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Abstract— In this paper, a novel control strategy is proposed
to solve the trajectory tracking problem for quadrotors. The
control strategy consists of a hybrid backstepping controller,
designed considering the modified Rodrigues parameters at-
titude description, that comprises a saturated position control
law. The hybrid nature of the controller enables overcoming the
global stabilizing continuous feedback topological obstruction.
Moreover, it provides a suitable framework to capitalize on
the unique properties of the referred attitude description. The
resulting solution is robust to small measurement noise and, for
any given initial state of the vehicle, is able to asymptotically
track a position trajectory satisfying some assumptions while
minimizing the distance to the desired attitude. The simulation
results demonstrate and validate the potential of the strategy.

I. INTRODUCTION

Over the past decade, unmanned aerial vehicles (UAVs)
have been considered for an increasingly broad spectrum of
applications. In parallel, the research community has devoted
multiple projects to explore and extend the potential and
features of these vehicles. Within the UAVs, the quadrotor
is one of the most resorted for experimentation of control
and navigation strategies due to its maneuverability, hovering
capacity, and reduced size.

A vast multitude of control solutions, exploiting different
attitude representations, can be found in the literature. The
representation in terms of Euler angles is often used to
parameterize the attitude. However, it constitutes a hindrance
in attaining a global asymptotic stability result in virtue of
its singularities and redundancy. Alternatively, state-of-the-
art works demonstrate the feasibility of achieving global
attitude tracking by resorting to a strategy relying on unit
quaternion [1] or rotation matrix representations [2]. In
addition to these mainstream representations, the modified
Rodrigues parameters (MRP) constitute a more recent atti-
tude description that has been less explored in the context of
UAVs. Two numerically different sets characterize the MRP
representation. The original and the shadow sets result from
the stereographic projection of the unit quaternion and its
antipodal onto a three-dimensional hyperplane, respectively.
Since these sets are singular for different rotations, a mini-
mal non-singular attitude representation can be obtained by
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judiciously switching between them [3]. In [4], the authors
proposed a global attitude control strategy based on this
representation.

Several control solutions relying on continuous feedback
laws have been proposed to tackle the quadrotor trajectory
tracking problem [5], [6], [7]. However, as demonstrated
in [8], it is not possible to attain a global tracking result
through continuous feedback. Thus, more recent works report
control methodologies developed within the hybrid systems
theory framework to overcome this well-known topological
obstacle. For attitude tracking, [1], [2], [4] are examples
of hybrid solutions. In [9], the authors propose a robust
quaternion-based hybrid controller for trajectory tracking that
comprises a robust saturated position controller. The strategy
extends the attitude controller presented in [1] by applying
the backstepping technique and the dynamic path lifting
algorithm proposed in [10]. In [11], the authors designed
a robust hierarchical control structure for global trajectory
tracking. This methodology encompasses a quaternion-based
hybrid attitude controller and a position controller that relies
on nested saturation functions.

In this paper, an MRP-based hybrid backstepping control
strategy is devised for trajectory tracking. First, a feedback
law is designed with the intent of globally asymptotically
stabilize the position error dynamics. The feedback regards
saturation to bypass the singularities caused by non-positive
thrust values. Afterward, an MRP-based hybrid backstepping
controller encapsulating the saturated position feedback law
is designed for the full dynamic system. The hybrid formu-
lation provides a structure capable of capturing the MRP
discontinuity. The MRPs have an inherent mechanism to
drive the quadrotor automatically through the shortest rota-
tional direction [3]. This characteristic prevents the unwind-
ing phenomenon and constitutes an advantage compared to
quaternion-based solutions, which require additional control
states to guarantee this behavior. A second advantage stems
from the MRP description only requiring three parameters to
describe the attitude of a rigid-body instead of four, as in the
quaternion case. The resulting control structure can track a
position trajectory for any initial state while minimizing the
distance to a reference rotation matrix and is robust to small
measurement noise. Simulation results with a realistic model
validate the strategy. To the authors’ best knowledge, this
solution is the first MRP-based hybrid strategy for quadrotor
trajectory tracking.

This paper is organized as follows: the notation used and
some preliminaries are presented in section II; the physical
model is detailed and the control problem is formulated in
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section III; the saturated position tracking is addressed in
section IV; the MRP-based hybrid backstepping controller
for the full dynamic system is devised and the global asymp-
totic stability result is proved in section V; the simulation
results obtained with the proposed solution are presented and
discussed in section VI; lastly, some concluding remarks are
drawn in section VII.

II. NOTATION AND PRELIMINARIES

Rn represents the n-dimensional Euclidean space; R≥0
expresses the set of non-negative real numbers; N symbolizes
the set of natural numbers; KBn denotes the closed ball of
radius K centered at the origin of Rn; Rn×m denotes the set
of n×m matrices; Sn =

{
x ∈ Rn+1 : x>x = 1

}
symbolizes

the n-dimensional unit sphere; F : X ⇒ Y represents the set-
valued map F from X to Y; C̄ denotes the closure of the set
C; dom V symbolizes the domain of the function V ; V −1(µ)
expresses the µ-level set of the function V , which is the set
of points {x ∈ domV : V (x) = µ}; In ∈ Rn×n represents
the n-dimensional identity matrix; ei ∈ R3 denotes a vector
of zeros except for the ith entry which is 1; ‖ · ‖ represents
the Euclidean norm, [ω]× is such that [ω]× s = ω × s
for each s,ω ∈ R3, where × denotes the cross product;
Tr (·) symbolizes the trace of a given square matrix. The
saturation functions considered in this work are aligned with
the following definition:

Definition 1: The mapping σ : Rm 7→ Rm is an indepen-
dent symmetric function, i.e., σ (s) , [σ1 (s1) · · ·σm (sm)]
where each σi is a smooth non-decreasing function satisfying
the following properties: (1) σi (0) = 0; (2) siσi (si) >
0 ∀ si 6= 0; (3) limsi→±∞ σi (si) = ±M , with M > 0.

Concerning rigid-body attitude description, R represents
an element of the three dimensional special orthogonal SO(3)
and q ∈ S3 denotes the unit quaternion and is defined by
the pair (q0,q1), where q0 ∈ R and q1 ∈ R3 correspond,
respectively, to the scalar and vector components. In addition
to the previous representations, the MRP vector, ϑ ∈ R3,
can also be used to parameterize the attitude. Each ϑ has
a shadow MRP associated, ϑs ∈ R3. Both ϑ and ϑs are
related to a given unit quaternion through

ϑ = q1(1 + q0)−1 (1a)

ϑs = −q1(1− q0)−1 (1b)

The shadow set can be obtained from the original set by
resorting to the map Υ : R3 \ {0} 7→ R3:

ϑs = Υ(ϑ) = −ϑ‖ϑ‖−2 (2)

Both the original and the shadow MRP respect the following
kinematic equation [3]

ϑ̇ = T(ϑ)ω =
1

4

(
(1−‖ϑ‖2)I3 + 2 [ϑ]× + 2ϑϑ>

)
ω (3)

The mapping R (ϑ) : R3 7→ SO(3)

R (ϑ) := I3 +
4
(

2 [ϑ]
2
× − (1− ‖ϑ‖2) [ϑ]×

)
(1 + ‖ϑ‖2)2

(4)

maps a given ϑ to a rotation matrix. For further details
regarding MRP, the reader is referred to [3].

A hybrid system H is characterized by the data
(C, F, D, G) and its model can be represented in the
following form

H
{

ẋ ∈ F (x) , x ∈ C
x+ ∈ G (x) , x+ ∈ D

(5)

The hybrid system evolves according to the set-valued map
F : Rn ⇒ Rn while in the flow set C ⊂ Rn and instanta-
neously changes under the set-valued map G : Rn ⇒ Rn
while in the jump set D ⊂ Rn. A solution x(t, j) to H, with
t and j denoting, respectively, ordinary time and jump time,
is a function x : dom x 7→ Rn, where dom x ⊂ R≥0 × N is
a hybrid time domain. For further details, see [12], [13].

III. PROBLEM FORMULATION

In this paper, a controller for quadrotors is designed
envisioning a global trajectory tracking capacity. To this end,
the dynamics of these vehicles are considered to be governed
by the following set of differential equations [14]:

ṗ = v, v̇ = −ge3 + Re3
T

m
(6a)

Ṙ = R [ω]× , Jω̇ = Jω × ω + τ (6b)

where p ∈ R3 represents the position of the aerial vehicle in
the inertial frame, v ∈ R3 denotes the velocity in the inertial
frame, a ∈ R3 symbolizes the acceleration in the inertial
frame, g ∈ R corresponds to the gravity acceleration, T ∈ R
symbolizes the thrust magnitude, R ∈ SO(3) is the rotation
matrix from the body-fixed to the inertial frame, m ∈ R
is the total mass of the quadrotor, ω ∈ R3 represents the
angular velocity expressed in the body-fixed frame, τ ∈ R3

represents the moment, and J ∈ R3×3 corresponds to the
quadrotor diagonal tensor of inertia.

Following a control problem construction similar to [9],
let the desired trajectory be defined, for t ≥ 0, by the map

r(t) :=
(
pd(t), ṗd(t), p̈d(t),p

(3)
d (t),Rr(t),ωd(t)

)
, (7)

which encompasses the desired position, pd, and attitude,
Rr, and the respective derivatives. In addition, let the trajec-
tory r(t) verify the conditions detailed in Assumption 1.

Assumption 1: The reference trajectory r(t) is character-
ized by the following system:{

ṙ ∈ Fr(r) :=
(
ṗd, p̈d,p

(3)
d ,KpB3,Rr[ωd]×,Kω̇B3

)
r ∈ Ω ⊂ R3 × R3 × R3 × R3 × SO(3)× R3

(8)

where Ω satisfies e>3 Rr(t)e3 ≥ 0 ∀ t ≥ 0 and is compact.
Furthermore, the desired acceleration p̈d(t) is bounded by

sup
r ∈ Ω

‖p̈d(t)‖ < g −
√

3 (Mp +Mv) , ∀ t ≥ 0 (9)

where Mp and Mv are saturation levels to be defined during
the controller design.

The quadrotor, since it is an underactuated vehicle, is
unable to perform an arbitrary trajectory. In this regard, to
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prevent a scenario of incompatibility between the desired
rotation matrix Rr and the thrust direction imposed by the
position tracking, the following optimization problem [5]

Rd = arg min
R

1

2
Tr
(
I3 −RR−1

r

)
s.t. Re3 = α

(10)

where α ∈ B3 denotes the thrust direction obtained from
the position control, is resorted to. Solving this problem is
equivalent to finding the ”closest” feasible rotation matrix,
Rd ∈ SO(3), in the sense of the cost function, that verifies
the condition imposed by the position tracking subsystem,
Rde3 = α. To this end, the degree of freedom associated
with the rotation around the vector α is exploited. In this
way, the control problem can be stated as follows:

Problem 1: Design T ∈ R>0 and τ ∈ R3 to globally
asymptotically stabilize the set

A = {(r, x) ∈ Ω× χ : p = pd, R = Rd} (11)

with x := (p,v,R,ω) ∈ χ := R3 × R3 × SO(3) × R3, for
the closed-loop system that results from the application of
the designed control law to the system (6).

IV. SATURATED POSITION TRACKING

Let the position and velocity tracking errors be defined by

p̃ = p− pd, ṽ = v − ṗd (12)

From (6a), the error dynamics can be expressed as follows:

˙̃p = ṽ, ˙̃v = −ge3 + Re3
T

m
− p̈d (13)

It is intended to obtain from the position control the
magnitude and direction of the thrust force required to
perform the desired trajectory r(t). To this end, the rotation
matrix R and the thrust force T are considered inputs and a
control vector up ∈ R3 \ {0} satisfying

up := Re3
T

m
(14)

is designed. In this way, the thrust input can be computed
through

T := m‖up‖ (15)

As stated in Problem 1, the control law has to generate only
positive values for thrust T . This can be accomplished by
resorting to a controller that explicitly addresses saturation
(see [15], [16]). Hence, the saturated feedback control law

up := −σp (kp (p̃ + ṽ))− σv (kvṽ) + ge3 + p̈d, (16)

with kp > 0, 0 < kv < 4 (this bound will become clear next),
and where σp and σv are saturation functions, verifying
the properties detailed in Definition 1, with Mp and Mv as
saturation levels, respectively. With the control law (16), the
error dynamics reshape into:

˙̃xp = Fp (r, x̃p) :=

(
ṽ

−σp (kp (p̃ + ṽ))− σv (kvṽ)

)
(17)

where x̃p := (p̃, ṽ) belongs to χp := R3 × R3.

Theorem 1: Let the conditions expressed in Assumption 1
hold for all t ≥ 0. Then, the set

Ap =
{
x̃p ∈ χp : p̃ = 0, ṽ = 0

}
(18)

is globally uniformly asymptotically stable for the system
(17). Moreover, the thrust T resulting from the control law
is upper and lower bounded as follows

0 < T < 2mg (19)

for each solution x̃p(t) defined for t ≥ 0.
Proof: Consider the error dynamics detailed in (17)

and let V1 : χp 7→ R≥0 be a Lyapunov candidate function
defined by

V1 (x̃p) :=

3∑
i=1

(
kp
2

(
e>i ṽ

)2
+

∫ kpe>
i (p̃+ṽ)

0

σpi (µ) dµ

)
(20)

The Lyapunov function V1 is continuous, radially unbounded,
and positive-definite with respect to the set Ap. The time
derivative of V1 is given by

V̇1 =− kp
(
‖σp (kp (p̃ + ṽ)) ‖2 + ṽ>σv (kvṽ)

)
− kp

(
σp (kp (p̃ + ṽ))

>
σv (kvṽ)

)
,

(21)

which yields

V̇1 ≤ −kpβ>
[

I3
1
2I3

1
2I3

1
kv

I3

]
β = −W(x̃p) ≤ 0 (22)

with β := (σp (kp (p̃ + ṽ)) ,σv (kvṽ)) and W(x̃p) is a
continuous positive-definite function on χp. Thus, V̇1 is neg-
ative definite with respect to the set Ap. From [17, Theorem
4.9], the set Ap is globally uniformly asymptotically stable
for the system (17). Concerning the bounds of T, the norm
of the control law (16) is given by

‖up‖ = ‖−σp (kp (p̃ + ṽ))−σv (kvṽ)+ge3 + p̈d‖, (23)

Applying the triangle inequality and recalling the properties
detailed in Definition 1, the acceleration condition expressed
in Assumption 1, and (15), yields the upper bound T < 2mg.
If the reverse triangle inequality is applied instead, the lower
bound T > 0 is achieved. Thus, for each solution x̃p(t)
defined for t ≥ 0, the thrust T satisfies 0 < T < 2mg.

V. GLOBAL ASYMPTOTIC TRACKING FOR THE
FULL SYSTEM

The position controller designed in section IV dictates the
magnitude and direction of the thrust force required to track
the trajectory. By recalling (14), let α ∈ B3 denote the thrust
direction resulting from the position control

α (up) := up‖up‖−1 (24)

In this way, the constraint of (10) is defined. The mini-
mization problem (10) has an unique solution [5]. Given
the condition e>3 Rr(t)e3 ≥ 0 ∀ t ≥ 0 and (9), one has
e>3 R>r up 6= −‖up‖ ∀ t ≥ 0. Then, it follows from [9] that
the solution is obtained through

Rd = B (α, ζ,Rr) Rr (25)
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where ζ ∈ R3 is defined by ζ := [Rre3]×α and
B (α, ζ,Rr) results from the following formula:

B (α, ζ,Rr) = I3 + [ζ]× +
(
1 + e>3 R>r α

)−1
[ζ]

2
× (26)

In addition to Rd, the angular velocity and acceleration
references can be obtained from up as well. Computing the
time derivative of the desired thrust direction yields

d (Rde3)

dt
=

(
I3 −

upup
>

‖up‖2

)
u̇p

‖up‖
(27)

Combining with the kinematic equation in (6b) leads to

[ωd]× e3 = R>d

(
I3 −

upu>p
‖up‖2

)
u̇p

‖up‖
(28)

The former expression enables determining the desired angu-
lar velocities e>1 ωd and e>2 ωd. Regarding the third compo-
nent of ωd, since the thrust direction does not constraint the
rotation around itself, this reference is defined by the user
in accordance with Rr. Differentiating with respect to time
both sides of (28) yields

[ω̇d]× e3 = − [ωd]×R>d
d (Rde3)

dt
+ R>d

d2 (Rde3)

dt
(29)

with

d2 (Rde3)

dt
=

üp‖up‖2 − 2u̇pup
>u̇p − up‖u̇p‖2

‖up‖3

− upup
>üp

‖up‖3
+

3upup
>u̇pu̇>p up

‖up‖5

(30)

From (29), the desired angular acceleration e>1 ω̇d and e>2 ω̇d

are defined. The desired angular acceleration e>3 ω̇d results
from the user-defined angular velocity e>3 ωd.

As formerly discussed, the modified Rodrigues parameters
can be resorted to parameterize the attitude. Let R̃ ∈ SO (3)
denote the rotation matrix error given by R̃ = RR>d and
that satisfies R(ϑ̃) = R̃. The MRP error ϑ̃ ∈ R3 satisfies
the kinematic equation

˙̃ϑ = T(ϑ̃)(ω −R(ϑ̃)>ωd) (31)

with R(ϑ̃) = R̃. To compute ϑ̃ from R(ϑ̃), first, the hybrid-
dynamic path-lifting algorithm proposed in [10] is applied
to uniquely convert the rotation matrix error into its unit
quaternion representation q̃ ∈ S3. Then, using (1), the MRP
error ϑ̃ is computed from the unit quaternion depending on
its scalar part q̃0: if q̃0 ≥ 0, (1a) is used; otherwise, (1b) is
used instead. As such, the bound ‖ϑ̃‖ ≤ 1, corresponding to
the error associated with the shortest rotation, is guaranteed
[3, p. 120]. This equivalence enables dealing effectively
with tumbling situations, namely when the quadrotor has
performed a principal rotation beyond ±180◦ away from the
angular reference. In practical terms, this translates into the
quadrotor completing the revolution instead of attempting to
force it back. Hence, this MRP property allows avoiding the
unwinding phenomenon without requiring additional control
mechanisms (cf. [1]).

A hybrid control methodology relying on backstepping
was devised considering the position control designed in sec-
tion IV. Resorting to this nonlinear control method enables
canceling the effects of the attitude error on the position
dynamics. Let ω̃ ∈ R3 be given by ω̃ := ω−ω∗, where ω∗

is a virtual controller satisfying

ω∗ := −kϑϑ̃+ R̃>ωd − kbς (32)

with kϑ, kb > 0 and

ς :=

(
−8[ϑ̃]×[up]×+4(1− ‖ϑ̃‖2) [up]×

(1 + ‖ϑ̃‖2)2

)>
∂V1
∂ṽ

. (33)

The vector ς serves the purpose of canceling the intercon-
nection term of the position dynamics, (R̃ − I)up, caused
by the attitude error. Let the feedback law τ be defined as
follows

τ = −kωω̃ − ϑ̃− [Jω]× ω + Jω̇∗. (34)

with kω > 0. The hybrid framework provides a structure ca-
pable of capturing the switches between the original and the
shadow MRP error representations and the resulting effects.
Let xh := (r, x̃p, ϑ̃, ω̃) ∈ χ1, with χ1 = Ω×χp×R3×R3

in furtherance of formalizing the hybrid H = (C,F,D,G):

F(xh) :=


Fr(r)

ṽ

R̃Rde3‖up‖ −ge3 − p̈d + b

T(ϑ̃)
(
ω −R(ϑ̃)>ωd

)
J−1

(
[Jω]×ω + τ

)
− ω̇∗

 (35a)

C :=
{

xh ∈ χ1 : ‖ϑ̃‖ ≤ 1 + δ
}

(35b)

G(xh) := (r, x̃p,Υ(ϑ̃), ω̃) (35c)

D :=
{

xh ∈ χ1 : ‖ϑ̃‖ ≥ 1 + δ
}

(35d)

for some δ > 0 and with τ satisfying (34). With the inclusion
of the parameter δ, the switching between the original and
shadow sets becomes hysteretic. In this way, assuming the
measurements are corrupted by a upper-bounded noise, by
setting the hysteresis parameter δ to a greater value, noise-
induced chattering is avoided [4]. Therefore, the switch
becomes robust to measurement noise. In Lemma 1, it is
shown that the hybrid system H fulfils the hybrid basic
conditions stated in [12].

Lemma 1: The hybrid system H, described in (35), veri-
fies the hybrid basic conditions.

Proof: The flow set C is closed and the map Υ is
continuous on D. Consequently, since the inverse image of
a closed set under a continuous mapping is closed, the jump
set D is closed. The flow map F is a single-valued mapping.
The mappings KpB3 and Kω̇B3 are convex and bounded.
Furthermore, since both are independent of xh, the respective
graphs are closed and, therefore, outer semicontinuous. The
remaining functions that F encompasses are continuous on
C, thus, are outer semicontinuous and locally bounded, and
correspond to differential equations, which, according to [13,
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Assumption 6.5], can be identified with a hybrid system
satisfying hybrid basic conditions. Since the single-valued
mapping Υ is continuous and Υ(ϑ̃) yields ‖ϑ̃‖ ≤ (1+δ)−1

for xh ∈ D, and ω̃, r, and x̃p remain constant during jumps,
D × G(D) is closed and G(D) is bounded. Hence, G is
outer semicontinuous [13, Lemma 5.10] and locally bounded
[13, Definition 5.14] relative to D.
In Theorem 2, the global asymptotic stability result for the
compact set A1 :=

{
xh ∈ χ1 : x̃p ∈ Ap, ϑ̃ = 0, ω̃ = 0

}
is

proved.
Theorem 2: The solutions of the closed-loop hybrid sys-

tem (35) are complete and bounded, and the compact set A1

is globally asymptotically stable for H.
Proof: Let V2(xh) : χ1 7→ R≥0 be a function given by

V2(xh) = kbV1 + 2 ln
(

1 + ϑ̃
>
ϑ̃
)

+
1

2
ω̃>Jω̃, (36)

The function V2 is continuously differentiable on χ1 and
radially unbounded. Hence, since, from Assumption 1, r
belongs to a compact set, the sublevel sets of V2 are
compact. In particular, for any initial condition xh (0, 0), the
set U = {xh ∈ χ1 : V2 (xh) ≤ V2 (xh (0, 0))} is compact.
Computing the time derivative of V2 yields

V̇2 ≤ −W(x̃p)− kϑϑ̃
>
ϑ̃− kωω̃>ω̃ (37)

Note that the property 4ϑ̃
>
T(ϑ̃) = (1+ϑ̃

>̃
ϑ)ϑ̃

>
, stated in

[3, p. 123], was used. From (22) and (37), one concludes
that V̇2 ≤ 0 ∀ xh ∈ C. The behaviour of V2 during jumps
is characterized by

V2 (G(xh))− V2 (xh) = 2 ln
(
‖ϑ̃‖−2

)
(38)

Since for xh ∈ D one has ‖ϑ̃‖ ≥ 1 + δ, the previous
expression yields

V2 (G (xh))− V2 (xh) ≤ −4 ln (1 + δ) < 0 (39)

Hence, V2 is monotonically decreasing along flows and
strictly decreasing during jumps, which implies that any
solution xh(t, j) to H remains in U for all (t, j) ∈ dom xh.
Moreover, in the view of G (D) ⊂ C, it can be concluded
that the maximal solutions of H do not jump out of C∪D.
Therefore, each maximal solution to H is bounded and
complete [12, Theorem S3].

Consider the functions

uc(xh)=

{
−W(p̃, ṽ)−kϑϑ̃

>̃
ϑ− kωω̃>̃ω ,xh ∈ C

−∞ ,xh /∈ C
(40)

ud(xh) =

{
−4 ln (1 + δ) ,xh ∈ D
−∞ ,xh /∈ D

(41)

Following the invariance principle stated by Goebel et al.
in [13, Theorem 8.2.], since xh(dom xh) ⊂ U, uc(xh) ≤
0, ud(xh) < 0 ∀ xh ∈ U, and V2 is continuously differen-
tiable on χ1 ⊃ C, each maximal solution to H approach the
largest weakly invariant subset of

V −12 (r) ∩U ∩
[
u−1c (0) ∪

(
u−1d (0) ∩G

(
u−1d (0)

))]
(42)

for some r ∈ V2 (U). From the results formerly presented,

u−1c (0) = A1 (43)

u−1d (0) ∩G
(
u−1d (0)

)
= ∅ (44)

Hence,A1 is globally attractive. Furthermore, in combination
with the previous statements, since V2 is positive-definite
with respect to the compact set A1, it follows from [13,
Theorem 8.8.] that A1 is globally stable. As a result, A1 is
globally asymptotically stable for H.

Considering (4), for xh ∈ A1, ϑ̃ = 0 implies R(ϑ̃) = I3,
which in turn implies R = Rd. Moreover, from (12), p̃ = 0
yields p = pd. Thereby, the global asymptotic stability
result of A1 for (35) translates into a global stability results
of A for (6). Hence, with T and τ given by, respectively,
(15) and (34), the control objective stated in Problem 1 is
achieved. Furthermore, from [13, Theorem 6.30], since H
verifies the hybrid basic conditions, the hybrid system is
well-posed. Therefore, according to [13, Theorem 7.21], the
hybrid system (35) is robust to small measurement noise.

VI. SIMULATION RESULTS

In furtherance of validating the control strategy, a trajec-
tory tracking test was conducted in simulation. The model
considered to this end, in addition to the underlying differ-
ential equations described in (6), includes noise disturbance
and actuators dynamics modelled from sensory data acquired
with an actual quadcopter. The values considered for the
quadrotor mass and inertia were, respectively, m = 0.460kg
and J = diag(2.24×10−3, 2.90×10−3, 5.30×10−3), and the
selected sampling time for the simulation was 0.01 seconds.
For more details regarding the simulation model, the reader
is referred to [18].

To study the potential of the proposed control strategy, the
capacity to track the following trajectory was evaluated:

pd(t)=(2 cos(2πft), 2 sin(2πft), 2.5−2 cos(2πfzt)) (45)

Rr =

 cosψd(t) − sinψd(t) 0
sinψd(t) cosψd(t) 0

0 0 1

 (46)

with f = 1
20Hz, fz = 1

10Hz, and ψd(t) = 2π
90 t rad. In

addition, e>3 ωd and e>3 ω̇d were specified with the values
e>3 ωd = 2π

90 and e>3 ω̇d = 0. The function σ(s) =
M tanh

(
s
M

)
satisfies the properties enunciated in Defini-

tion 1 and was the saturation function used. Regarding the
control parameters, the values kp = 6, kv = 3, kω =
0.01, kϑ = 100, kb = 0.001,Mp = 1,Mv = 1, δ = 0.06
were defined. In this way, the reference trajectory verifies the
conditions detailed in Assumption 1. It is important to stress
that the attitude gains were defined aiming faster responses
when compared to the position subsystem. To study the MRP
logic on which the hybrid system is based, an initial yaw
angle of 3π

2 rad was set.
The results attained with the designed control solution

are depicted in Fig. 1. This figure shows that the approach
successfully tracked the trajectory.
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Fig. 1. Three dimensional graph of the response obtained for trajectory
tracking in simulation.

In Fig. 2, the position and MRP error norm are presented.
It is clear that both norms converge to zero, which attest the
success in tracking the desired trajectory. Moreover, since the
MRP error norm obtained verifies the flow set condition, to
track the initial yaw angle reference, the quadrotor performed
the smaller principal rotation, corresponding to the direction
from 3π

2 − 2π to 0. Hence, the MRP logic was successfully
implemented.
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Fig. 2. Position and MRP error norm evolution during trajectory tracking
in simulation. From left to right: (a) ‖p̃‖, (b) ‖ϑ̃‖.

From Fig. 3, one can observe that the position control
law saturation functions operated within the saturated region
during the initial phase of the simulation. Nonetheless, the
quadrotor smoothly converged to the desired trajectory.
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Fig. 3. Saturation terms of up during trajectory tracking in simulation.
From left to right: (a) σp (kp (p̃+ ṽ)), (b) σv (kvṽ).

VII. CONCLUSION

A novel backstepping controller was proposed to tackle
the trajectory tracking problem for quadrotors. The strategy
was designed based on the hybrid system theory, comprises
a saturated position control law, and exploits the unique
properties of the MRP representation. The resulting control

structure is robust to small measurement noise and renders
the full system error dynamics globally asymptotically stable.
In this way, the proposed methodology is able to perform a
position trajectory while minimizing the angular distance to
the desired rotation matrix. The simulation results demon-
strated this capacity, validating, thereby, the devised solution.
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