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Abstract— This paper addresses the problem of naviga-
tion/source localization by mobile agents based on the range to a
single source. The agent is allowed to have a constant unknown
drift relative to an inertial reference frame, which is common,
for example, in ocean robotic vehicles in the presence of sea
currents, and the source may also have a constant unknown
velocity relative to the inertial frame. The contribution of the
paper is twofold: i) necessary and sufficient conditions on the
observability of the system are derived that are useful for the
motion planning and control of the agent; ii) a linear model
is developed that mimics the exact dynamics of the nonlinear
range-based system, and a Kalman filter is synthesized to
estimate the position of the source, as well as the difference
between the agent and the source drift velocities. Simulation
results that illustrate the performance of the proposed solution
in the presence of realistic measurement noise are presented
and discussed.

I. INTRODUCTION

The problem of source localization has been subject of
intensive research in recent years [1]. Roughly speaking,
an agent has access to a set of measurements and aims
to estimate the position of a source. The set of measure-
ments depends on the environment in which the operation
occurs and the mission scenario itself. If the source has a
transponder the agent may have access to the distance to the
source, designated as range in the sequel, but other kinds
of information are possible, e.g., bearing to the source and
even time differences of arrival when the agent has multiple
receivers. Either way, this information is clearly not enough
to estimate the position of the source, since the agent must
also have some kind of self-awareness of its own movements,
be it in terms of its position relative to an inertial reference
frame, its velocity, acceleration, etc. When more than one
agent communicate in order to determine the position of
the source, in a cooperative manner, the setting differs
completely and is not within the scope of this paper, which
addresses the problem of source localization by a single
mobile agent, based on range measurements, in the presence
of constant unknown drifts. This last point is of critical
importance as, in many applications, both the source and the
agent may drift with constant unknown velocities. This is the
case of marine applications, where autonomous underwater
vehicles (AUVs) or autonomous surface crafts (ASCs) dwell
with ocean currents, assumed constant for small periods of
operation (or slowly time-varying). While in most robotic
applications the velocity of the mobile platform relative to
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the fluid is available, the inertial velocity, the drift velocity
and/or the position of the platform may be unavailable.
Thus the importance of including constant unknown drifts
in the problem. In the particular case of marine robotics,
this problem can be seen as a navigation problem, where the
vehicle aims to estimate its own position based on the range
to a fixed source (typically a moored buoy or a base station)
whose inertial position is known a priori or communicated
using acoustic modems.

Previous work in the field can be found in [2], where the
authors propose a localization algorithm based on the range
to the source (more specifically its square) and the inertial
position of the agent, which provides the necessary self-
awareness of the agent motion. Global exponential stability
(GES) is achieved under a persistent excitation condition
and the analysis is extended to non-stationary sources, being
shown that it is possible to achieve tracking up to some
bounded error. A so-called Synthetic Long Baseline (SLBL)
navigation algorithm for underwater vehicles is proposed
in [3]. The vehicle is assumed to have access to range
measurements to a single transponder, from time to time,
and between sampling instants, a high performance dead-
reckoning system is used to extrapolate the motion of the
vehicle. A discrete-time Kalman filter is synthesized to a lin-
earized model of the system to obtain the required estimates.
In [4] the authors deal with the problem of underwater nav-
igation in the presence of unknown currents based on range
measurements to a single beacon. An observability analysis is
presented based on the linearization of the nonlinear system
which yields local results. Based on the linearized system
dynamics, a Luenberger observer is introduced but in practice
an extended Kalman filter (EKF) is implemented, with no
warranties of global asymptotic stability. More recently, the
same problem has been studied in [5] and [6], where EKFs
have been extensively used to solve the navigation problem
based on single beacon range measurements.

This paper addresses the problem of navigation/source
localization based on range measurements to a single source
in the presence of unknown constant drifts. The contribution
is twofold: i) the observability of the nonlinear system is
analyzed and necessary and sufficient conditions are derived
that characterize this aspect of the system; ii) a filter design
methodology is proposed, based on a linear model for the
system, that captures the exact dynamics of the nonlinear
system. Central to the observability analysis and the filter
design is the derivation of a linear time-varying system
(LTVS) that captures the dynamics of the nonlinear system,
whose output is a nonlinear function of the state. The LTVS
model is achieved through appropriate state augmentation,
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which is shown to mimic the nonlinear system. Applications
of the proposed solution are many. In Section II-A particular
emphasis is given to underwater navigation based on range
measurements to a single beacon. The proposed framework
allows to solve this problem, including the estimation of
constant unknown ocean currents.

The paper is organized as follows. The system dynamics
are introduced in Section II, where motivation examples are
also provided. Section III refers to the observability analysis,
while the filter design is proposed in Section IV. Simulation
results are presented in Section V and Section VI summarizes
the main conclusions of the paper.

A. Notation

Throughout the paper the symbol 0 denotes a matrix (or
vector) of zeros and I an identity matrix, both of appropri-
ate dimensions. A block diagonal matrix is represented as
diag(A1, . . . ,An). If x and y are two vectors of identical
dimensions, x×y and x ·y are the cross and inner products,
respectively.

II. PROBLEM STATEMENT

Consider the nonlinear system⎧⎨
⎩

ẋ1(t) = x2(t) + u(t)
ẋ2(t) = 0

y(t) = ‖x1(t)‖
2

, (1)

where x1,x2 ∈ R3 are the system states, u ∈ R3 is the
system input, assumed to be a continuous function of time,
and y ∈ R is the system output. The problem considered in
the paper is the analysis of the observability of (1) and the
design of a state observer to estimate the system states.

A. Motivation

Consider a point-mass agent moving in a scenario and
suppose that the agent has access to

z(t) = f (r(t)) ,

where r is the range to a fixed source and f : R → R is an
injective known function. The problem of source localization
is that of estimating the position of the source from the
knowledge of z(t).

Evidently, the signal z(t) does not suffice to estimate
the position of the source without some knowledge about
the motion of the agent itself. To complete the problem
framework, let {I} denote an inertial reference coordinate
frame and {B} a coordinate frame attached to the agent,
denominated in the sequel as the body-fixed coordinate
frame. The linear motion of the agent can be written as

ṗ(t) = R(t)v(t),

where p ∈ R3 denotes the inertial position of the agent,
v ∈ R3 is the velocity of the agent relative to {I} and
expressed in body-fixed coordinates, and R is the rotation
matrix from {B} to {I}, which satisfies

Ṙ(t) = R(t)S (ω(t)) ,

where ω ∈ R3 is the angular velocity of {B}, expressed
in body-fixed coordinates, and S (ω) is the skew-symmetric

matrix such that S (ω) x is the cross product ω × x. Let s

denote the inertial position of the source. Then, the range to
the source is given by

r(t) = ‖r(t)‖ ,

where
r(t) := RT (t) [s− p(t)] (2)

is the location of the source relative to the agent, expressed in
body-fixed coordinates, precisely the quantity that the agent
aims to estimate. The time derivative of (2) is given by

ṙ(t) = −v(t)− S (ω(t)) r(t).

Thus, the problem of source localization could be stated as
that of estimating r(t) from the knowledge of z(t), v(t),
R(t) and ω(t). While the attitude and the angular velocity of
the agent, R(t) and ω(t), respectively, are usually available,
it is not always possible to measure the inertial velocity of
the agent, take, e.g., the case of an autonomous underwater
vehicle (AUV) moving far away from the seabed and in the
presence of constant unknown ocean currents. Nevertheless,
the relative velocity of the agent is usually available, a
Doppler velocity log, e.g., would provide this quantity in
a marine environment. Thus, it is assumed that the agent
is moving in a fluid that has a constant unknown velocity,
and that the velocity of the agent relative to the fluid is
available from the sensor suite installed on-board. Let vr

and vf denote the velocity of the agent relative to the fluid
and the velocity of the fluid relative to {I}, respectively, both
expressed in body-fixed coordinates. Then, it is possible to
further write{

ṙ(t) = −vr(t)− vf (t)− S (ω(t)) r(t)
v̇f (t) = −S (ω(t))vf (t)

.

Now, let[
x1(t)
x2(t)

]
=

[
R(t) 0

0 −R(t)

] [
r(t)
vf (t)

]
, (3)

which is a Lyapunov coordinate transformation previously
used by the authors [7]. It is straightforward to show that
the dynamics of (3) satisfy (1), with u(t) = −R(t)vr(t)
and y(t) = ‖r(t)‖

2
= r2(t).

Interestingly enough, the dynamic system (1) also captures
the case where the source is moving with constant unknown
velocity relative to {I}. Indeed, let vs denote the velocity
of the source relative to {I}, expressed in body-fixed coor-
dinates, and define vfs(t) := vf (t)−vs(t). It is easy to see
that {

ṙ(t) = −vr(t)− vfs(t)− S (ω(t)) r(t)
v̇fs(t) = −S (ω(t))vfs(t)

,

which is readily transformed into the form of (1) using the
coordinate transformation[

x1(t)
x2(t)

]
=

[
R(t) 0

0 −R(t)

] [
r(t)

vfs(t)

]
.

A two dimensional view of this scenario is depicted in Fig. 1
for the sake of illustrativeness.
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Fig. 1. Example of a source localization scenario in 2D

III. OBSERVABILITY ANALYSIS

While the observability of linear systems is nowadays
fairly well understood, the observability of nonlinear systems
is still an open field of research, as evidenced (and in spite
of) the large number of recent publication on the subject, see
[8], [9], [10], [11], and the references therein. The analysis
of the linearization of a nonlinear system does not yield
definite results either. This section provides an analysis of
the observability of (1) through state augmentation. With
the proposed method, it will be possible to derive a linear
system that captures the behavior of (1). Necessary and
sufficient conditions on the observability of the linear system
are derived and finally it is shown that these conditions also
apply to the nonlinear system.

A. State Augmentation

To derive a linear system that mimics the dynamics of
the nonlinear system (1), define three additional scalar state
variables as ⎧⎨

⎩
x3(t) := y(t)
x4(t) := xT

1 (t)x2(t)

x5(t) := ‖x2(t)‖
2

and denote by

x(t) =
[
xT

1 (t)xT
2 (t)x3(t)x4(t)x5(t)

]T
∈ Rn, n = 9,

the augmented state. It is easy to verify that the dynamics
of the augmented system can be written as{

ẋ(t) = A(t)x(t) + Bu(t)
y(t) = Cx(t)

, (4)

where

A(t) =

⎡
⎢⎢⎢⎣

0 I 0 0 0
0 0 0 0 0

2uT (t) 0 0 2 0
0 u

T (t) 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎣

I

0

0

0

0

⎤
⎥⎥⎦ , (5)

and C = [00 1 0 0].
The dynamic system (4) can be regarded as a linear

time-varying system, even though the system matrix A(t)
depends explicitly on the system input, as evidenced by (5).
Nevertheless, this just suggests that the observability of (4)
may be connected with the evolution of the system input,
which is not common and does not happen when this matrix
does not depend on the system input. The observability
analysis of (4) will follow using classical theory of linear

systems applied to the pair (A(t), C). Notice that there is
nothing in the system dynamics (4) imposing⎧⎨

⎩
y(t) = ‖x1(t)‖

2

x4(t) = xT
1 (t)x2(t)

x5(t) = ‖x2(t)‖
2

. (6)

Although these restrictions could be easily added including
artificial outputs, e.g., y2(t) = x4(t) − xT

1 (t)x2(t) = 0 ∀t,
this form is preferred since it allows to consider the system
as linear. However, care must be taken when extrapolating
conclusions from the observability of (4) to the observability
of (1).

B. Observability of the Linear System

Before providing necessary and sufficient conditions for
the observability of (4), it is convenient to compute the
observability Gramian associated with the pair (A(t), C),
and, to do that, the transition matrix associated with A(t).
Let

u[1] (t, t0) :=

∫ t

t0

u(σ)dσ,

where (.)
[i] represents the ith integral of the quantity. Then,

it is straightforward to show that the transition matrix asso-
ciated with A(t) can be written as

φ(t, t0) =

=

⎡
⎢⎢⎢⎢⎢⎣

I (t − t0) I 0 0 0
0 I 0 0 0

2
[
u

[1](t, t0)
]T

2 (t−t0)
[
u

[1](t, t0)
]T

1 2 (t−t0) (t−t0)
2

0

[
u

[1] (t, t0)
]T

0 1 t − t0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
.

(7)

The observability Gramian for the pair (A(t), C) is given
by

W (t0, tf ) =

∫ tf

t0

φT (t, t0)C
T Cφ (t, t0) dt

and, after a few steps, it is possible to further write

W (t0, tf ) =

[
WA (t0, tf ) WB (t0, tf )

[WB (t0, tf )]
T

WC (t0, tf )

]
,

where

WA (t0, tf )=

∫ tf

t0

[
2u[1](t, t0)

2 (t−t0)u
[1](t, t0)

][
2u[1](t, t0)

2 (t−t0)u
[1](t, t0)

]T

dt,

WB (t0, tf )=

∫ tf

t0

[
2u[1](t, t0)

2 (t−t0)u
[1](t, t0)

]⎡
⎣ 1

2 (t − t0)
(t − t0)

2

⎤
⎦

T

dt,

and

WC (t0, tf ) =

⎡
⎢⎢⎣

tf − t0 (tf − t0)
2 (tf−t0)

3

3

(tf − t0)
2 4(tf−t0)

3

3

(tf−t0)
4

2
(tf−t0)

3

3

(tf−t0)
4

2

(tf−t0)
5

5

⎤
⎥⎥⎦ .

The following result presents a necessary condition for the
system (4) to be observable.
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Theorem 1: If the linear time-varying system (4) is ob-
servable on [t0, tf ], t0 < tf , then

� ∀ : uT
0 u(t) = c.

u0 ∈ R3 t ∈ [t0, tf ]
‖u0‖ = 1

c ∈ R

(8)

Proof: Suppose that (8) does not hold. Then,

∃ ∀ : uT
0 u(t) = c.

u0 ∈ R3 t ∈ [t0, tf ]
‖u0‖ = 1

c ∈ R

(9)

Now, notice that

uT
0 u[1] (t, t0) = uT

0

∫ t

t0

u(σ)dσ =

∫ t

t0

uT
0 u(σ)dσ

and, using (9),

∀ uT
0 u[1] (t, t0) = c (t− t0) .

t ∈ [t0, tf ]
(10)

The linear system (4) is observable on [t0, tf ] if and only
if the observability Gramian W (t0, tf ) is positive defi-
nite. Since WC (t0, tf ) is positive definite, it follows that
W (t0, tf ) is positive definite if and only if its Schur
complement

SW (t0, tf ) := WA (t0, tf )

− WB (t0, tf ) W
−1
C (t0, tf ) [WB (t0, tf )]T (11)

is positive definite. However, if (10) is true, then it is easy
to show that

[
uT

0 uT
0

]
SW (t0, tf )

[
u0

u0

]
= 0, (12)

which implies that the observability Gramian is not positive
definite and, therefore, (4) is not observable, which completes
the proof.

The following theorem provides a sufficient condition for
the observability of (4).

Theorem 2: Suppose that the set of functions

F =

{
1, (t − t0) , (t − t0)

2
,

∫ t

t0

u
T (σ)dσ, (t − t0)

∫ t

t0

u
T (σ)dσ

}

(13)
is linearly independent on [t0, tf ], t0 < tf . Then, the linear
time-varying system (4) is observable on [t0, tf ].

Proof: If there exist n distinct instants of time ti ∈
[ti, tf ] , i = 1, . . . , n such that the matrix

On :=

⎡
⎢⎢⎣

Cφ (t1, t0)
Cφ (t2, t0)

...
Cφ (tn, t0)

⎤
⎥⎥⎦ (14)

has full rank, then the system is clearly observable, since

Onx (t0) =

⎡
⎢⎢⎢⎢⎣

y (t1)−
∫ t1

t0
Cφ(t1, σ)Bu (σ) dσ

y (t2)−
∫ t2

t0
Cφ(t2, σ)Bu (σ) dσ

...
y (tn)−

∫ tn

t0
Cφ(tn, σ)Bu (σ) dσ

⎤
⎥⎥⎥⎥⎦ .

Expanding (14) yields

On :=⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2
[
u

[1](t1, t0)
]T

2 (t1−t0)
[
u

[1](t1, t0)
]T

1 2 (t1−t0) (t1−t0)
2

2
[
u

[1](t2, t0)
]T

2 (t2−t0)
[
u

[1](t2, t0)
]T

1 2 (t2−t0) (t2−t0)
2

...
...

...
...

...

2
[
u

[1](tn, t0)
]T

2 (tn−t0)
[
u

[1](tn, t0)
]T

1 2 (tn−t0) (tn−t0)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Clearly, if the set of functions F is linearly independent,
there exist ti, i = 1, . . . , n, such that rank (On) = n, which
concludes the proof.

C. Observability of the Nonlinear System

Before presenting the main results of this section, it
is convenient to introduce some definitions regarding the
observability of nonlinear systems [12], [13].

Consider the nonlinear system{
ẋn(t) = f (t,xn(t),un(t))
yn(t) = g (t,xn(t),un(t))

, (15)

where xn is the system state, un is the system input, and is
yn the system output.

Definition 1: Two states xn
1 , xn

2 are said to be indistin-
guishable (denoted xn

1Ix
n
2 ) for (15) if for every admissible

input function un, the output function

t �→ yn (t, t0,x
n
1 ,un)

of the system with initial condition xn (t0) = xn
1 and the

output function

t �→ yn (t, t0,x
n
2 ,un)

of the system with initial condition xn (t0) = xn
2 are

identical on their common domain of definition.
Definition 2: The system (15) is called observable if

xn
1Ix

n
2 ⇒ xn

1 = xn
2 .

The following theorem provides a necessary condition on
the observability of the nonlinear system (1).

Theorem 3: If the nonlinear system (1) is observable on
[t0, tf ], t0 < tf , then (8) holds.

Proof: Suppose that (8) is not true. Then, it is possible
to write (9), i.e.,

∃ ∀ : uT
0 u(t) = c

u0 ∈ R3 t ∈ [t0, tf ]
‖u0‖ = 1

c ∈ R

(16)

and
∀ uT

0 u[1] (t, t0) = c (t− t0) .
t ∈ [t0, tf ]

The output of (1) is given by

y(t) =

∥∥∥∥x1 (t0) + (t− t0)x2 (t0) +

∫ t

t0

u (σ) dσ

∥∥∥∥
2

.

Let ya(t) denote the output of the system with initial
condition {

xa
1 (t0) = u0

xa
2 (t0) = −cu0

(17)
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and yb(t) denote the output of the system with initial
condition {

xb
1 (t0) = −u0

xb
2 (t0) = −cu0

. (18)

It is straightforward to show that

∀ : ya(t) = yb(t).
t ∈ [t0, tf ]

Thus, if (8) does not hold, there exist, at least, two states that
are indistinguishable, and thus the system is not observable,
which concludes the proof.

The following theorem provides a sufficient condition for
the observability of the nonlinear system (1), as well as
a practical result that can be used in the design of state
observers for that system.

Theorem 4: Suppose that the set of functions (13) is
linearly independent on [t0, tf ], t0 < tf . Then, the nonlinear
system (1) is observable on [t0, tf ]. Moreover, a state ob-
server with globally asymptotically stable error dynamics for
the LTVS (4) is also a state observer for the nonlinear system
(1), with globally asymptotically stable error dynamics.

Proof: Let
[
xT

1 (t0) xT
2 (t0)

]T
be the initial state of the

nonlinear system (1). Then, the output is given by

y(t) = ‖x1(t)‖
2

=

∥∥∥∥x1 (t0) + (t − t0)x2 (t0) +

∫ t

t0

u (σ) dσ

∥∥∥∥
2

= ‖x1 (t0)‖
2 + ‖x2 (t0)‖

2 (t − t0)
2 +

∥∥∥∥
∫ t

t0

u (σ) dσ

∥∥∥∥
2

+2xT
1 (t0)x2 (t0) (t − t0) + 2xT

1 (t0)

∫ t

t0

u (σ) dσ

+2xT
2 (t0) (t − t0)

∫ t

t0

u (σ) dσ. (19)

Since the set of functions (13) is assumed linearly inde-
pendent on [t0, tf ] it follows, from Theorem 2, that the
LTVS (4) is observable on [t0, tf ]. Thus, given y(t) for
t ∈ [t0, tf ], the initial state of (4) is determined uniquely. Let[
zT
1 (t0) zT

2 (t0) z3 (t0) z4 (t0) z5 (t0)
]T

be the initial state
of the linear system (4). Then, the output satisfies

y(t) = 2zT
1 (t0)

∫ t

t0

u (σ) dσ + 2zT
2 (t0) (t − t0)

∫ t

t0

u (σ) dσ

+z3 (t0) + 2z4 (t0) (t − t0) + z5 (t0) (t − t0)
2

+

∥∥∥∥
∫ t

t0

u (σ) dσ

∥∥∥∥
2

. (20)

Notice that y (t0) = z3 (t0) = ‖x1 (t0)‖
2. From the compar-

ison between (19) and (20) it follows that

2
[
x

T
1 (t0)x2 (t0) − z4 (t0)

]
(t − t0)

+
[
‖x2 (t0)‖

2 − z5 (t0)
]
(t − t0)

2

+2
[
x

T
1 (t0) − z

T
1 (t0)

] ∫ t

t0
u (σ) dσ

2
[
x

T
2 (t0) − z

T
2 (t0)

]
(t − t0)

∫ t

t0
u (σ) dσ = 0 (21)

for all t ∈ [t0, tf ]. Since the set of functions F is assumed
linearly independent, (21) implies that⎧⎪⎪⎨

⎪⎪⎩

x1 (t0) = z1 (t0)
x2 (t0) = z2 (t0)
xT

1 (t0)x2 (t0) = z4 (t0)

‖x2 (t0)‖
2

= z5 (t0)

.

This concludes the proof, as both the initial state of the
nonlinear system (1) is uniquely determined and the initial
state of the linear system (4) matches the initial state of the
nonlinear system.

Remark: Notice that, although the LTVS (4) mimics
the original nonlinear system (1) under the conditions of
Theorem 4, the algebraic restrictions (6) were not explicitly
imposed.

IV. FILTER DESIGN

Given that (1) has been transformed into a linear system
that captures the exact dynamics and its observability has
been fairly well characterized, it is immediate to design a
globally exponentially stable state observer [14]. In practice,
it is common to have noisy measurements. Moreover, it is
the range that is usually measured, not its square, which is a
drawback of the previous solution since measurement noise
may be greatly amplified for large distances with the square
operation. These drawbacks are addressed in this section,
where a Kalman filter is proposed for a different augmented
system that relies on the range instead of its square.

Define a new augmented system state as

χ(t) =
[
xT

1 (t)xT
2 (t)χ3(t)x4(t)x5(t)

]T
∈ Rn, n = 9,

where χ3(t) := ‖x1(t)‖ =
√

y(t), and a new system output
as z(t) = ‖x1(t)‖. The new augmented system dynamics are
given by {

χ̇(t) = A(t)χ(t) + Bu(t)
z(t) = Cχ(t)

, (22)

where

A(t) =

⎡
⎢⎢⎢⎣

0 I 0 0 0
0 0 0 0 0

1
z(t)

u
T (t) 0 0 1

z(t)
0

0 u
T (t) 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎦ ,

B and C are as previously defined, and it is assumed that
z(t) > 0 for all time. Notice that, further assuming that the
output and its derivative are bounded for all time, both aug-
mented states are related through a Lyapunov transformation,
which preserves observability properties [15]. The advantage
of the new representation (22) is that the output is the range,
instead of its square. The design of a Kalman filter for (22)
is now straightforward to obtain, as well as conditions that
guarantee its observability [16], [17].

V. SIMULATIONS

This section provides simulation results that demonstrate
the performance of the Kalman filter solution proposed in
Section IV.

As defined in Section II-A, let p(t) and s(t) denote the
inertial positions of the agent and the source, respectively.
In the simulation the agent starts at p(0) = [20 20 20]

T
(m)

and the source at s(0) = [0 50 0]
T

(m). The source is
assumed to be drifting with constant velocity vs(t) =
[0.5 −0.5 0.5]

T
(m/s) and the relative velocity of the agent,

expressed in inertial coordinates, is

vr(t) =

⎡
⎣ 0.5− cos

(
2π
100 t

)
−0.5 + 2 sin

(
2π
200 t

)
0.5− 0.5 cos

(
2π
40 t

)
⎤
⎦ (m/s).
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The position of the source relative to the agent, expressed in
inertial coordinates, is x1(t) = s(t)−p(t), and Fig. 2 depicts
its evolution. Both the range and the agent velocity measure-
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Fig. 2. Trajectory of x1(t)

ments are perturbed by zero-mean white Gaussian noises,
with standard deviations of 0.2m and 0.01m/s, which given
the scale of the problem are reasonable. To tune the Kalman
filter the state disturbance covariance matrix was chosen as
Q = 0.01diag (1, 1, 1, 0.001, 0.001, 0.001, 1, 1, 0.001) and
the output noise variance as R = 1. The evolution of the error
variables is depicted in Fig. 3. The initial large transients
appear due to the mismatch of the initial conditions. In order
to better evaluate the performance of the proposed solution,
the error variables are depicted in greater detail in Fig. 4.
Even in the presence of realistic measurement noise, the error
variables remain confined to tight intervals.
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Fig. 3. Time evolution of the estimation error variables

VI. CONCLUSIONS

The problem of navigation/source localization by mobile
agents based on range measurements, considering constant
unknown drift velocities, was addressed in this paper. The
observability of the nonlinear system was analyzed and nec-
essary and sufficient conditions were derived. The results are
closely related to the motion of the agent, which allows for
the implementation of appropriate control strategies that ren-
der the system observable. To solve the estimation problem
a Kalman filter was proposed based on a linear model that
captures the exact dynamics of the system. Simulation results
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Fig. 4. Detailed evolution of the estimation error variables

were presented that illustrate the attainable performance in
the presence of realistic measurement noise.
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