are interestingly
and thoroughly reported in the survey on SLAM techniques
found in [3]. The main paradigm in SLAM is to move to gain
new knowledge and improve what is known. In the formative
years of SLAM, the question of how to move was completely
separated from the estimation problem. However, in recent
years, several works addressed the issue of intelligent moving
in the context of SLAM, thus introducing Active SLAM (see
[4] and [5]).

The objective of Active SLAM is to plan ahead the motion
of the vehicle in order to maximize the explored areas
and minimize the uncertainty associated with the estima-
tion. These two objectives are, in a sense, complementary:
exploration involves moving in previously unvisited terrain
with the objective of increasing the overall knowledge of the
environment, while the latter is exploitation, i.e., it involves
revisiting areas to maximize the information gain. In this
paper, the focus is on the exploitation part of Active SLAM,
which requires that some form of exploration is already done.

One of the main discussions in the optimization of the ex-
ploitation step is how to measure uncertainty, or better, how
to quantify the information gain [6]. The main possibilities,
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stemming from the EKF approach to SLAM [7], are 1) A-
opt - the trace of the covariance, i.e., the average variance
across all states; 2) D-opt - the determinant of the covariance,
which is proportional to the volume of the covariance matrix;
3) E-opt - the minimum eigenvalue of the covariance; and
4) the entropy of the distribution. In [6] a comparison of
these uncertainty criteria with planning under uncertainty
is provided, concluding that D-opt is, in their case, the
one with best results, even though most of the literature in
Active SLAM utilizes the A-opt criterion. The most relevant
issue in Active SLAM is, however, how to find the path
that minimizes the uncertainty. One possibility is to address
this as the problem of planning the sequence of discrete
positions through the environment that form the maximally
informative trajectory, by discretizing the environment into
a grid, as is done in [8] for EKF-SLAM and in [9] for
particle filter SLAM. Another approach [10] follows the
recent trend of multiple robot missions and uses relative
entropy optimization and an EKF.

Not specifically applied to Active SLAM, but still with
the objective of uncertainty reduction, an interesting idea is
proposed in [2]. The author recovers a traditional optimal
control and estimation result [1], and, using the Pontryagin
minimum principle [11], derives a control strategy for mobile
sensors that influences the uncertainty evolution in a Kalman
filter. Given the linear character of the Kalman filter, this is
only possible if one or more of the parameters of the filter
depends, even if indirectly, on the input of another system.

This paper is rooted on this idea and on previous results in
SLAM where the problem was addressed in a sensor-based
framework [12] resulting, within certain conditions, in a
linear time-varying Kalman filter with globally exponentially
stable (GES) error dynamics. The cost functional proposed
in [2] is used to define an optimization problem for a more
general class of systems into which the sensor-based SLAM
framework fits, and the Pontryagin minimum principle is
used in a similar way. The main contributions of this paper
are the extension of the idea in [2] to a more general class
of systems, and the proposal of necessary conditions for the
trajectory that optimizes the uncertainty in a SLAM Kalman
filter. These conditions appear in the form of a two-point
boundary value problem that is solved numerically, and some
examples are analysed in depth.

The paper is organized as follows. Section II overviews
the sensor-based SLAM approach and presents the problem
statement. In Section III the ideas on which this paper builds
are reviewed, and a control strategy for uncertainty reduction
through optimal motion planning is presented. Section IV
applies the previous results to active SLAM. Numerical
results are presented and discussed in Section V, followed
by conclusions and future work directions in Section VI.
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Notation: Throughout this paper, In is the identity
matrix of dimension n, 0n×m is a n by m matrix filled with
zeros, and 1i ∈ Rn is a vector whose only nonzero entry
(equal to 1) is the i-th one. S(a) is a skew-symmetric matrix
that encodes the cross-product. Quantities denoted with (.)

∣∣
∗

are evaluated along the optimal trajectory.

II. SENSOR-BASED SLAM OVERVIEW

Building on the idea of robocentric filtering, [13] and [12]
address the problem of designing a navigation system in a
sensor-based framework for a vehicle capable of sensing
landmarks in a previously unknown environment, in 2-D
and 3-D respectively. This is done resorting to a purely
sensor-based SLAM algorithm where no linearization or
approximation is used whatsoever and pose representation
in the state is suppressed, therefore avoiding its pitfalls.
This section presents a brief overview of the work proposed
in those papers, that serve as groundwork for the optimal
control problem to address in this work.

A. Nonlinear system dynamics

Let the pair
(
R(t), Ip(t)

)
∈ SO(n) × Rn, n = {2, 3},

encode the transformation from the body-fixed frame {B}
to an inertial frame {I}. R(t) is a rotation matrix satisfying
Ṙ(t) = R(t)S(ω(t)), where ω(t) ∈ R

n(n−1)
2 is the angular

velocity, expressed in body-fixed coordinates, and Ip(t)
represents the vehicle position, assumed coincident with the
origin of the body-fixed frame, in the inertial frame. Consider
also the existence of static landmarks in the environment
whose coordinates can be perceived by the vehicle. These
define the map and can be separated in two complementary
sets, MO and MU . The former contains the mO visible
landmarks, while the latter contains the mU non-visible.

Consider that the vehicle is equipped with a triad of
orthogonally mounted rate gyros, rendering the angular
velocity of the vehicle available through the biased rate
gyros measurements ωm(t) = ω(t) + bω(t), where the bias
bω(t) ∈ R

n(n−1)
2 is assumed constant and unknown. Taking

this into account, it is possible to assemble the system
ṗi(t) = −S(ω(t)) pi(t)− v(t), ∀i ∈M
ḃω(t) = 0

yi(t) = pi(t),∀i ∈MO

ωm(t) = ω(t) + bω(t)

, (1)

where pi(t) ∈ Rn is the position of a landmark and
v(t) ∈ Rn is the velocity of the vehicle, both expressed in
the body-fixed frame. The last two quantities are measured.
This system can be transformed to incorporate ωm(t) in the
dynamics of the landmarks, using the property S(a)b =

S̄
T
(b) a, where S̄

T
(b) is equal to S(1)b or −S(b), for n = 2

or n = 3, respectively.
The linear velocity and the angular measurement bias

constitute the vehicle state, denoted by xV (t) :=[
vT (t) bT

ω (t)
]T ∈ RnV . Both are assumed, in a deter-

ministic setting, as constant. In the adopted filtering frame-
work, however, the inclusion of state disturbances allows
to consider them as slowly time-varying. The landmarks
in each set can be stacked in state vectors denoted as
xOi

(t) = pi(t), i ∈ MO and xUi
(t) = pi(t), i ∈ MU ,

which together form the landmark state vector xM (t) =[
xT
O(t) xT

U (t)
]T ∈ RnO+nU . This is the framework derived

in [12] for the sensor-based simultaneous localization and
mapping algorithm proposed therein to estimate the map, the
angular velocity bias, and the linear velocity of the vehicle.
However, in this paper the linear velocity will act as an
input and therefore will not be present in the full system
state, xT (t) =

[
bT
ω (t) xT

M (t)
]T

. The full input vector is
u(t) =

[
vT (t) ωT (t)

]T
, with the full system dynamics

reading as{
ẋT (t) = AT (y(t),xU (t),u(t))xT (t) + BTv(t)

y(t) = xO(t)
, (2)

with
AT (y(t),xU (t),u(t))=

[
0nV

0nV ×nM

AMV (y(t),xM (t)) AM (u(t))

]
,

and BT =
[
0n× 1

2n(n−1) In · · · In
]T

, where
AMV (y(t),xU (t)) =

[
S̄(p1(t)) · · · S̄(pm(t))

]T
and AM (u(t)) = diag (−S(ωm(t)), · · · ,−S(ωm(t))).
From (2) it follows that the system may be expressed in a
way similar to the usual linear system form. However, it can
be seen that the system above is nonlinear, as the dynamics
matrix depends on the landmarks that constitute the state, as
well as on the input. On the other hand, it must be noted that,
as y(t) = xO(t), the dynamics matrix can be written as a
function of the system output and the non-visible landmarks.

B. System observability and observer convergence
In [13] and [12], the version of system (2) with the velocity

as part of the state is studied for observability purposes
and conditions for its observability and uniform complete
observability are found. These include, for example, the
existence of two landmarks (2-D) or three landmarks that
define a plane (3-D) as sufficient conditions. The observabil-
ity analysis leads towards the design of a state observer, such
as the linear time-varying (LTV) Kalman filter, with globally
exponentially stable error dynamics. It is shown also that this
observer doubles as an observer for the nominal nonlinear
system (1) while converging exponentially to the true state.

In those works, the linear velocity was one of the states not
directly observed (the rate-gyro bias being the other). Now,
the linear velocity is an input, and therefore the observability
restrictions are lightened. This is done to let the definition of
the trajectory of the vehicle free, depending upon a control
strategy which provides linear and angular velocities.

C. Problem Statement
The problem considered in this paper is to find a control

strategy that provides v(t) and ω(t) such that the uncertainty
in the Kalman filters derived in [13] and [12] is optimized,
i..e, it is reduced to a minimum. This fits under the problem
of active simultaneous localization and mapping, i.e., optimal
motion planning to reduce the uncertainty on the estimates.

III. OPTIMAL MOTION PLANNING FOR UNCERTAINTY
REDUCTION

In this section, the problem of optimal motion planning
for uncertainty reduction is tackled by means of the Pon-
tryagin Minimum Principle (PMP) for cost functionals with
fixed time, free endpoint, and terminal cost. The following
subsection addresses this issue.
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A. The Pontryagin Minimum Principle
The PMP [11, Theorem 5-11] is a very powerful and

elegant result in the field of optimal control, even though
it only establishes necessary conditions for the optimality
of a control law, as it transforms a potentially cumbersome
optimization problem into an ordinary differential equation
with two-point boundary conditions, provided that a mini-
mum for the Hamiltonian is found. This result applies for a
very general class of systems that can be driven by an input.
Its best known application is the linear case with a quadratic
cost, better known as the linear quadratic regulator (LQR)
[11]. However, it can also be applied to optimal estimation,
as advanced in [1]. The Kalman filter can be derived using
the PMP and a terminal cost functional depending on the
trace of the filter covariance. This is done by defining a
matrix costate Λ(t) whose elements serve as costates for
the elements of the filter covariance, and, through the PMP,
finding the “control”, i.e., the filter gain, that minimizes
the trace of the covariance weighted by some matrix M.
Based on the innovative approach proposed by Athans in
[1], Hussein [2] proposed a filter for linear systems where
the covariance of the measurement noise R depends upon
the state of an underlying linear dynamical system. There
he combined the derivation of the Kalman filter found in [1]
with the traditional optimal control formulation, by using the
input of the underlying system as another degree-of-freedom
(along with the Kalman gain). To solve the problem, a new
costate λ(t) is added as a counterpart for the dynamics of the
underlying system, and the PMP is used to provide necessary
conditions for the optimal state trajectory of the underlying
nonlinear system that minimizes the filter covariance. This
results in the cost functional

J(u) = tr (MP(tf ))+

tf∫
t0

(
1

2
uT (t)Ru(t) + tr (QP(t))

)
dt

(3)
where R, Q, and M are all positive-definite matrices. The
control problem at hand is to find an admissible function
u ∈ Rnu that minimizes this cost functional, i.e.,

u∗(t) = arg min
u(t)

J(x(t0),P(t0), t0,u(t))

subject to the dynamics of the covariance and of the un-
derlying system. For this problem, Hussein proposes the
Hamiltonian

H(P(t),x(t),λ(t),Λ(t),u(t)) = tr
(

ΛT (t)Ṗ(t)
)

+ λT (t)ẋ(t) +
1

2
uT (t)Ru(t) + tr (QP(t)) ,

and using the PMP he manages to solve the sufficient
conditions for minimization of a scalar field H(u) [14,
Theorem 2.4],

∇uH(u(t))
∣∣
∗ = 0 and

∂2

∂u∂uT
H(u(t))

∣∣
∗ � 0,

analytically and to find expressions for the costates.
In this section, we propose a control strategy that applies

to a special kind of systems that can be related to the
problem introduced above. In order to lighten the notation,
the dependence on time of all the variables will be left
implicit except when it is evaluated in a particular time
instant.

B. Control strategy for a class of nonlinear systems

Let x(t) ∈ Rn be the state of a system with nonlinear
dynamics {

ẋ = f(x,u)

y = h(x,u)
, (4)

where f(x,u) can be written as f(x,u) = A(x,u)x +
B(x,u)u. Suppose that this system accepts a transformation
(xT ,yT ) = T(x,y) ∈ RnT ×RnyT that results in a system
affine in its state that can be regarded as LTV{

ẋT = AT (y,u)xT + BT (y,u)u

yT = CT (y,u)xT
, (5)

and whose dynamics mimic the dynamics of (4). If con-
ditions for the uniform complete observability of the pair
(AT (y,u),CT (y,u)) are verified, then a Kalman filter
can be designed for system (5) with GES error dynamics
[15]. Furthermore, the transformation T(x,y) is assumed to
respect the conditions in [16], and, as such, this observer
can also be used as an observer for the nonlinear system
(4). Adding perturbation noise to both the dynamics and the
output equations in (5), and denoting as P(t) ∈ RnT×nT the
covariance of the estimation error of xT , Q as the covariance
of the perturbed version of (5), and R(y,u) as the covariance
of the perturbed output yT that may depend on the input and
output of the system, the observer dynamics are

Ṗ= AT (y,u)P + PAT
T (y,u) + Q

−PCT
T (y,u)R−1(y,u)CT (y,u)P.

(6)

As the observer dynamics depend on the input and output
of the system to be estimated, different inputs (which may
lead to a diversity of outputs) will induce different levels of
uncertainty in the estimation. The following results address
this issue.

Theorem 1: Let u∗(t) be an admissible control which
transfers (x0,P0, t0) to the target set Rnx × RnT×nT ×
{tf}. Let x∗(t) and P∗(t0) be the trajectories of (4) and
(6) corresponding to u∗(t), originating at (x0,P0, t0) and
meeting the target set at tf . If u∗(t) is optimal for the cost
functional (3), then it is necessary that there exist functions
λ∗(t) and Λ∗(t) such that:

(i) the vector costate λ∗(t) satisfies

λ̇ = −ATλ− g

(
xλT ,

∂A

∂x

)
− g

(
uλT ,

∂B

∂x

)
− g

(
P(Λ + ΛT ),

∂AT

∂x

)
+ g

(
P(Λ + ΛT )PCT

TR−1,
∂CT

∂x

)
− g

(
R−1CTPΛPCT

TR−1,
∂R

∂x

)
with boundary condition λ(tf ) = 0;

(ii) the matrix costate Λ∗(t) associated with the covariance
P(t) satisfies

Λ̇=−
(
A−PCT

TR−1
)T

Λ−Λ
(
A−PCT

TR−1
)
−Q (7)

with boundary condition Λ(tf ) = M; and
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(iii) u∗(t) is a solution of

−Ru = g

(
xλT ,

∂A

∂u

)
+ g

(
uλT ,

∂B

∂u

)
+ BTλ

+ g

(
P(Λ + ΛT ),

∂AT

∂u

)
− g

(
P(Λ + ΛT )PCT

TR−1,
∂CT

∂u

)
+ g

(
R−1CTPΛPCT

TR−1,
∂R

∂u

)
while satisfying

∂2H

∂u∂uT
� 0.

The auxiliary function g(A,B) ∈ Rq×1 is defined as
g(A,B) =

[
tr (AB1) · · · tr (ABq)

]T
for A ∈ Rs×p

and B = {B1, · · · ,Bq} with Bi ∈ Rp×s.
The previous result establishes necessary conditions to

find the control law that minimizes the uncertainty of the
estimates provided by the Kalman filter when applied to
systems of the form (4). A variety of estimation problems
falls under this category, for example, sensor-based simul-
taneous localization and mapping with measurements of
range, bearing or both, source-localization, among others.
The following section explores this line of thought.

IV. UNCERTAINTY REDUCTION IN SENSOR-BASED SLAM
Building on the results presented in the previous section,

the objective of this section is to apply the uncertainty
reduction control strategy of Theorem 1 to the sensor-based
SLAM algorithm exposed in Section II. However, before
proceeding, it is necessary to take into account that in a
simultaneous localization and mapping framework not all
the landmarks are visible in every instant. This means that
the transformed system (2) can only be regarded as LTV
(and hence used in an LTV Kalman filter) if the non-
visible landmarks are discarded. Therefore, in this section,
the following simplifying hypothesis is needed.

Assumption 1: All landmarks are always visible in the
interval [t0, tf ], i.e., the set MU is empty and the set MO

does not vary in time.
Problem 1: Consider the Kalman filter for the system (2).

Given the matrix differential equation (6) satisfied by the
error covariance of the filter with initial condition P0, the
underlying nonlinear system (1) whose output alters the filter
dynamics, the terminal time tf , and the cost functional (3),
determine the input u(t), t0 ≤ t ≤ tf , so as to minimize the
cost functional.

The first step is to check whether the system derived in
Section II fits under the category of system (4). Rewriting
(1) results in a system in the form{

ẋ = A(u)x + Bv

y = x
(8)

where the state is x =
[
bT
ω p1

T · · · pm
T
]
, the dynam-

ics matrix is

A(u) =

[
0 0
0 diag (−S(ω))

]
,

and the input matrix is B = BT as defined in Section II.
Combining this information with the transformed system (2)

that can be regarded as LTV, it is clear that Theorem 1
applies. This is the subject of the next result.

Theorem 2: Let u∗(t) be an admissible control which
transfers (x0,P0, t0) to the target set Rnx × RnT×nT ×
{tf}. Let x∗(t) and P∗(t0) be the trajectories of (8) and
(6) corresponding to u∗(t), originating at (x0,P0, t0) and
meeting the target set at tf . In order for u∗(t) to be optimal
for the cost functional (3), it is necessary that there exist
functions λ∗(t) and Λ∗(t) such that:

(i) the vector costate λ∗(t) satisfies

λ̇i = −S(ω)λi +

m+1∑
j=1

S̄
T
(
Pij

(
Λjb + ΛT

bj

))
(9)

for the bidimensional case, and
λ̇i =− S(ω)λi

− 2

m+1∑
j=1

S−1
(

skew
(
Pij

(
Λjb + ΛT

bj

)))
for the tridimensional case. In both situations, the
boundary condition is λ(tf ) = 0;

(ii) the matrix costate Λ∗(t) associated with the covariance
P(t) satisfies (7) with boundary condition Λ(tf ) =
M;

(iii) u∗(t) is given by[
v∗

ω∗

]
= −R−1

[
zv(x,P,λ,Λ)
zω(x,P,λ,Λ)

]
(10)

where the part associated with the linear velocity is

zv = −
m∑
i=1

λi (11)

and that associated with the angular velocity is

zω =−
m∑
i=1

S̄(xi)λi

+ 2

m∑
i=1

m+1∑
j=1

S−1
(

skew
(
Pij

(
Λji + ΛT

ij

)))
.

This result provides necessary conditions for the input
that allows for optimal uncertainty reduction in the sensor-
based SLAM problem. It achieves that by transforming
the optimization problem into a two-point boundary value
problem. However, solving this problem can still be com-
plex. In optimal control problems, the forward-time costate
equations are unstable, even in the linear case of the LQR.
This is a major problem in shooting methods [17] that are,
nevertheless relatively fast. On the other hand, the bvp4c
method [18] is very sensitive to bad initial guesses. In this
paper, the two algorithms are combined to solve the BVPs
ensuing from the control problem of the current section.

Remark 1: Theorems 1 and 2 are derived directly from
applying [11, Theorem 5-11] to the generic problem of
Section III and to Problem 1. The proofs are done by tedious
computation and manipulation of matrix derivatives, and are
omitted due to space limitations.

V. SIMULATION RESULTS AND ANALYSIS

In this section, the results of solving numerically the BVP
expressed by (6), (7), (8), (9), and (10) with the respective
boundary conditions are presented. Several combinations
of parameters are tested and their results analysed. All of
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Fig. 1. The scenario of the different cases. The blue solid line is the
vehicle path, the ellipsoids represent the 3σ bounds of the landmarks: the
solid line is for u(t) = u∗(t), the dashed bold line for u(t) = 0, and the
light dashed line is the initial covariance.
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(b) Case B

Fig. 2. The trajectory of the vehicle in time for both cases. The dashed line
marks the centroid of the map, and the small diamonds mark the segments
in which the BVP was solved.

the scenarios explored in this section are bidimensional
(n = 2 and 1

2n(n − 2) = 1), and in all of them the
control weight is R = αI. For better visualization and to
avoid unnecessary computational problems, m = 3, which
is enough to guarantee the convergence of the Kalman filter.
Given that observability is guaranteed, the filter will converge
regardless of the input. For that reason, in this section the
results obtained with u(t) = u∗(t) as given by Theorem 2
are compared with what is obtained when the vehicle does
not move at all.

The main scenarios explored in this section have in
common the isotropic nature of the parameters, i.e., P0 = I,
M = I, Q = 0.1I, and R = 0.1I. The main variation is
between Case A Q � 0; and Case B Q = 0. This change
in cost functional will most likely influence the trajectory
followed by the vehicle but not the steady state. The
spacial configuration of both scenarios in the inertial frame
is depicted in Fig. 1. There, the dark blue line represents
the path of the vehicle, starting in the origin and moving
towards what is seen to be the centroid of the map. The
dots inside the ellipses are the landmarks, and the ellipses
represent the covariance of estimation error of the filter. The
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Fig. 3. The input linear velocity for both cases. In the top right a close
up view of the end of a segment.
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Fig. 4. The cost J(u) computed in each segment for both scenarios. The
final cost is computed as if the whole simulation was a single segment.

large dashed ellipses are the initial condition, and the smaller
bold ellipses represent the final state of P: the solid ones are
those resulting from applying u∗(t) to the system and the
dashed ones resulting from not applying any input. Given
that the steady states of both strategies are almost identical,
only the overall view of Case A is shown in that figure.
The main difference between the results of both scenarios
is in the evolution of the position of the vehicle in time.
Even though the path followed is a direct line from the
origin to the map centroid for both cases, when Q = 0, the
“average”covariance is not taken into account in the cost, and
therefore the only intervening parts in the cost functional are
the control cost and the terminal covariance cost. It is then
expected that the control will take the system straight to the
position that optimizes the final covariance, i.e., the centroid
of the map, in contrast with the more smooth trajectory
obtained when Q � 0. This is confirmed by the results of
Fig. 2 and Fig. 3. Note that, in these cases, the attitude of
the vehicle is not changed during the trajectory, as the ω(t)
input is zero. As seen in (10) and (11), when R−1 has no
components relating zω to v(t), the input linear velocity is
completely guided by the costate. This means that the linear
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Fig. 5. The evolution of the covariance P(t) in the different scenarios,
for u∗(t) (solid line) and u(t) = 0 (dashed). In blue is the trace of
the full covariance and in violet the variance of the measurement bias
estimation error. The remaining lines are tr (Pi), i ∈ M, with the colors
corresponding to the landmarks in Fig. 1.

velocity in the body-fixed frame will always be zero at the
end of the interval of optimization, as that is the boundary
condition on the costate. This is verified by the numerical
results in Fig. 3, where all the segments respect Theorem 2
independently. The necessary conditions do not guarantee
optimality. In fact, when comparing the cost of applying
u∗(t) or no input at all, depicted in Fig. 4, it can be seen that
in the first segment it is a better option not to move, in the
sense of minimizing J(u(t)). In the ensuing segments this
situation is inverted, even though the total cost is greater for
the control strategy proposed here. However, the necessary
conditions do lead towards lower uncertainty, as seen in Fig.
5, when compared to not moving. This may be due to the
weight on the control being too high when compared with the
terminal cost and the average covariance cost. A few other
scenarios with minor variations were also approached. For
example, when different size initial covariances are chosen
for each landmark, the result is the same as with equal
covariances. This may be related to the exponentially fast
convergence of the filter. Also, when the centroid of the map
is in line with the vehicle and one of the landmarks, the
trajectory goes straight through the landmark. Even though
this makes sense, as there is nothing in the cost functional
avoiding this, it should be addressed in future work. Finally,
it was observed that the time the system takes to go to the
centroid of the map is greatly reduced when M is increased
or R decreased. One of the main conclusions taken from
these results is that the system tends to the centroid of
the map. However, this may be due to the fact that the
measurement covariance is equal for all the landmarks. In
fact, a preliminary trial hinted that the vehicle tends to a
point closer to the landmarks with greater R.

VI. CONCLUSIONS

In this paper, a novel approach to uncertainty reduction
by proper motion planning is presented, grounded in the
idea of optimal sensor motion planning in [2] and extended
to a class of nonlinear systems where the sensor-based
framework of simultaneous localization and mapping fits.
Necessary conditions are found using Pontryagin’s minimum

principle for the optimality of the input that minimizes a
cost functional that weighs the average covariance in finite
horizon and the final covariance. These conditions lead to
a two-point boundary value problem that can be solved
numerically for horizons depending on the harshness of the
optimization parameters. It is shown numerically that, when
there is omnidirectional visibility of the map, this control
strategy takes the vehicle to the centroid of the map.

Possible directions of future work are the inclusion of a
limited field of view, the discretization of the problem, and
proving the optimality of the control law.
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