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This paper presents the design, analysis, and performance evaluation of a novel cascade observer for

attitude estimation. A sensor-based observer, which resorts to rate gyro readings and a set of vector

observations, estimates the rate gyro bias. Afterwards, a cascaded observer explicitly estimates the

attitude in the form of a rotation matrix based on the rate gyro measurements, the vector observations,

and the estimated gyro bias. The overall error dynamics are globally exponentially stable and the

proposed system is computationally efficient. Finally, the resulting estimator is successfully evaluated,

in simulation and experimentally, with ground truth data in both cases.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Attitude estimation has been a hot topic of research in the
recent years, as evidenced by the large number of publications on
the subject, see e.g. Metni, Pflimlin, Hamel, and Soueres (2006),
Tayebi, McGilvray, Roberts, and Moallem (2007), Campolo, Keller,
and Guglielmelli (2006), and Choukroun (2009). The Extended
Kalman Filter (EKF) has been at the core of numerous stochastic
solution, see e.g. Farrell (1970), Bar-Itzhack and Oshman (1985), and
Sabatini (2006), while nonlinear alternatives, aiming for stability
and convergence properties, have been proposed in Sanyal, Lee,
Leok, and McClamroch (2008), Vasconcelos, Cunha, Silvestre, and
Oliveira (2007), Rehbinder and Ghosh (2003), Mahony, Hamel, and
Pflimlin (2008), Thienel and Sanner (2003), and Martin and Salaun
(2010), to mention just a few, see Crassidis, Markley, and Cheng
(2007) for a thorough survey on the subject of attitude estimation.

Lack of convergence guarantees, singularities, unwinding phe-
nomena, topological limitations for achieving global asymptotic
stability, and slow convergence near unstable equilibrium points
are common drawbacks of attitude estimation solutions, see Bhat
and Bernstein (2000) and Chaturvedi, Sanyal, and McClamroch
(2011). In previous work by the authors, Batista, Silvestre, and
Oliveira (2009), a sensor-based attitude estimation filter was derived
ll rights reserved.
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that has globally asymptotically stable (GAS) error dynamics and
does not carry any of the aforementioned limitations. Unfortunately,
that solution is computational expensive. Indeed, it requires the
solution of a matrix differential Riccati equation associated to a state
of dimension 3N, where N is the number of vector observations. In
addition, the final rotation matrix is obtained from the solution of
the Wahba’s problem, which involves, in general, a singular value
decomposition (SVD) problem.

The main contribution of this paper is the design, analysis, and
performance evaluation of a novel cascade attitude observer that:
(i) has globally exponentially stable (GES) error dynamics; (ii) is
computationally efficient; (iii) is based on the angular motion
kinematics, which are exact, in contrast with dynamic models,
which usually contain uncertain and unmodeled dynamics; (iv)
builds on well-established Lyapunov results; (v) explicitly esti-
mates rate gyro bias and copes well with slowly time-varying
bias; and (vi) has a complementary structure, fusing low band-
width vector observations with high bandwidth rate gyro mea-
surements. In this paper, the sensor measurements are included
directly in the system dynamics, following the approach intro-
duced in Batista et al. (2009), and the kinematics are propagated
using the angular velocity provided by a three-axis rate gyro,
whose bias is also considered. A novel computationally efficient
observer is designed for this system, that yields an estimate of
the rate gyro bias, and that feeds a second novel observer for
the rotation matrix, which is also computationally efficient. The
overall closed-loop error dynamics are shown to be GES and
the estimates of the rotation matrix converge asymptotically to
the Special Orthogonal Group, SO(3). An additional solution
refinement is provided that yields solutions arbitrarily close to
SO(3), keeping at the same time low computational requirements.
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Finally, the proposed solution does not exhibit any of the afore-
mentioned drawbacks common to attitude estimation solutions
such as singularities, unwinding phenomena, slow convergence
near unstable equilibrium points or topological limitations for
achieving global asymptotic stabilization on SO(3), see Bhat and
Bernstein (2000) and Chaturvedi et al. (2011).

The paper is organized as follows. The problem statement is
introduced in Section 2, whereas the observer design and stability
analysis are presented in Section 3. The achieved performance is
evaluated, in simulation environment, in Section 4 and experi-
mental results are provided and discussed in Section 5. Finally,
Section 6 summarizes the main contributions and conclusions of
the paper.

Throughout the paper the symbol 0 denotes a matrix (or vector)
of zeros and I an identity matrix, both of appropriate dimensions.
A block diagonal matrix is represented as diagðA1, . . . ,AnÞ. For
x,yAR3, x� y represents the cross product.
2. Problem statement

Let {I} be an inertial reference frame, {B} a body-fixed refer-
ence frame, and RðtÞASOð3Þ the rotation matrix from {B} to {I}.
The attitude kinematics, expressed in the form of a rotation
matrix, are given by

_RðtÞ ¼RðtÞSðxðtÞÞ,

where xðtÞAR3 is the angular velocity of {B}, expressed in {B},
and Sð:Þ is the skew-symmetric matrix

SðxÞ :¼

0 �xz xy

xz 0 �xx

�xy xx 0

2
64

3
75, x¼

xx

xy

xz

2
64

3
75AR3:

The angular velocity is assumed to be a continuous bounded
signal. Suppose that rate gyro measurements are available,
corrupted by a constant bias, as given by

xmðtÞ ¼xðtÞþbxðtÞ, ð1Þ

where bxðtÞAR3 is the rate gyro bias, which satisfies

_bxðtÞ ¼ 0:

In addition to the rate gyro readings, suppose that a set of N

vector observations fviðtÞAR3,i¼ 1, . . . ,Ng is available, in body-
fixed coordinates, of known constant vectors in inertial coordi-
nates

ri ¼RðtÞviðtÞ, i¼ 1, . . . ,N: ð2Þ

In the remainder of the paper the following assumption is
made:

Assumption 1. There exist at least two non-collinear reference
vectors, i.e., there exist i and j such that ri � rja0.

This assumption is necessary for attitude estimation with con-
stant vectors in inertial coordinates, see e.g. Mahony et al. (2008)
and Batista et al. (2009), and therefore it carries no conservativeness
whatsoever.

The problem considered in the paper is the design of an
observer for the rotation matrix RðtÞ and the rate gyro bias bxðtÞ

with globally exponentially stable error dynamics.
3. Observer design and stability analysis

This section details the design of the attitude observer and
the stability analysis. First, a bias observer with GES error dynamics
is derived, in Section 3.1, that resorts directly to the vector
observations. Afterwards, an attitude observer with GES error
dynamics is proposed, in Section 3.2, assuming that the rate gyro
bias is known. The overall cascade attitude observer is presented
in Section 3.3, where it is shown that the resulting error dynamics
are GES. Finally, refinements of the final solution are proposed
and discussed in Section 3.4.
3.1. Bias observer

The set of states of the bias observer proposed in this section
corresponds to the set of the vector observations, in addition to
the rate gyro bias. The time derivative of the vector observations
is given by

_viðtÞ ¼ �SðxðtÞÞviðtÞ, i¼ 1, . . . ,N: ð3Þ

From (1) it is possible to rewrite (3) as

_viðtÞ ¼ �SðxmðtÞÞviðtÞþSðbxðtÞÞviðtÞ

¼�SðxmðtÞÞviðtÞ�SðviðtÞÞbxðtÞ, i¼ 1, . . . ,N:

Consider the bias observer given by

_̂v 1ðtÞ ¼�SðxmðtÞÞv̂1ðtÞ�Sðv1ðtÞÞb̂xðtÞþa1 ~v1ðtÞ,

^
_̂v NðtÞ ¼�SðxmðtÞÞv̂NðtÞ�SðvNðtÞÞb̂xðtÞþaN ~vNðtÞ,
_̂
bxðtÞ ¼

PN
i ¼ 1 biSðviðtÞÞ ~viðtÞ,

8>>>>><
>>>>>:

ð4Þ

where ~viðtÞ :¼ viðtÞ�v̂iðtÞ, i¼ 1, . . . ,N, are the errors of the vector
observation estimates, available for stabilization purposes, and
ai,bi, i¼ 1, . . . ,N, are positive scalar constants. Define the bias
estimation error as ~bxðtÞ :¼ bxðtÞ�b̂xðtÞ. Then, it is straightfor-
ward to show that the bias observer error dynamics are given by

_~v 1ðtÞ ¼�SðxmðtÞÞ ~v1ðtÞ�Sðv1ðtÞÞ ~bxðtÞ�a1 ~v1ðtÞ,

^
_~v NðtÞ ¼�SðxmðtÞÞ ~vNðtÞ�SðvNðtÞÞ ~bxðtÞ�aN ~vNðtÞ,
_~bxðtÞ ¼�

PN
i ¼ 1 biSðviðtÞÞ ~viðtÞ,

8>>>>><
>>>>>:
or, in compact form

_~x 1ðtÞ ¼A1ðtÞ ~x1ðtÞ, ð5Þ

where ~x1ðtÞ ¼ ½ ~v
T
1ðtÞ . . . ~v

T
NðtÞ

~b
T

xðtÞ�
T AR3ðNþ1Þ and

A1ðtÞ ¼�diagða1IþS xmðtÞð Þ, . . . ,aNIþS xmðtÞð Þ,0Þ

þ

0 . . . 0 �Sðv1ðtÞÞ

^ ^ ^

0 . . . 0 �SðvNðtÞÞ

�b1Sðv1ðtÞÞ . . . �bNSðvNðtÞÞ 0

2
66664

3
77775:

Before presenting the main result of this section, the following
lemma is introduced.

Lemma 1. Let fðtÞ : ½t0,tf � �R-Rn be a continuous and two times

continuously differentiable function on I :¼ ½t0,tf �, T :¼ tf�t040,
and such that fðt0Þ ¼ 0. Further assume that

max
tAI

J€f ðtÞJrC:

If

( : J_f ðtnÞJZan,

an40

tnAI
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then

( : Jfðt0þd
n
ÞJZbn:

0odnrT

bn40

Proof. This is a particular case of Batista, Silvestre, and Oliveira
(2011, Proposition 4.2). &

The following theorem is the main result of this section.

Theorem 1. Under Assumption 1, consider the bias observer (4),
where ai40, bi40, i¼ 1, . . . ,N, are positive scalar parameters.

Then, the origin of the observer error dynamics (5) is a globally

exponentially stable equilibrium point.

Proof. Consider the Lyapunov function candidate

V1ðtÞ :¼ ~xT
1ðtÞD ~x1ðtÞ ¼

1

2

XN

i ¼ 1

biJ ~viðtÞJ
2
þ

1

2
J ~bxðtÞJ

2,

where D is the block diagonal matrix

D :¼ 1
2diagðb1I, . . . ,bNI,IÞ:

Clearly,

g1J ~x1ðtÞJ
2rV1ðtÞrg2J ~x1ðtÞJ

2, ð6Þ

where

g1 :¼
1
2minð1,b1, . . . ,bNÞ

and

g2 :¼
1
2maxð1,b1, . . . ,bNÞ:

The time derivative of V1ðtÞ can be written as

_V 1ðtÞ ¼� ~x
T
1ðtÞC

T
1C1 ~x1ðtÞr0, ð7Þ

where

C1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
a1b1

p
0 . . . 0 0

0 & & ^ ^

^ & & 0 0

0 . . . 0
ffiffiffiffiffiffiffiffiffiffiffiffi
aNbN

p

2
66664

3
77775AR3N�3ðNþ1Þ:

It is well known that, if in addition to (6) and (7), the pair
ðA1ðtÞ,C1Þ is uniformly completely observable, then the origin of
the linear time-varying system (5) is a globally exponentially
stable equilibrium point, see Khalil (2001, Example 8.11). The
remainder of the proof amounts to show that the pair ðA1ðtÞ,C1Þ is
uniformly completely observable. For any piecewise continuous,
bounded matrix K1ðtÞ, of compatible dimensions, uniform com-
plete observability of the pair ðA1ðtÞ,C1Þ is equivalent to uniform
complete observability of the pair ðA1ðtÞ,C1Þ, with A1ðtÞ :¼ A1ðtÞ�

K1ðtÞC1, see Ioannou and Sun (1995, Lemma 4.8.1). Now, notice
that, attending to the particular forms of C1 and A1ðtÞ, there exists
a continuous bounded matrix K1ðtÞ, which depends explicitly on
the observer parameters, the rate gyro readings, xmðtÞ, and the
vector observations viðtÞ, i¼ 1, . . . ,N, such that

A1ðtÞ ¼

0 . . . 0 �Sðv1ðtÞÞ

^ ^ ^

^ ^ �SðvNðtÞÞ

0 . . . 0 0

2
6664

3
7775:

The expression of K1ðtÞ is not presented here as it is evident from
the context and it is not required in the sequel. It remains to show
that the pair ðA1ðtÞ,C1Þ is uniformly completely observable, i.e.,
that there exist positive constants e1, e2, and d such that

e1I$Wðt,tþdÞ$e2I ð8Þ
for all tZt0, where Wðt0,tf Þ is the observability Gramian asso-
ciated with the pair ðA1ðtÞ,C1Þ on ½t0,tf �. Since the entries of both
A1ðtÞ and C1 are continuous and bounded, the right side of (8) is
evidently verified. Therefore, only the left side of (8) requires
verification. Let

d¼

d1

^

dNþ1

2
64

3
75AR3ðNþ1Þ, diAR3, i¼ 1, . . . ,Nþ1

be a unit vector and define

fðt,tÞ :¼

ffiffiffiffiffiffiffiffiffiffiffi
a1b1

p
½d1�

R t
t Sðv1ðsÞÞdNþ1ds�
^ffiffiffiffiffiffiffiffiffiffiffiffi

aNbN

p
½dN�

R t
t SðvNðsÞÞdNþ1ds�

2
664

3
775AR3N ,

tA ½t,tþd�, tZt0. It is easy to show that

dTWðt,tþdÞd¼
Z tþd

t
Jfðt,tÞJ2 dt:

If there exists i, 1r irN, such that dia0, then it is clear that
Jfðt,tÞJ¼ l140 for all tZt0. On the other hand, if di ¼ 0 for all
i¼ 1, . . . ,N, then it must be JdNþ1J¼ 1, fðt,tÞ ¼ 0, and

@f

@t ðt,tÞ

����
t ¼ t

¼

�
ffiffiffiffiffiffiffiffiffiffiffi
a1b1

p
Sðv1ðtÞÞ

^

�
ffiffiffiffiffiffiffiffiffiffiffiffi
aNbN

p
SðvNðtÞÞ

2
664

3
775dNþ1

for all tZt0. Now, notice that, under Assumption 1, and from the
definition of the vector observations, there exist i and j such that
viðtÞ and vjðtÞ are non-collinear for all t. Therefore, there exists
l240 such that

@f

@t
ðt,tÞ

����
t ¼ t

����
����Zl2

for all tZt0. In addition, the second derivative of f is bounded as
the angular velocity is assumed bounded. Therefore, using Lemma
1, there exists d140 and l340 such that

Jfðtþd1,tÞJZl3

for all tZt0. Therefore,

(
ln 4 0
dn 4 0

8
tZ t0

8
d AR3ðNþ 1Þ

JdJ ¼ 1

: Jfðtþdn,tÞJZln,

and, using Lemma 1 again

(
E1 4 0

d4 0

8
tZ t0

8
d AR3ðNþ 1Þ

JdJ ¼ 1

: dTWðt,tþdÞdZe1,

which completes the conditions for uniformly completely obser-
vable and therefore concludes the proof. &

3.2. Attitude observer

This section proposes an attitude observer assuming that the
rate gyro bias is known. In addition, the following assumption is
considered.

Assumption 2. The matrix ½r1 . . . rN �AR3�3N has full rank.

Remark 1. It is important to stress that, given a set of reference
vectors (and corresponding vector observations) that satisfy
Assumption 1, it is always possible to construct a set of reference
vectors (and corresponding vector observations) such that
Assumption 2 is satisfied. Indeed, let riAR3 and rjAR3 denote
two non-collinear reference vectors. Then, notice that the set of
reference vectors fr1, . . . ,rN ,ri � rjg satisfies Assumption 2, to which
corresponds the set of vector observations fv1ðtÞ, . . . ,vNðtÞ,viðtÞ �

vjðtÞg: Therefore, Assumption 2 does not impose, in practice, any
conservativeness whatsoever.
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In order to simplify the derivation of the attitude observer and
the corresponding proofs, consider a column representation of the
rotation matrix RðtÞ given by

x2ðtÞ ¼

z1ðtÞ

z2ðtÞ

z3ðtÞ

2
64

3
75AR9,

where

RðtÞ ¼

zT
1ðtÞ

zT
2ðtÞ

zT
3ðtÞ

2
64

3
75, ziðtÞAR3, i¼ 1, . . . ,3:

It is straightforward to show that

_x2ðtÞ ¼�S3ðxmðtÞ�bxðtÞÞx2ðtÞ,

where

S3ðxÞ :¼ diagðSðxÞ,SðxÞ,SðxÞÞAR9�9, xAR3:

From (2) it is possible to write the vector observations as a
function of the column representation of the rotation matrix, as
given by

vðtÞ ¼ C2x2ðtÞ,

where

vðtÞ ¼

v1ðtÞ

^

vNðtÞ

2
64

3
75AR3N

and

C2 ¼

r11 0 0 r12 0 0 r13 0 0

0 r11 0 0 r12 0 0 r13 0

0 0 r11 0 0 r12 0 0 r13

^

rN1 0 0 rN2 0 0 rN3 0 0

0 rN1 0 0 rN2 0 0 rN3 0

0 0 rN1 0 0 rN2 0 0 rN3

2
666666666664

3
777777777775

,

C2AR3N�9, where

ri ¼

ri1

ri2

ri3

2
64

3
75AR3:

Notice that, under Assumption 2, matrix C2 has full rank.
Consider the attitude observer given by

_̂x 2ðtÞ ¼ �S3 xmðtÞ�bxðtÞð Þx̂2ðtÞþCT
2Q�1

½vðtÞ�C2x̂2ðtÞ�, ð9Þ

where Q ¼Q T AR3N�3N is a positive definite matrix, and define
the error variable ~x2ðtÞ ¼ x2ðtÞ�x̂2ðtÞ. Then, the observer error
dynamics are given by

_~x 2ðtÞ ¼A2ðtÞ ~x2ðtÞ, ð10Þ

where

A2ðtÞ :¼ �½S3ðxmðtÞ�bxðtÞÞþCT
2Q�1C2�:

The following theorem is the main result of this section.

Theorem 2. Suppose that the rate gyro bias is known and consider

the attitude observer (9), where Qg0 is a design parameter. Then,
under Assumption 2, the origin of the observer error dynamics (10) is

a globally exponentially stable equilibrium point.

Proof. Consider the Lyapunov candidate function

V2ðtÞ :¼
1
2J ~x2ðtÞJ

2:
It is straightforward to show that

_V 2ðtÞ ¼� ~x
T
2ðtÞC

T
2Q�1C2 ~x2ðtÞ:

Now, as C2 is a constant matrix with full rank and Q is a positive
definite matrix, it follows that CT

2Q�1C2g0. Therefore,

_V 2ðtÞr�lminðC
T
2Q�1C2ÞJ ~x2ðtÞJ

2,

where lminðXÞ corresponds to the minimum eigenvalue of matrix
X. This concludes the proof, see Khalil (2001, Theorem 4.10). &

3.3. Cascade observer

This section presents the overall cascade observer and its
stability analysis. In Section 3.1 an observer was derived, based
directly on the vector observations, that provides an estimate of
the bias, with globally exponentially stable error dynamics. The
idea of the cascade observer is to feed the attitude observer
proposed in Section 3.2 with the bias estimate provided by the
bias observer proposed in Section 3.1. The final nonlinear cascade
observer reads as

_̂v 1ðtÞ ¼�SðxmðtÞÞv̂1ðtÞ�Sðv1ðtÞÞb̂xðtÞþa1 ~v1ðtÞ,

^
_̂v NðtÞ ¼�SðxmðtÞÞv̂NðtÞ�SðvNðtÞÞb̂xðtÞþaN ~vNðtÞ,
_̂
bxðtÞ ¼

PN
i ¼ 1 biSðviðtÞÞ ~viðtÞ,

_̂x 2ðtÞ ¼�S3ðxmðtÞ�b̂xðtÞÞx̂2ðtÞþCT
2Q�1

½vðtÞ�C2x̂2ðtÞ�:

:

8>>>>>>><
>>>>>>>:

ð11Þ

The error dynamics corresponding to the bias observer are the
same and therefore Theorem 1 applies. Evidently, the use of an
estimate of the bias instead of the bias itself in the attitude
observer introduces an error, and the stability of the system must
be further examined. In this situation, the error dynamics of the
cascade observer can be written as

_~x 1ðtÞ ¼A1ðtÞ ~x1ðtÞ,
_~x 2ðtÞ ¼ ½A2ðtÞ�S3ð

~bxðtÞÞ� ~x2ðtÞþu2ðtÞ,
:

(
ð12Þ

where

u2ðtÞ :¼ S3ð
~bxðtÞÞx2ðtÞ:

The following theorem is the main result of the paper.

Theorem 3. Consider the cascade attitude observer (11). Then, in

the conditions of Theorems 1 and 2, the origin of the observer error

dynamics (12) is a globally exponentially stable equilibrium point.

Proof. That ~x1 ¼ 0 is a globally exponentially stable equilibrium
point follows directly from Theorem 1. Next, it is shown that
~x2 ¼ 0 is a globally exponentially stable equilibrium point of (12).
First, consider the perturbed system

_~x 2ðtÞ ¼ ½A2ðtÞ�S3ð
~bxðtÞÞ� ~x2ðtÞ: ð13Þ

From Theorem 1 it follows that

lim
t-0

JS3ð
~bxðtÞÞJ¼ 0:

Moreover, from Theorem 2, the origin of the undisturbed system

_~x 2ðtÞ ¼A2ðtÞ ~x2ðtÞ

is a globally exponentially stable equilibrium point. Therefore, it
is possible to conclude that the origin of the perturbed system
(13) is a globally exponentially stable equilibrium point, see
Khalil (2001, Example 9.6). Now, notice that, since x2ðtÞ corre-
sponds to a column representation of the rotation matrix, which is
norm-bounded, and ~bxðtÞ converges globally exponentially fast to
zero, it follows that u2ðtÞ converges globally exponentially fast to
zero. Therefore, the dynamics of ~x2ðtÞ correspond to those of a GES
linear system driven by an exponentially decaying disturbance, from
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which follows that ~x2 ¼ 0 is a globally exponentially stable equili-
brium point, therefore concluding the proof. &

3.4. Solution refinements

3.4.1. Full cascade observer

In the cascade observer proposed in Section 3.3, the attitude
observer considers only the bias estimate provided by the bias
observer and the vector estimates are disregarded. Indeed, the
observer employs, for feedback purposes, the output vðtÞ instead
of the estimate v̂ðtÞ. For performance purposes, particularly in the
presence of sensor noise, it may be better to employ the vector
estimate v̂ðtÞ provided by the bias observer. It should be stressed
that the nominal asymptotic stability analysis is not affected.
Indeed, for the full cascade observer

_̂v 1ðtÞ ¼�SðxmðtÞÞv̂1ðtÞ�Sðv1ðtÞÞb̂xðtÞþa1 ~v1ðtÞ,

^
_̂v NðtÞ ¼�SðxmðtÞÞv̂NðtÞ�SðvNðtÞÞb̂xðtÞþaN ~vNðtÞ,
_̂
bxðtÞ ¼

PN
i ¼ 1 biSðviðtÞÞ ~viðtÞ,

_̂x 2ðtÞ ¼�S3ðxmðtÞ�b̂xðtÞÞx̂2ðtÞþCT
2Q�1

½v̂ðtÞ�C2x̂2ðtÞ�,

:

8>>>>>>><
>>>>>>>:
the error dynamics are similar to (12), but with

u2ðtÞ ¼ S3ð
~bxðtÞÞx2ðtÞþCT

2Q�1 ~vðtÞ:

Evidently, the steps of Theorem 3 apply yielding the same proper-
ties, as the additional term CT

2Q�1 ~vðtÞ converges globally exponen-
tially fast to zero.

3.4.2. Orthogonalization step

The cascade observer proposed in the paper yields an estimate
of the rotation matrix RðtÞ given by

R̂ðtÞ ¼

ẑ
T
1ðtÞ

ẑT
2ðtÞ

ẑ
T
3ðtÞ

2
664

3
775, ẑ iðtÞAR3, i¼ 1, . . . ,3,

where

x̂2ðtÞ ¼

ẑ1ðtÞ

ẑ2ðtÞ

ẑ3ðtÞ

2
64

3
75AR9:

However, the estimate of the rotation matrix, R̂ðtÞ, is not necessarily a
rotation matrix as there is nothing in the observer structure imposing
the restriction R̂ðtÞASOð3Þ. In fact, if this restriction is imposed, it is
actually impossible to achieve global asymptotic stabilization due to
topological limitations, see Bhat and Bernstein (2000). Nevertheless,
the estimation error of the proposed observer converges globally
exponentially fast to zero and therefore the corresponding rotation
matrix restrictions are verified asymptotically.

In practice, both the vector observations and the rate gyro
readings are subject to noise, which induces errors in the rotation
matrix estimate not related to the initial transients that appear
due to possible mismatch of initial conditions. In these conditions,
the error converges to a tight neighborhood of zero and estimates
arbitrarily close to SO(3) can be obtained by employing compu-
tationally efficient orthogonalization cycles, as given by

R̂ f ðtÞ ¼
1
2ðR̂ðtÞþ½R̂

T
ðtÞ��1Þ,

see Bar-Itzhack and Meyer (1976). Experimental results reveal
that with two cycles the orthogonality error is of the same
magnitude of the computational accuracy of low-cost hardware
(below 10�12). The projection of the estimate on SO(3) is an
alternative to the orthogonalization cycles. Although more expen-
sive, it does provide solutions explicitly on SO(3).
During the initial transients, which typically last less than 10 s,
it may happen that the previous solution is not well-defined. In
this case, the attitude may be simply obtained from the solution
of the Wahba’s problem as in traditional solutions resorting
directly to the vector observations.
4. Simulation results

In order to evaluate the performance of the proposed observer,
simulations were carried out and two examples are shown in this
section, without and with sensor noise.

In the simulations the initial attitude was set to Rð0Þ ¼ I, while
the evolution of the angular velocity is depicted in Fig. 1. The rate
gyro bias was chosen as bxðtÞ ¼ ½�0:2 0:4 0:6�T ð1=sÞ. Finally, mag-
netic and gravitational field readings are assumed to be available as
vector observations, which correspond, in general, to non-collinear
inertial vectors, and therefore Theorem 3 applies. The third vector
observation results from the cross product between the acceleration
of gravity and the magnetic field. The bias observer parameters were
chosen as a1 ¼ ð9:8=0:008Þ10�3, a2 ¼ ð0:5=0:0015Þ10�3, and b1 ¼

b2 ¼ 10�3, which are related to the norm of the vector observations
and the noise of the sensors, which is present in the second
simulation only. The attitude observer parameter was chosen as
Q ¼ 0:25I and all the initial estimates of the bias observer were set
to zero, for convergence illustration purposes, while the initial
rotation estimate is R̂ð0Þ ¼ diagð�1,�1;1Þ.

The evolution of the Lyapunov functions V1ðtÞ and V2ðtÞ is
depicted in Fig. 2, where a logarithmic scale is employed on the
y-axis. Clearly, the error converges exponentially fast to zero, as
expected. In order to evaluate the orthogonality of the proposed
solution, the evolution of the orthogonality error, expressed as
JR̂ðtÞR̂

T
ðtÞ�IJ, is depicted in Fig. 3, where a logarithmic scale is
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also employed on the y-axis. The error prior to the orthogonaliza-
tion process converges to zero, as expected. The introduction of a
single orthogonalization cycle, which is computationally efficient,
further reduces the level of the orthogonalization error, while
with two orthogonalization steps the error quickly converges to
values that are close to the numerical accuracy of the present
simulation, which is evident by the final shattering around 10�16.
Notice that there is an initial spike in the orthogonalization error
after the orthogonalization cycles. This is due to the initial
transients and the fact that the orthogonality of the correspond-
ing rotation matrix estimate is not explicitly enforced. In fact, if
this had been enforced, there would be topological limitations for
achieving global asymptotic stability, see Bhat and Bernstein
(2000). Nevertheless, the error converges exponentially fast to
zero and the orthogonality property is verified asymptotically.

In order to evaluate the performance of the proposed solutions
in a realistic simulation environment, the previous simulation
was modified and sensor noise was considered on the angular
velocity readings and the body-fixed vector observations. In
particular, additive, zero-mean, white Gaussian noise was con-
sidered, with standard deviations of 0.951/s for the angular velocity,
0.008 m/s2 for the gravity acceleration, and 0.0015 Gauss for the
magnetic field measurements, in accordance with the chosen obser-
ver gains. Notice that the specifications of the noise correspond to a
very low-grade sensor suite. The observer parameters and initial
conditions are the same of the previous simulation but a longer
simulation was carried out, in time, to better evaluate the steady-
state performance of the proposed solution. The evolution of the
Lyapunov functions is depicted in Fig. 4, where a logarithmic scale is
employed on the y-axis. The effect of the noise is now visible but in
steady-state the error stays close to 10�5. The evolution of the
orthogonality error is shown in Fig. 5. Again, the initial large error
after the orthogonalization steps appears due to the fact that, during
the initial transients, the rotation estimate passes close to singularity.
Nevertheless, the observer quickly enters the steady-state zone, and
the effect of the orthogonalization steps is visible, which translates in
orthogonality errors below 10�6 in steady-state with just one
orthogonalization step and well below 10�12 with two orthogona-
lization steps. In order to evaluate the overall attitude performance,
and for the purpose of performance evaluation only, an additional
error variable is defined as ~RðtÞ ¼ RT

ðtÞR̂ðtÞ, which corresponds to
the rotation matrix error. Using the Euler angle–axis representation
for this new error variable,

~RðtÞ ¼ I cosð ~yðtÞÞþ½1�cosð ~yðtÞÞ� ~dðtÞ ~d
T
ðtÞ�Sð ~dðtÞÞ sinð ~yðtÞÞ, ð14Þ

where 0r ~yðtÞrp and ~dðtÞAR3,J ~dðtÞJ¼ 1, are the angle and axis
that represent the rotation error, the performance of the filter is
easily identified from the evolution of ~y, which is depicted, after the
initial transients fade out, in Fig. 6. As it is possible to see, the angle
error remains confined to a tight interval, in spite of the low-grade
specifications of the sensors. The mean error is 0.121.
5. Experimental results

In order to evaluate the proposed solutions in real world applica-
tions, the proposed algorithm was tested with the experimental
setup described in Batista, Silvestre, Oliveira, and Cardeira (2010),
where a high precision Motion Rate Table, Model 2103HT from Ideal
Aerosmith (2006), allows for accurate and reliable motion control and
yields ground truth data for performance evaluation purposes. The
table outputs, in a fixed-frequency profile mode, the angular position
of the table with a resolution of 0.000251. The IMU that was
employed is the nanoIMU NA02-0150F50 (MEMSENSE, 2009), from
MEMSENSE, which outputs data at a rate of 150 Hz. This 9 degree-of-
freedom (DOF) Micro-Electro-Mechanical System (MEMS) device is a
miniature, light weight, 3-D digital output sensor (it outputs 3-D
acceleration, 3-D angular rate, and 3-D magnetic field data) featuring
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RS422 or I2C protocols, with built-in bias, sensitivity, and tempera-
ture compensation. The standard deviations of the noise of the
outputs of the IMU are the same as those considered in Section 4.
Fig. 7 displays the experimental setup mounted on the table top.
Unfortunately, the calibration table distorts the magnetic field in the
neighborhood of the IMU, even though it was attempted to place the
IMU as far as possible from the other components of the experi-
mental setup, by means of a small nonmagnetic bar, which elevates
the sensor from the table top. Therefore, magnetic field measure-
ments were simulated in the loop. Sensor noise was naturally added
so that the results are as realistic as possible.

The motion rate table has three rotational joints which allow
for movement about three orthogonally mounted axes, so-called
inner, middle, and outer axis, and that were defined as the x, y,
and z axes of the body-fixed reference frame, so that the rotation
from body-fixed coordinates to inertial coordinates is given by

RðtÞ ¼RzðyoutðtÞÞRyðymidðtÞÞRxðyinnðtÞÞ,

where Rxð:Þ, Ryð:Þ, and Rzð:Þ are the rotation matrices about the x, y,
and z axes, respectively, and yinn, ymid, and yout are the inner,
middle, and outer axis angles, respectively. The evolution of the
inner, middle, and outer angles is depicted in Fig. 8. Notice that
the angular motion full range is used and if Euler angles were
employed problems would have appeared due to singularities.
Also, note that the angular velocity xðtÞ, which is shown in Fig. 9,
reaches interesting values, typical of many autonomous vehicles
such as Autonomous Underwater Vehicles, Autonomous Ground
Vehicles or Unmanned Air Vehicles.
Fig. 7. Experimental setup.
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Fig. 11. Evolution of the rate gyro bias estimate.
The observer parameters, as well as the initial estimates, are the
same as those presented in Section 4. The evolution of the Lyapunov
functions is depicted in Fig. 10. As the true bias is unavailable, in order
to compute V1ðtÞ, the true bias was assumed to be identical to the
bias estimate provided by an offline bias estimation algorithm, which
considers the platform at rest and takes the mean value as the rate
gyro bias. As it is possible to see, the convergence rate of the observer
is very fast and the steady-state is achieved in less than 10 s. The
mean angle error, in terms of the angle–axis parameterization (14), is
0.181, which is a very good value considering the low-grade specifica-
tions of the IMU at hand. It is also comparable with the results
obtained in simulation and it compares to a mean error of 0.131 for
the solution proposed in Batista et al. (2010). However, the present
solution is computationally efficient. Indeed, it does not require the
online solution of Riccati equations nor the Wahba’s problem, while
the solution proposed in Batista et al. (2010) requires all of these. The
evolution of the rate gyro bias estimate is shown in Fig. 11. Again, it is
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possible to conclude that the estimate of the bias quickly converges to
steady-state values, with small fluctuations over time, which is quite
typical of low-cost units such as the one employed in this experiment.
6. Conclusions

This paper presented the design, analysis, and performance
evaluation of a novel cascade observer for attitude estimation.
The proposed solution resorts directly to a set of vector observa-
tions, in body-fixed coordinates, of known constant reference
vectors in inertial coordinates, in addition to rate gyro readings.
First, a bias observer is proposed, with globally exponentially
stable error (GES) dynamics. Afterwards, an attitude observer,
built under the assumption of known rate gyro bias, is proposed,
also with GES error dynamics. The final cascade observer results
from feeding the attitude observer with the rate gyro bias
estimate obtained from the first observer and the error dynamics
of the overall cascade system are GES. In addition, an estimate of
the rotation matrix is directly obtained, without the explicit
solution of the Wahba’s problem, and the observer gains do not
require the solution of any differential equation. Therefore, the
proposed system is computationally efficient and appropriate for
application in platforms where computational resources are scarce.
Furthermore, the present solution does not exhibit drawbacks com-
mon to attitude estimation solutions such as singularities, unwinding
phenomena or topological limitations for achieving global asymptotic
stability. Simulation results are included that illustrate the achievable
performance in the presence of realistic measurements and, finally,
very encouraging experimental results are provided resorting to a
low-cost, low-power Inertial Measurement Unit. For performance
evaluation purposes a Motion Rate Table was employed that provides
ground truth data, which allowed to effectively evaluate the proposed
solution in absolute terms. Future work includes the comparison of
the achieved performance with existing solutions in the literature and
commercially available Attitude and Heading Reference Systems.
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