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Abstract

In intelligent control systems, an additional loop of
supervision is sometimes needed to perform an adap-
tation which usually consists on sct-points adjustments
and controller parameters luning.

This paper describes a fuszy approach 1o the super-
vision of controller parameters, in single loop plants.
The fuzzy supervision 1s performed over a P controller.
In order to evaluate this supervision strategqy two differ-
ent stmulated systems and one scaled pilot plant were
tested.

Keywords — Intelligent Control, Supervision, Fuzzy
Logic, Fuzzy Control, Fuzzy Supervision.

1 Intelligent Control Systems

Due to the inherent restrictions of control al-
gorithms the presence of human operators or auto-
matic mechanisms of supervision is of major impor-
tance when controlling complex processes [Arzén89,
Astromss].

During the last decade, research hias been done in
the area of autonomous systens, Faced with the new
problems arising in the area, the control community
has been discussing and proposing new approaches.

Adaptive coutrol was an early attempt to increase
classical controllers autonomy. llowever, the structure
of the controller has to be chosen a priori and its pa-
rameters must be selected. Therefore, specialized con-
trol design methods have to he used in order to imple-
ment adaptive controllers.

Furthermore problems like world perception, deci-
sion strategies and planning are not covered by adap-
tive control or other control systems design method-
ologies.

An important conclusion, in what concerns the de-
sign of an autonomous system, is the generally ac-
cepted fact that some intelligence has to be incorpo-
rated in the overall control system, in order 1o insure
the system survival in an unkuown/aggressive environ-
ment.

The establishinent of a uuified theoretical frame-
work, where these problems can be formalized and sol-
ved, has been the major goal of a new research area
known as Intelligent Control [Meystel®R, Saridis&3).

A.L has developed methodologies that can be used
on the synthesis of basic “intelligence™ and that provide
means of representing the world (based on KBS, se-
mantic networks, frames), of planning (based on heuris-
tic searches as depth first, A*), of infering new knowl-
edge about the mission to be performed and of execut-
ing and/or changing the generated plans.

In this paper an architecture for the supervision of
controllers supported on the Fuzzy Logic Theory, is
proposed.

Fuzzy logic has been successfully used, in the auto-
matic control of complex industrial plants, such as ce-
ment kilus [King88] and chemical processes [Mandani77),
analysis of Driver-System environment [Kramer85] and
on aircraft control [Chiu90]. Fuzzy inference systems
[ZadehT3) offer advantages relatively to the conven-
tional systems, in what concerns the incorporation of
possibulity information, obtained from the world by sens-
ing, and possibilistic inference [Valavanis90], from hu-
man operators or self-organizing mechanisms.

In section 2, an introduction to fuzzy logic and lin-
guistic fuzzy control basic concepts is presented. In
Section 3 a fuzzy supervisor for a PI controller is pro-
posed. In Section 4 the performance of the proposed
supervision architecture is tested for three relevant types
of systems. Finally, Section 5 concludes the paper
pointing out directions for further research.

2 Concepts of Linguistic Fuzzy
control

A fuzzy subset A of an universe of discourse
(support set) U is characterized by a membership func-
tion pig(z) : 2 € U — [0,1]. representing the grade of
membership of r in A [ZadehT3].

Each word or linguist term in a natural language
can be viewed as a label for a fuzzy subset A of a uni-
verse of discourse 7. This language assigns atomic and
composite labels describing words, phrases and sen-
tences to subsets of U [Zadeh73).

A fuzzy linguistic variable is a variable whose val-
ues are linguistic terms used as labels of fuzzy sets. For
instance, the atomic fuzzy subset labels high, medium,
low and ok can be regarded as values of the fuzzy vari-
able temperature.

The three basic operations among fuzzy sets (com-
plement, union and intersection) are described in terms
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of the membership functions for the imervening sets.
They are related to the negation wof of lubels and to
connectives or and and, between lubels.

. ct_)mplemont: flaalz) = | = pu(2)

e union: paup(z) = mazfu(x), pplz)]
e intersection: panp(x) = min[pa(z), po(z)]

A controller can be interpreted as a system that
maps an input signal to an output signal. A fuzzy con-
ditional statement describes this mapping, by a set of
production rules, based on the knowledge representa-
tion.

For a controller with two mputs and one output, a
typical fuzzy conditional statement (or fuzzy rule) is:

IF V|' is Ty and Va is 75 THEN V, s T,
where
Vi i = 1,2, is the linguistic variable [or the put i;

T: = 1,2, is one of the linguistic ters assumed by
Vii

VooTo have the same mwaning for the controller’s out-
put.

Given the fuzzy subsets A C U and B C V, o fuzzy
conditional statement R, from {7 1o V', of the form:

IF ATHEN BB
is defined by the bivariate membership function

(1)

Given the relation /2, from 17 10 V', and A" o fuzzy
subset of U, the fuzzy subsct /2 of 1" inferred from A’,
has the membership function

pr(z,y) = minfpale) pply)). reliyeV

pp(y) = max minfpeple) pals.y))
r

(2)

that results of the application of the compositional
rule of inference(CRI) [Zadeh7i).

In this work, the controller input values are crisp
rather than fuzzy sets. Therelore, the CRI can be sine-
plified by interpreting any input oy as o fuzzy input set
A" with the membership Tunetion

Jalar) = { ‘I’ rw

4= X
that yields

poe(y) = minfp(xo). k) = palro.y)  (3)

for a particular fuzzy rule r [Kicken 70).

The fuzzy controller is defined by u set of rules with
the form just described. The linal output fuzzy set,
resulting from an input ry and an inferenee cyele over
all the rules, is given by
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poe(y) = mazr minfua(ze)un(y)]  (4)

r

Similarly as considered for input values, the output
must be a crisp value. The centroid method has
been chosen for this defuszification operation:

v = ! po(y)ydy
pnp(y)dy

3 Proposed Architecture

(5)

Although classical direct controllers can achieve
good performance in the control of linear systems, in
the case of PI controllers the proportional and inte-
gral gains must be continuously monitored and ad-
justed when system dynamics changes occur or when
the working point varies. This means that when PI
controllers are implemented some adaptation mecha-
nisms need to be incorporated in the Supervision level.

KR

SUPERVISION

. 1) Fostures
Piry-tn Extractor .

J_ o

CONTROL

T Lrvn
N K . Plent L

Figure 1: Architecture of the controller and supervisor

In the supervision architecture proposed in [01i90],
the supervisor was implemented through an algorithm.
In the present work a fuzzy approach is used at the
supervision level. The overall architecture of the fuzzy
supervised control loop is presented in figure 1.

Typical fuzzy supervisor inputs are the rise fime,
the settling time, the overshoot, the output offset, the
activity in the control or other process features. The
supervisor function is represented in fig. 1 by

ol‘(!lv-"']n)

where f;, i = 1,...,n are the n features extracted from
the process output. A good reason to use features in-
stead of a model reference scheme, is the fact that they
provide information which is closer to the one used by
an human operator and does not impose a mathemat-
ical model to the output response. Even though, there
is a trade-off between performance and complexity of
the controlled system. In systems of higher complexity,
this approach can be seen as a step towards the use of
perception. In this context, the sensor numerical values
are replaced by symbolic data and fuzzy rules can be
understood as a simple planner.

In what follows the overshoot (S%) and the rise
fime (1,) are the chosen features.
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Table 1: Rules protocol for supervision of K;
l,
"\l
N\
ZEi
PAL

'S
NSi
ZE
PBi

'
NBi

ZEi
PSi

The fuzzy supervisor is composed by three different

elements:

e The input fuzzy encoder which consists of a set of
analog membership functions, describing the -
put linguistic terms of the input features - over-
shoot and rise-tinwe - related with the system step
response.

e The linguistic control rules, in the form
IF premises THEN aclualion.

Here, the premuses are deseribed by the mput lin-
guistic terms (one for each input feature) and the
actuation by the oulpnl linguistic terms.

o A defuzzifier, which converts the output from the
entire set of rules (determined by mar<mm fuzzy
inference method) 1o a crisp supervision actua-
tion and that is unplememaed by the simplified
version of (5):

v = DT LTA AL
i I'M'(!l-)

Figure 2: Simulation results with constant K,

The protocol rules, which perforin the changes in
the PI controller paramcters K, and K, are presented
in tables 1 and 2 and they were established with ba-
sis on simulations perforined ou sceond order systems
(figs. 2 and 3)

In order to choose the supervisor nctuation instants
different options were considered:

1.5 Ki=0.4
Kp=5
Kp=1
1+ A
-~

0.5h

0
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g

Figure 3: Simulation results with constant K;

Table 2: Rules protocol for supervision of K,

t
ik, | PB__PM__ PS
PB | PBp p p
PM | PMp ZEp NMp
PS | PSp ZEp NBp

o Constant supervision sampling time (greater than
system sampling time).

e Variable supervision sampling time, related to
the reference input changes.

e Variable supervision sampling time, defined by a
fixed delay with respect to the time instant when
the step response reachs a 5% deviation of the
steady-state.

The last option was implemented, together with
a time-out mechanism for the tuning of systems with
very slow output response.

From the point of view of the controller, given the
actual system performance and a desired performance
index expressed by output features of the system, the
supervisor performs a fine-tuning procedure.

4 Results

To validate the proposed supervision architecture,
three systems were studied:
e A stable, linear and minimum phase system with
an abrupt change in its dynamics.

e A stable, linear and non minimum phase system.

o A non-linear scaled pilot plant.

The Pl controller is implemented by
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(6)

f
z crror(k))

k=1,

u(t) = K,(error(t) + K,

In the experiments, A, and A, are initially mis-
tuned and undisturbed stable systems were assumed.
The objectives of the study were:

e to test the robustness of the fuzzy supervision
with respect to changes in dynamics, non-linea-
rities or non-minimum phase systems;

¢ to evaluate the convergence rate and the steady-
state behaviour of the systems responses to a se-
quence of steps, exhibited by the evolution of the
features and the controller parameters.

The first test was run for a simnlated linear second
order discrete-time system. with minimun-phase and
experiencing a change in its dynamics at the middle of
the simulation time interval.

The difference equations deseribing the system be-
fore and after dynamics chiange are respectively:

y(t)

1.0Gy(t = 1) = 0.22y(t — 2) +
LOOE < 2u(l < 1) 4+ 1 YE < 2u(t - 2)

y(t) 0.95(t = 1) = 0.220(1 = 2) +

LOOE < 2u(t = 1) + VYWE = 2u(t - 2)

The results are shown in ligure 4. It can be seen
that the controller is robust 10 the change in dynam-
ics, due to the fuzzy supervision. There is a slight os-
cillation in the steady state values of the Pl controller
gains which is due to the trade-oll’ between the tar-
get rise-time and the overshoot values, Notice that for
a required 0% overshoot the value of the rise-time is
lower-bounded. However, elinnges in controller parany
eters result in contradictory evolutions for the rise-time
and for the overshoot to the step respouse. To a de-
crease on the overshoot corresponds an increase on the
rise-time.

The other sinmlated diserete-time system was also
linear and second order, but exhibiting one zero outside

the unit circle, that is, a non-minimun phase system,
described by

ywt) = L2 = 1) =035y = 2) ~
u(l = 1)+ 2u(t - 2)

In figure 5 it can be noticed that in this case the
supervisor improves the controller performance during
adaptation.

Finally, the strategy has heen tested with a scaled
pilot plant consisting of a tank systemn with sump and
process tanks, circulating pump. variable area flow me-
ter and a motorized llow control \‘-‘l"’l' Au additional
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Figure 4: Results of using a PI controller on a minimum
phase system with change in dynamics

manual flow control valve allows the draining adjust-
ment of the process tank. There is also a level sensor
which measures the liquid level inside the tank, drawn
from the sump tank by a centrifugal pump, at a rate
controlled by the iotorized valve and visually measur-
able by the flowmeter.

The purpose of the experiments was to control the
liquid level inside the tank. The resultant system is
non-linear, namely because of the flow/input current
characteristic of the motorized valve (that includes a-
mong others an hysteresis non-linearity).

Once again, the results presented in figure 6 show
that the supervision procedure converges to the desired
features alter a few step responses,
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Figure 5: Results of using o Pl controller on a

non-minimum phase system

5 Conclusions and Future
Trends

A new strategy for supervision of Pl controllers was
presented. It consists of an adjustment of Pl controller
gains. The amount of adjust it results from a fuzzy
rule based inference whicl takes imo account features
extracted from the controlled system output - the rise
time and the overshoot

It is also shown that Pl controllers can he tuned on-
line, automatically, by heuristic rules hised on features
of the system output.

The experimental results reveal that the strategy
is robust relatively to changes in dynamics, non-linea-
rities and non-mininwim phase systems. No proof of
convergence of the method has been presented, but it
has been shown for all the examples that the target
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Figure 6: Results for the scaled pilot plant with super-
vised PIl controller

features were achieved after a few supervision sampling
instants,

In the future, effort will be focused on proving con-
vergence of the proposed supervision architecture.
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