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ABSTRACT
This paper presents a novel decentralised navigation system based on bearing measurements for
tiered vehicle formations. In the proposed framework, some vehicles have access to measurements
of their own position, whereas others have access to bearing measurements to one or more neigh-
bouring vehicles. Depth measurement may also be available. Local observers for the position and
fluid velocity are designed based on the derivation of an equivalent observable linear time-varying
system, thus yielding globally exponentially stable error dynamics. The local observers rely on local
measurements, as well as limited communications between the vehicles. The stability of the system
as a whole is analysed by studying the robustness of the local observers to exponentially decaying
perturbations. Thorough Monte Carlo simulations are presented and discussed to compare the per-
formance of the proposed solutionwith the extended Kalman filter, the unscented Kalman filter, and
the Bayesian Cramér-Rao bound.
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1. Introduction

The use of formations is advantageous in many
applications, see, for example, Healey (2001), Kopf-
stedt et al. (2008), and Pack et al. (2009), where
vehicle formations are considered in surveillance
and localisation. While centralised control and nav-
igation systems are the most widely used due to
their conceptual simplicity, decentralised solutions
have many advantages. The most obvious of them
is that the formation does not depend on a cen-
tral node, which can compromise the whole appli-
cation. Another disadvantage of centralised solutions
is the need to communicate with each element of
the formation. However, in underwater applications,
communications are limited. Decentralised solutions
may help to coping with this issue. In Vaccarani
and Longhi (2009), Stilwell and Bishop (2000), Joor-
dens and Jamshidi (2010), and Fonti et al. (2011),
examples of decentralised solutions for underwater
applications are proposed.

CONTACT Pedro Batista pbatista@isr.tecnico.ulisboa.pt
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Universidade de Lisboa, Lisboa, Portugal.
§On leave from the Instituto Superior Técnico, Universidade de Lisboa, 1049 001 Lisboa, Portugal.

Due to electromagnetic waves attenuation, GPS sys-
tems are not available in underwater applications. As
such, it is necessary to develop alternative naviga-
tion systems, such as the ones proposed in Techy
et al. (2011) and Whitcomb et al. (1999). Most of
the solutions available in the literature are based on
the range measurements. However, it is possible to
develop navigation systems based on bearing mea-
surements. An ultra-short baseline acoustic position-
ing system, a sensor that provides bearing measure-
ments, is developed and discussed in detail in Reis
et al. (2016). A lot of work has been done with regard
to navigation using bearing measurement, such as a
study on the observability issues of target motion anal-
ysis based on the angle measurements, which was
developed in Hammel and Aidala (1985). Particle fil-
ters based on bearing measurements are proposed in
Zhang and Ji (2012) and Brehard and Cadre (2007),
while in Zhao et al. (2014) a square cubature Kalman
filter is presented.
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In this paper, a novel decentralised filter for vehi-
cle formations operating underwater is proposed. The
formations are assumed to be tiered and acyclic, with
the vehicles of the top tier having access to their own
position due to, for example, the availability of a long-
baseline system orGPS, for the case of surface vehicles.
In the rest of the tiers, vehicles measure bearings and
have communication with vehicles in the upper tier.
Local state observers, capable of estimating the vehi-
cle position and the surrounding fluid velocity, are
designed. These local observers have access to bearing
measurements and positions estimates communicated
from the vehicles in the tier above. They also have
access to several local measurements, such as attitude
angles, velocity relative to the surrounding fluid and,
in some cases, depth. Three different cases of local
observers are considered: (i) when one bearing and
depth are available; (ii) when one bearing is available
but depth is not; and (iii) when two or more bearings,
but no depth, are available. The proposed framework
is of high applicability, e.g. when the vehicles are dis-
tributed in tiers in the water column and/or the hor-
izontal plane, with limited communications and line-
of-sight restrictions. In these scenarios, it is possible
for vehicles that are in adjacent tiers to communicate,
but not vehicles farther apart.

In Viegas et al. (2016), continuous-time
decentralised range-based navigation systems are
proposed for tiered acyclic formations. The local
observers are based on a previous solution developed
by the authors, see Batista et al. (2011), whereby the
state is redefined such that equivalent linear time-
varying systems are obtained, thus yielding GES error
dynamics. To ensure that the decentralised system
as whole exhibits globally exponentially stable (GES)
error dynamics, the robustness of the local observers to
exponentially decaying perturbations on the position
estimates received through communication is anal-
ysed. This paper proposes a similar solution but based
on bearing measurements instead of range measure-
ments. Bearing measurements also lead to a system
with nonlinear outputs. For such systems, the tradi-
tional solution is an extended Kalman filter (EKF).
However, that does not offer any guarantee of sta-
bility. To obtain local observers with guarantees of
GES error dynamics, an artificial output based on
the bearing measurement can be used instead of the
bearing itself, as in Batista et al. (2013b), where a
continuous-time navigation system for single vehicles

based on single bearing measurements is proposed.
Since the bearing measurements and the communi-
cations are not available at a frequency high enough
to consider a continuous-time system, the naviga-
tion system designed herein considers discrete-time
kinematics. In Batista et al. (2013a), a similar solu-
tion to the one proposed in Batista et al. (2013b) is
developed, but in a discrete-time context instead. In
Batista et al. (2015), the previous work is extended
to the case where multiple bearings are available. The
present paper extends the previous results from sin-
gle vehicles to tiered formations. This is, to the best
of the authors’ knowledge, the first time that cooper-
ative decentralised navigation systems based on bear-
ing measurements for tiered formations are proposed,
with guarantees of global exponential stability.

Monte Carlo simulations are performed to compare
the performance of the proposed solution with the
EKF and the unscented Kalman filter (UKF). Also, the
Bayesian Cramér-Rao Bound (BCRB), which gives the
best achievable performance for an unbiased observer,
is computed. The average error and root-mean-square
error (RMSE) are presented to assess the existence
of bias in the observers and the performance both
in terms of convergence speed and steady-state vari-
ance. Also, an example where the proposed solution
is the only converging is presented, which demon-
strates the advantage of theoretical guarantees of sta-
bility over EKF- and UKF-based solutions, see, e.g. Hu
et al. (2015), at no additional computational cost.

Previous work by the authors can be found in the 6-
pages conference paper (Santos & Batista, 2020). The
present work encompasses a comprehensive deriva-
tion of the solution. In addition to the proofs, which
were omitted in the conference version, this paper
also approaches the case where only one bearing mea-
surement is available. Furthermore, it compares the
performance of the proposed solution with the ones of
the EKF, the UKF, as well as the BCRB, by resorting to
Monte Carlo simulations. Besides this extensive com-
parison, the paper also introduces an example where
only the proposed solution converges.

1.1. Notation

Throughout the paper, the symbol 0 denotes a matrix
of 0s of proper dimensions and In denotes the n ×
n identity matrix. A block diagonal matrix is rep-
resented by diag(A1, . . . ,An). The special orthogo-
nal group is denoted by SO(3) := {X ∈ R

3×3 : XTX =
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I ∧ det(X) = 1} and the set of unit vectors is defined
as S(2) := {x ∈ R

3 : ‖x‖ = 1}. For x ∈ R
3, xx, xy and

xz denote the first, second, and third component of x,
respectively. The transpose operator is defined as (·)T.

2. Problem statement

Consider a formation of N vehicles, indexed from 1 to
N. All the vehicles are evolving in a fluidwhose velocity
is assumed to have a time-invariant spatial distribu-
tion. Moreover, it is assumed that the velocity of the
vehicles is small enough such that the velocity of the
fluid can be considered constant for each vehicle. Since
the vehicles may be operating in different regions of
the space, it is assumed that the velocity of the fluid
may differ from vehicle to vehicle. As so, vfi(t) ∈ R

3

denotes the fluid velocity around vehicle i, expressed
in a local inertial frame, {I}. The position of the vehicle
i, expressed in {I}, is denoted by pi(t) ∈ R

3.
Each vehicle is moving with a velocity relative to the

fluid, measured by a relative velocity sensor, such as
a Doppler velocity log (DVL), and denoted by vi(t) ∈
R
3, expressed in the body frame, {Bi}. Each vehicle

is also equipped with an attitude and heading refer-
ence system (AHRS) which provides a rotationmatrix,
Ri(t) ∈ SO(3), from {Bi} to {I}.

The kinematics of vehicle i are given by{
ṗi(t) = vfi(t) + Ri(t)vi(t),
v̇fi(t) = 0.

The formation is assumed to be organised in a tiered
topology and each vehicle has access to either:

• An absolute positionmeasurement, provided by, for
example, GPS or a long baseline acoustic position-
ing system, if they are in the first tier; or

• Bearing measurements and position estimates of
one or more vehicles in the tier above and, in some
cases, depth measurements.

The focus of this paper is on the second case, since
the position is available in the first one. In the second
case, the outputs are available at discrete-time and are
given by⎧⎪⎨
⎪⎩
dij(k) = RT

i (tk)
pj(tk) − pi(tk)

‖pj(tk) − pi(tk)‖
, j ∈ Di,

hi(k) = pzi (tk), if depth available,

where Di is the set of vehicles to which vehicle i has
bearing measurements and, to each discrete-time k,
corresponds a continuous-time tk.

From now on, and unless specified otherwise, it is
considered

dij(k) = pj(tk) − pi(tk)
‖pj(tk) − pi(tk)‖

, j ∈ Di, (1)

since this simplifies the computations. This is done
without loss of generality since the matrix Ri(tk) is
available and invertible. For simulation purposes, the
original bearing measurement is used.

Because the communication and the bearing mea-
surements between vehicles are only available at low
frequency, the systemmust be discretised, which leads
to ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pi(tk+1) = pi(tk) + Tvfi(tk) + ui(k),
vfi(tk+1) = vfi(tk),

dij(k) = pj(tk) − pi(tk)
‖pj(tk) − pi(tk)‖

, j ∈ Di,

hi(k) = pzi (tk), if depth available,

(2)

where T is the sampling period and ui(k) is given by

ui(k) =
∫ tk+1

tk
Ri(t)vi(t) dt. (3)

The problem addressed in this paper is that of design-
ing a decentralised observer, with globally exponen-
tially stable error dynamics, for the position and
local fluid velocity of each vehicle, pi and vfi, respec-
tively. The decentralised observer is composed of local
observers, each one with access to the local measure-
ments described before.

3. Local observer design

Depending on the available measurements, the design
of a local observer for (2) differs. Three cases are
discussed: (i) when one bearing and depth are avail-
able; (ii) when two or more bearings are available; and
(iii) when one bearing without depth is available. The
first and third cases are analysed in detail while, in
the second, results obtained in Batista et al. (2015) are
used. From now on, the study will be focused on the
design of the local observer for vehicle i. To simplify
the notation, the index i is omitted from this point
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onward, resulting in the system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(tk+1) = p(tk) + Tvf (tk) + u(k),
vf (tk+1) = vf (tk),

dj(k) = pj(tk) − p(tk)
‖pj(tk) − p(tk)‖

, j ∈ D,

h(k) = pz(tk), if depth available.

(4)

3.1. Artificial output

The dynamic system (4) is nonlinear due to the bear-
ing outputs. To address this issue and obtain a linear
time-varying (LTV) system, the bearing outputs are
replaced by artificial ones. First, note that

dj(k)dTj (k)dj(k) = dj(k)

since dj(k) is a unit vector, from which it is possible to
write

(I − dj(k)dTj (k))dj(k) = 0. (5)

Substituting the last term dj(k) of (5) using the third
equation of (4) leads to

(I − dj(k)dTj (k))(pj(tk) − p(tk)) = 0.

From this, zj(k) ∈ R
3 is defined as

zj(k) := (I − dj(k)dTj (k))pj(tk)

= (I − dj(k)dTj (k))p(tk).

This quantity is known since (I − dj(k)dTj (k))pj(tk)
can be computed using known measurements. Also,
because dj(k) is a known measurement, zj(k) is linear
on the state p(k). Replacing dj(k) by zj(k) in (4) yields⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(tk+1) = p(tk) + Tvf (tk) + u(k),
vf (tk+1) = vf (tk),
zj(k) = (I − dj(k)dTj (k))p(tk), j ∈ D,
h(k) = pz(tk), if depth available.

(6)

This is an LTV system and can be written in the form{
x(k + 1) = Akx(k) + Bku(k),
y(k) = Ckx(k),

where

x(k) = [pT(tk) vT(tk)]T ∈ R
6,

and y(k) is the output, corresponding to the stacked
measurements zj(k), j ∈ D, and the depth measure-
ment, when available.

3.2. Observability

3.2.1. One bearing and depth
When studying the systemwith only one bearing avail-
able, the index j will be omitted in dj(k). The state
matrices when depth and only one bearing measure-
ment are available and given by

Ak =
[
I3 TI3
0 I3

]
∈ R

6×6, Bk =
[
I3
0

]
∈ R

6×3,

Ck =
[
I3 − d(k)dT(k) 0

eT3 0

]
∈ R

4×6,

with e3 := [0 0 1]T.
The following theorem addresses the observability

of this system.

Theorem 3.1: The system (6) with depth and only one
bearing available is observable on the interval [ka, ka +
2] if and only if dz(ka) �= 0anddz(ka + 1) �= 0.

Proof: The system is observable on [ka, ka + 2] if and
only if the observability matrixO(ka, ka + 2) has rank
equal to the number of states. The proof follows by
showing that is the case. The observability matrix is
given by

O(ka, ka + 2) =
[ Cka
Cka+1Aka

]
∈ R

8×6.

The rank condition on the observability matrix is
equivalent to state that the only solution of

O(ka, ka + 2)c = 0

is c = 0. Considering c = [cT1 cT2 ]
T, with c1, c2 ∈ R

3,
this can be rewritten as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(I − d(ka)dT(ka))c1 = 0,
cz1 = 0,
(I − d(ka + 1)dT(ka + 1))(c1 + Tc2) = 0,
cz1 + Tcz2 = 0.

(7)

The sufficiency of the conditions of the theorem
is shown by direct proof. Suppose dz(ka) �= 0 and
dz(ka + 1) �= 0. Next, it is shown that the only solution
for (7) is c = 0. The first equation of (7) allows to con-
clude that c1 = αd(ka), α ∈ R. Since dz(ka) �= 0 and
cz1 = 0, it must be α = 0 and thus c1 = 0. Then, the
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last two equations of (7) become{
(I − d(ka + 1)dT(ka + 1))c2 = 0,
cz2 = 0.

Following the same steps, it can be concluded that c2 =
0. This concludes the proof of sufficiency. The proof of
necessity follows by contraposition. Suppose that the
conditions of the theorem are not met. This may hap-
pen because dz(ka) = 0 or dz(ka + 1) = 0. In the first
case, take

c =
[

d(ka)

− 1
T
d(ka)

]
.

This nonzero c fulfils (7), which makes the system not
observable. Suppose now that dz(ka + 1) = 0 and take

c =
[

0
d(ka + 1)

]
.

This nonzero c also fulfils (7), which implies that the
system is not observable, thus concluding the proof of
necessity. �

Remark 3.1: The conditions of the theorem are easy
to achieve, considering the tiered topology of the for-
mations. If the tiers are related to the vertical spatial
distribution, being any tier deeper than the upper tier,
then these conditions are always met. If the condi-
tions are not met during a finite interval of time, state
observers may diverge. However, once the observ-
ability conditions are satisfied again, state observers
will converge again. Notice also that the system may
be observable for longer time intervals even if this
particular observability condition is not met, making
using, for instance, of the richness of the trajectory, as
detailed in Section 3.2.3.

3.2.2. Multiple bearings
When more than one bearing is available but there is
no depth measurement, the state matrices are given by

Ak =
[
I3 TI3
0 I3

]
∈ R

6×6, Bk =
[
I3
0

]
∈ R

6×3,

Ck =

⎡
⎢⎣
I3 − d1(k)dT1 (k) 0

...
...

I3 − dL(k)dTL(k) 0

⎤
⎥⎦ ∈ R

3L×6,

where L is the number of vehicles in D. This system
has been studied in Batista et al. (2015), from where
the following theorem can be used.

Theorem3.2: The system (6)withmore than one bear-
ing and no depth measurement is observable on the
interval [ka, ka + 2] if and only if there exist m, n, l, p ∈
{1, . . . , L} such that

dm(ka) �= α1dn(ka)

and

dl(ka + 1) �= α2dp(ka + 1)

for all α1,α2 ∈ R.

Remark 3.2: To fulfil the condition of the theorem,
even if only two bearings are available, it is enough
that the vehicle of the system and the two vehicles
to which the bearings are measured are not aligned.
Even though this might not be the case, both con-
ditions are not hard to achieve. Notice also that
the present theorem considers two consecutive time
instants, which is the most strict case. Nevertheless,
observability can be achieved over longer periods, with
different directions over non-consecutive discrete time
instants.

3.2.3. One bearingwithout depth
When only one bearing is available and there is no
depth measurement, the state space matrices are given
by

Ak =
[
I3 TI3
0 I3

]
∈ R

6×6, Bk =
[
I3
0

]
∈ R

6×3,

Ck = [
I3 − d(k)dT(k) 0

] ∈ R
3×6.

The following theorem addresses the observability of
this system.

Theorem 3.3: The system (6) with only one bearing
available is observable on the interval [ka, ka + 3] if
and only if d(ka), d(ka + 1), and d(ka + 2) are linearly
independent.

Proof: The system is observable on [ka, ka + 3] if and
only if the observability matrixO(ka, ka + 3) has rank
equal to the number of states. The proof follows by
showing that is the case. The observability matrix is
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given by

O(ka, ka + 3) =
⎡
⎣ Cka

Cka+1Aka
Cka+2Aka+1Aka

⎤
⎦ ∈ R

9×3.

The rank condition on the observability matrix is
equivalent to state that the only solution of

O(ka, ka + 3)c = 0

is c = 0. Considering c = [cT1 cT2 ]
T, with c1, c2 ∈ R

3,
this can be rewritten as⎧⎪⎨
⎪⎩

(I − d(ka)dT(ka))c1 = 0,
(I − d(ka + 1)dT(ka + 1))(c1 + Tc2) = 0,
(I − d(ka + 2)dT(ka + 2))(c1 + 2Tc2).

(8)

The sufficiency of the conditions of the theorem is
shown by direct proof. Suppose d(ka), d(ka + 1), and
d(ka + 2) are linearly independent. Next, it is shown
that the only solution of (8) is c = 0. To that purpose,
notice that (8) allows to conclude that⎧⎪⎨

⎪⎩
c1 = α1d(ka),
c1 + Tc2 = α2d(ka + 1),
c1 + 2Tc2 = α3d(ka + 2),

(9)

for α1,α2,α3 ∈ R. Adding the first equation of (9) to
the third and subtracting the second equation twice
leads to

0 = α1d(ka) − 2α2d(ka + 1) + α3d(ka + 2). (10)

Since the three bearing vectors are linearly indepen-
dent, the only solution of (10) is α1 = α2 = α3 = 0.
From (9), it follows that the only solution of (8) is
c1 = c2 = 0, concluding the proof of sufficiency. The
proof of necessity follows by contraposition. Suppose
that the conditions of the theorem are not met. In this
case, it is possible to choose α = [α1 α2 α3] �= 0 such
that

α1d(ka) + α3d(ka + 2) = 2α2d(ka + 1). (11)

With such choice, take

c =
[

α1d(ka)
α3

T
d(ka + 2) − α2

T
d(ka + 1)

]
.

Then c fulfils (9) and, therefore, fulfils (8). If c �= 0,
then the system is not observable and the proof of

necessity would be concluded. Next, it is shown that
the chosen α and c imply c �= 0. The only case where
c = 0 is whenα1 = 0 andα2d(ka + 1) = α3d(ka + 2).
Then, Equation (11) becomes

α1d(ka) = α2d(ka + 1).

Since α1 = 0, then α2 = 0 = α3. This contradicts the
hypothesis α �= 0. Therefore, c �= 0, which concludes
the proof of the theorem. �

Remark 3.3: Among the three cases considered in this
paper, the conditions of this theorem are the most
restrictive since they require a trajectory rich enough
such that the bearing is always changing. The small-
est possible interval was considered in the theorem
for single bearings. Nevertheless, observability can be
achieved for longer time intervals.

With the observability studied, the design of a local
linear Kalman filter (LKF) is the obvious choice, since
it is applied to a system that is linear in the state.
This is due to the fact that dj is known. The Kalman
filter yields globally exponentially stable error dynam-
ics if the system is shown to be uniformly completely
observable (Jazwinski, 1970). The proof, while long
and tedious, follows similar steps considering uniform
bounds in time, resulting in a version of the observabil-
ity conditions that are uniform in time, see e.g. Batista
et al. (2013b). Hence, it is omitted in the paper.

4. Decentralised system

4.1. Filter stability

The conditions for stability of the local observers have
already been established. However, in the design of
these local observers, it is assumed that the vehicles
have access to the position of the vehicles to which
bearings are measured. When the observers are put
together into a decentralised system, they will only
have access to position estimates, which can be written
as

p̂j(tk) = pj(tk) + ej(k),

where p̂j(tk) is an estimate of the position of vehicle
j and ej(k) is a term with GES dynamics, which rep-
resents the estimation error of pj(tk). This will change
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the value of the artificial output, which will be given by

zj(k) = (I − dj(k)dTj (k))p(tk) + ēj(k), (12)

where ēj(k) is defined as

ēj(k) = (I − dj(k)dTj (k))ej(k).

Since ej(k) decays exponentially and I − dj(k)dTj (k) is
bounded, ēj(k) will also decay exponentially.

As so, the effect of not having the true position of
the other vehicles can be regarded as an exponentially
decaying perturbation on the outputs of system (6).
This will not impact on the dynamics of the Kalman
filter covariance matrix⎧⎪⎨
⎪⎩
Pk|k−1 = AkPk−1|k−1AT

k + Q,
Kk = Pk|k−1CTk (R + CkPk|k−1CTk )−1,
Pk|k = (I − KkCk)Pk|k−1(I − KkCk)T + KkRkKT

k ,

where P is the estimation error covariance, K is the
observer gain, and Q and R are the process and out-
put noise covariancematrices, respectively. Since these
equations are not affected by the perturbation, they
will remain bounded. The estimates will be given by

x̂(k + 1) = Akx̂(k) + Bku(k) + Kk(z(k) − Ckx̂(k)).
Considering (12), the exponentially decaying pertur-
bation will be multiplied by a bounded matrix, K,
which will cause an exponentially decaying error on
the estimate of the state x̂.

4.2. Chain propagation

All the local observers of the vehicles of the second tier
receive true information of the position of the vehicles
of the tier above since it is assumed that the first tier has
access to its own position. Therefore, they will produce
estimates of their own positionwithGES error dynam-
ics. As shown before, all the vehicles receiving position
estimates with GES error dynamics will also produce
positions estimates with GES error dynamics of their
own. As so, the observers of all the tiers will converge,
since the errors that are propagated will always have
GES error dynamics.

5. Simulation results

Monte Carlo simulations were performed to assess the
performance of the proposed solution when the mea-
surements are subject to noise. A decentralised EKF

Figure 1. Formation graph.

and a decentralised UKF for the original system (2)
was used for comparison, since this system is non-
linear. The BCRB was also computed, which provides
a theoretical performance bound. Finally, an exam-
ple where the EKF and the UKF diverge due to bad
initialisation but the proposed solution converges is
presented as a way to demonstrate the advantage of
establishing theoretical guarantees of convergence.

5.1. Setup

To perform the simulations, the formation depicted
in Figure 1 was used. The vehicles in tier 1 measure
bearing to one of the vehicles in tier 0, as depicted in
Figure 2. Vehicles 3, 4, and 5measure depth but vehicle
6 does not. The vehicle in tier 2measures bearing to all
four vehicles of tier 1, as depicted in Figure 2, and has
no access to depth measurements. The vehicles that
measure bearings to other vehicles receive, through
communications, the position estimates of those vehi-
cles, as depicted in Figure 2. Each vehicle in tiers 1 and
2 implements, in the proposed solution. a LKF. Notice
that, compared to a centralised solution, the amount
of communications is significantly reduced, since no
central node receives all the information and the vehi-
cles in each tier only communicate with the vehicles in
adjacent tiers.

All the vehicles perform the same type of tra-
jectory but with different starting points. The tra-
jectory was generated with way points, which are
described in Table 1. The acceleration was limited to
0.01 m/s2, which resulted in the curve presented in
Figure 3. For vehicle 2, the trajectory followed the
same curve of the other vehicles, to which it was added
[10 sin(0.1t) 50 cos(0.13) 0]T. This is done to enrich
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Figure 2. Communications (in dashed lines) and bearing measurements (in solid lines).

Figure 3. Trajectory for vehicle 1.

Table 1. Trajectory waypoints for vehicle 1.

Time (s) Position (m)

0 [0 0 0]
100 [50 0 0]
200 [50 20 0]
300 [20 20 0]
400 [20 40 0]
500 [50 40 0]
600 [50 60 0]
800 [5 30−30]
1000 [5 0−30]

the bearing values of vehicle 6 relative to vehicle 2, so
that the system becomes observable.

The fluid velocities were chosen with different val-
ues for each vehicle. The starting points and the fluid

velocities are presented in Table 2. The fluid velocity
for the first two vehicles was not specified since the
observers for the upper tier were not simulated. This
is done without loss of generality since the observers
of tier 0 do not depend on the rest of the formation.

A sampling period of 1 s is assumed for both
the bearing measurements and the communications
between the vehicles, while all the othermeasurements
are assumed to be available at 100Hz. Azimuth and
inclination are measured, from which the bearings are
obtained as d= [sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)]T,
where φ and θ are, respectively, the azimuth and incli-
nation angles to another vehicle. Zero-mean white



INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 9

Table 2. Initial positions and fluid velocities used in the simula-
tions.

Vehicle Initial position (m) Fluid velocity (m/s)

1 [0 0 0] –
2 [100 100 0] –
3 [1 1−50] [0.19 0.13 0.30]
4 [0 10−60] [0.20 0.10 0.30]
5 [110 100−40] [0.18 0.11 0.28]
6 [90 90−30] [0.21 0.10 0.27]
7 [50 50−100] [0.21 0.12 0.27]

Gaussian noise with a standard deviation of 1 was
added to both angles. For the vehicles in tier 0, the
position is available but zero-mean white Gaussian
noise was added with a standard deviation of 0.1m in
each component. Some correlation was added, result-
ing in the covariance matrix

0.01 ×
⎡
⎣ 1 0.1 0.1
0.1 1 0.1
0.1 0.1 1

⎤
⎦ .

Zero-meanwhite Gaussian noise with a standard devi-
ation of 0.1m was added to the depth measurements.
For the Euler angles used to obtain the rotationmatrix,
uncorrelated zero-mean white Gaussian noise was
added with a standard deviation of 0.01 for the pitch
and roll angles and 0.03 for the yaw angle. Finally, the
relative velocity to the fluid was corrupted by uncor-
related zero-mean white Gaussian noise with standard
deviation of 0.01m/s. The integral in (3)was computed
using the trapezoidal rule.

5.2. Bayesian Cramér-Rao bound

Consider a system of the form of{
x(k + 1) = A(k)x(k) + B(k)u(k) + nx(k),
y(k) = h(x(k)) + ny(k),

(13)
where x(k) is the state, u(k) is a deterministic input,
and y(k) is the output, which depends on the state
through a nonlinear function h(x(k)). Both nx(k) and
ny(k) follow a zero-mean Gaussian distribution with
covariancematricesQx(k) andQy(k), respectively. For
a system in this form, the BCRB is provided in van
Trees (2007), which is a lower bound on the estimation
error achievable by any unbiased estimator.

The recursion used to compute the BCRB is the
same as the one in the EKF, with the difference that
the Jacobian of h is evaluated at the true state instead
of the state estimate.

The original system (2) is not in the form of (13)
since the noise is not added to the state and output of
the system directly. However, the original system can
be obtained from another system, where the outputs
are the inclination and azimuth angles, instead of the
bearing, as given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(tk+1) = p(tk) + Tvf (tk) + u(k),
vf (tk+1) = vf (tk),

θj(k) = arcos

(
pzj (tk) − pz(tk)

‖pj(tk) − p(tk)‖

)
, j ∈ D,

φj(k) = arctan

(
pyj (tk) − py(tk)

pxj (tk) − px(tk)

)
, j ∈ D,

h(k) = pz(tk), if depth available.
(14)

Not considering the noise present in the attitude angles
nor in pj, (14) is in the form of (13), with the out-
put noise being the one in the depth measure and
the azimuth and inclination angles and the noise in
the state being the one in the fluid velocity measure.
As so, any unbiased observer for (2) should perform
worse than the BCRB. However, due to nonlinearities,
it is possible that the observers designed could result
slightly biased.

5.3. Monte Carlo simulations

To check the performance of the proposed solution,
Monte Carlo simulations were performed. A total
of 1000 simulations were carried out. The devel-
oped solution consists of a Kalman Filter for (6)
for each vehicle. The state covariance matrices were
set to diag(0.012I, 0.0012I), while the output covari-
ance matrices were set to diag(0.12, 10I) or 10I,
depending on the availability of depth measurements.
As for the decentralised EKF and for the decen-
tralised UKF, which were implemented for com-
parison purposes, the state and output covariance
matrices were set to, respectively, diag(0.012I, 0.0012I)
and diag(0.12, 0.001I) or 0.001I, also depending on
the availability of depth measurement. The genera-
tion of sigma-points used for the UKF followed the
parametrisation proposed in Wan and Merwe (2000),
with parameters α = 1, k = 0 and β = 2.

For each of the 1000 simulations, different, ran-
domly generated noise signals were considered, as
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Figure 4. Vehicle 3: Average position error with the LKF.

Figure 5. Vehicle 3: Average position error with the EKF.

detailed before. The initial state estimate was ran-
domly generated from a Gaussian distribution cen-
tred about the true initial state and with covariance
matrix diag(102I, I). For all the solutions, the estimates
converged for all the states of all vehicles.

To check the existence of bias, the mean of the
estimation error for each time instant was computed.

Only the results for vehicle 3 are displayed since the
results for the remaining vehicles are analogous. In Fig-
ures 4–6, the mean of position estimation errors for
the LKF, EKF, and UKF, respectively, are presented. It
is possible to see that there is no significant bias and
that the estimates fluctuate around zero. There is also
little difference between the three filters.
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Figure 6. Vehicle 3: Average position error with the UKF.

Figure 7. Vehicle 3: Average fluid error with the LKF.

In Figures 7–9, the mean of the fluid velocity esti-
mation errors for the LKF, EKF, and UKF, respectively,
are presented. There is a clear bias in the z component,
which is caused by the nonlinearities of the simulated
system. This bias is of similar value in all the solutions.

To analyse the variance of both solutions, the RMSE
of the Monte Carlo simulations was computed. The
results are presented for each component for vehicles
3, 6 and 7. The RMSE is a more meaningful perfor-
mance metric and the results for each type of system
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Figure 8. Vehicle 3: Average fluid error with the EKF.

Figure 9. Vehicle 3: Average fluid error with the UKF.

are presented. In Figures 10–12, the RMSE of the posi-
tion estimates for vehicle 3 can be seen for the x, y,
and z components, respectively. The UKF is slightly

faster to converge, followed by the LKF. The x and y
components converge as fast as the BCRB until they
reach steady-state, at which point the LKF reaches
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Figure 10. Vehicle 3: x component of position RMSE.

lower values. The z component presents the same
behaviour for all the solutions, which was expected
since this component is linearly available through the
depth measurement.

In Figures 13–15, the RMSE of the fluid velocity
estimates for vehicle 3 can be seen for the x, y, and z
components, respectively. Conclusions identical to the
position analysis can be drawn.

In Figures 16–18, the RMSE of the position esti-
mates for vehicle 6 can be seen for the x, y, and z
components, respectively. This time, it is clear that the
LKF is slower to converge and none of the solutions
converge as fast as the BCRB. However, it is interesting
to see that all of them follow the same type of curve as
the BCRB. The results for the fluid velocity of vehicle 6
are not presented since they do not bring any relevant
information.

In Figures 19–21, the RMSE of the positions esti-
mates for vehicle 7 can be seen for the x, y, and z
components, respectively. The speed of convergence is
similar for all the solutions but one interesting thing
to note is that now the LKF, EKF, and UKF do not fol-
low the same type of curve as the BCRB. This happens
because the BCRB does not take into account errors
introduced by the previous tier estimates, which are
particularly noticeable during the initial transients.

To evaluate the steady-state error variance, the
average of the RMSE from t = 400 s onwards was

Table 3. Vehicle 3: Steady-state error standard deviations.

Position (m) Fluid velocity (mm/s)
x y z x y z

LKF 0.0871 0.0869 0.0332 0.9023 0.8924 1.7060
EKF 0.1030 0.1029 0.0332 1.4917 1.4839 1.7060
UKF 0.1030 0.1029 0.0332 1.4916 1.4839 1.7060
BCRB 0.0510 0.0510 0.0112 0.1669 0.1668 0.0517

Table 4. Vehicle 4: Steady-state error standard deviations.

Position (m) Fluid velocity (mm/s)
x y z x y z

LKF 0.0278 0.1476 0.0332 0.3193 1.5112 1.7051
EKF 0.0314 0.1674 0.0332 0.4368 2.1864 1.7050
UKF 0.0314 0.1674 0.0332 0.4368 2.1863 1.7050
BCRB 0.0167 0.0884 0.0112 0.0644 0.2833 0.0517

Table 5. Vehicle 5: Steady-state error standard deviations.

Position (m) Fluid velocity (mm/s)
x y z x y z

LKF 0.1017 0.1363 0.0331 1.0335 1.2506 1.6960
EKF 0.1096 0.1468 0.0331 1.5320 1.8945 1.6953
UKF 0.1096 0.1468 0.0331 1.5320 1.8945 1.6953
BCRB 0.0281 0.0360 0.0112 0.0958 0.1019 0.0517

computed. The results are shown in Tables 3–7. For
all the states, the average RMSE is higher for the EKF
and UKF than for the proposed solution. At the same
time, all are higher than the BCRB (square-rooted),
as expected. Even though the proposed solution per-
forms better in steady-state than the EKF, the differ-
ences are not significant.
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Figure 11. Vehicle 3: y component of position RMSE.

Figure 12. Vehicle 3: z component of position RMSE.

In conclusion, the proposed solution is slightly
slower than the UKF and similar in terms of
convergence speed to the EKF. At the same time, the
proposed solution is clearly the one that presents lower
variance in steady-state. However, these differences are

not significant. As so, the proposed solution is com-
parable, in terms of performance, with the traditional
EKF andUKF. In the next section, the advantage of the
proposed solution in terms of stability, at no additional
computational cost, is showcased.
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Figure 13. Vehicle 3: x component of fluid velocity RMSE.

Figure 14. Vehicle 3: y component of fluid velocity RMSE.

Finally, it is important to remark that optimal-
ity cannot be claimed. One the one hand, and as
previously mentioned, the measurement noise is not
directly added to the output. On the other hand,

the measurement noise appears in the output system
matrix of the derived linear time-varying system.
Nevertheless, the simulation results clearly show the
goodness of the proposed solution, which achieves
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Figure 15. Vehicle 3: z component of fluid velocity RMSE.

Figure 16. Vehicle 6: x component of position RMSE.

a RMSE close to the BCRB, which is the best
possible performance achievable by any unbiased
estimator.

5.4. Divergence example

The proposed solution has the advantage of exhibit-
ing theoretical guarantees of convergence. To show
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Figure 17. Vehicle 6: y component of position RMSE.

Figure 18. Vehicle 6: z component of position RMSE.

an example where this theoretical guarantee trans-
lates into a practical advantage, a simulation was per-
formed inwhich the filters for vehicle 5 were initialised
with a significant error of [2000, 2000, 2000, 0, 0, 0]T.

The results for the proposed solution can be seen in
Figure 22, while the results for the EKF and the UKF
can be seen in Figures 23 and 24, respectively. The
proposed solution is the only that converges.



18 D. SANTOS ET AL.

Figure 19. Vehicle 7: x component of position RMSE.

Figure 20. Vehicle 7: y component of position RMSE.

6. Conclusions

The communication bandwidth is very limited in
underwater scenarios, rendering centralised naviga-
tion solutions impossible to implement. This paper
presented a cooperative, decentralised navigation
solution for formations of underwater vehicles based

on bearingmeasurements. Three cases of interest were
analysed: (i) in the first, a vehicle has access to its depth
and bearing to another vehicle of the formation; (ii) in
the second, the vehicle has access to bearings to at least
two other vehicles of the formation; (iii) in the third,
the vehicle measures the bearing relative to another
vehicle but does not measure depth. In order to cope
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Figure 21. Vehicle 7: z component of position RMSE.

Figure 22. Vehicle 5: Convergence with LKF – Transient State.

with the nonlinear nature of the outputs, artificial out-
puts were employed that render the dynamics linear,
thus allowing for the design of local Kalman filters
with GES errors dynamics. Then, the error dynam-
ics of the formation as a whole were also shown to
be GES. The proposed design is both decentralised
and distributed. On the one hand, each vehicle only

estimates its own state – no vehicle estimates the whole
state of the formation. On the other hand, there is no
need for any centralised operation, and there is no
central node. Finally, Monte Carlo simulations were
presented, including the comparison with the EKF,
the UKF, and the BCRB. This comparison displayed
an equivalent performance level for all solutions. An
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Figure 23. Vehicle 5: Convergence issues with EKF.

Figure 24. Vehicle 5: Convergence issues with UKF.
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Table 6. Vehicle 6: Steady-state error standard deviations.

Position (m) Fluid velocity (mm/s)
x y z x y z

LKF 0.1023 0.1208 0.1660 1.0192 1.0545 1.4109
EKF 0.1027 0.1302 0.1816 1.5422 1.7753 2.2076
UKF 0.1027 0.1302 0.1816 1.5421 1.7753 2.2074
BCRB 0.0289 0.0384 0.0968 0.1032 0.1355 0.3092

Table 7. Vehicle 7: Steady-state error standard deviations.

Position (m) Fluid velocity (mm/s)
x y z x y z

LKF 0.1560 0.1542 0.1614 1.8748 1.8790 1.9927
EKF 0.1604 0.1605 0.1625 2.0628 2.1108 2.2128
UKF 0.1604 0.1605 0.1625 2.0636 2.1109 2.2127
BCRB 0.0802 0.0757 0.0797 0.2574 0.2433 0.2558

example that showed the advantage of the theoretical
guarantee of convergence of the proposed solution was
presented, making it the best solution of the three, at
no additional computational cost.
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