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a b s t r a c t 

A L1 adaptive backstepping controller is proposed for path-following control of an underactuated ship 

based on a nonlinear steering model, and the control law is derived using Lypunov control function. L1 

adaptive controller is a novel technology considering both the robustness and fast adaptation. The closed- 

loop control system is proved to be uniformly global asymptotically stable. A novel guidance law, time- 

varying vector field, is proposed for the guidance system. The kinematic analysis of path-following shows 

that the guidance and control systems are coupled, and the guidance system is affected by the perfor- 

mance of the controller. The Lyapunov method is employed to show that the equilibrium point of the 

whole system is uniformly global asymptotically stable. Path-following simulations are carried out to val- 

idate the performance of the proposed control law and vector field guidance law using a fully nonlinear 

manoeuvring mode of an underactuated tanker in the presence of stochastic ocean current. 

© 2020 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Marine autonomous surface ships (MASS) have been drawing

uch attention in the maritime industry, and this is reflected in

he recent guidelines for the conduct of autonomous ship trials

pproved by the Maritime Safety Committee (MSC) of the Interna-

ional Maritime Organisation (IMO) in 2019. The main reasons for

he rapid development of autonomous ships are safety and eco-

omic benefit. The direct causes of ship losses are of different na-

ure [17] , but different studies have concluded that about 75% to

6% of marine accidents can be traced back to human errors [1 , 18] .

utonomous shipping can significantly improve safety by reducing

uman errors. Another driving force for the development of au-

onomous or unmanned ships is an economic benefit. Autonomous

hips can significantly reduce the cost of onboard personnel and

uel consumption, although initial investment in equipment and

hore based support maybe higher [46] . Meanwhile, without the

ife support system, the ship can carry more cargos. 

These important benefits have motivated recent research on

utonomous ships. For example, Rolls-Royce [45] led a project

hat addressed the various factors related to the development

f autonomous ships, such as economic, social, regulatory and
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echnology. In the following year, Norway opens an official test

ed for autonomous shipping [35] . In 2018, IMO defined degrees

f autonomy for autonomous surface ships, and the preliminary

esearch on the regulation of autonomous ships was carried out.

or an autonomous ship, the most important and fundamental

ystem is the guidance and control system as it directly affects the

hole performance of autonomous ships. 

A robust and reliable guidance and control system are closely

elated to the safety of autonomous ships. The research on the

uidance and control system of autonomous ships is becoming im-

ortant and urgent, especially with the fast development of au-

onomous ships. 

A review in the area of nonlinear controllers for ships can be

ound in [11] , which briefly introduced the application of the non-

inear controllers, such as linear quadratic regulator (LQR), state

eedback linearization, backstepping, sliding mode control, etc. In

ecent years, model predictive control was used for surface ships

y Oh and Sun [39] , where the rudder dynamic model was consid-

red. A sliding mode controller was used for trajectory tracking of

n ROV by Guerrero et al. [20] . Liu et al. [33] used the model pre-

ictive control for the path following control of a marine surface

hip considering the roll motion effect. Meanwhile, experiments

ere carried to validate the proposed control law. Fuzzy logic con-

rol was widely used in autonomous systems due to the simple

ontrol structure. Li et al. [31] used an adaptive neural network
rved. 

daptive backstepping control for path-following of underactuated 
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fast power reaching for the path following control of underactu-

ated marine surface vessels. A review on the fuzzy logic control for

marine underwater vehicles can be found in Xiang et al. [51] . Wang

et al. [50] proposed a fuzzy observer-based controller for surface

ships, and globally asymptotically stable was proved. 

The adaptive control method is one promising technology for a

dynamic system, especially for autonomous ships because the ma-

rine surface ships usually travel in a complex environmental with

waves, wind, and currents. The classical control system is designed

using a static steering model, for example, the Nomoto model,

which is the most widely used. The static steering model does not

consider the time-varying environmental disturbance and thus it

usually will fail to describe the ship’s dynamic response when the

environment changes [42] . For example, when ships access a har-

bour from the ocean, the pilots can feel that the ship is becoming

hard to manoeuvre. In fact, research shows that the shallow water

has a significant effect on the manoeuvrability of ships [26 , 48] . Un-

fortunately, the classical controller based on static steering models

does not consider the effect of shallow water, which changes the

manoeuvring model (Xu and Guedes Soares, 2019). 

Recently, a novel adaptive control architecture, denoted as L1

adaptive control, was proposed. It can guarantee both fast adap-

tation and transient performance, as described in [21] . Guerreiro,

Silvestre, Cunha, Cao, and Hovakimyan [19] used L1 adaptive con-

troller for an inner loop controller for autonomous rotorcraft.

Kaminer et al. [23] employed the L1 adaptive controller for the

path-following of unmanned aerial vehicles. Lee et al. [28] pro-

posed an L1 adaptive backstepping controller for autopilot of an

agile missile. Sørensen and Breivik [47] compared the performance

of L1 adaptive backstepping controller with the classical adaptive

control. The results show that the L1 adaptive control has a bet-

ter performance. Some published papers demonstrate that the L1

adaptive control greatly improved the performance of unmanned

aerial vehicles, such as, [16 , 19 , 24 , 28] . In this paper, L1 adaptive

backstepping controller is employed for the path-following control

problem of an underactuated ship. 

Guidance and control system are the basic component for an

autonomous ship. The guidance portion of the system is used to

develop the variable input signal, which represents the desired

course to the target. There are many guidance laws for an au-

tonomous system, such as pure pursuit (PP), vector field (VF) [57] ,

constant bearing (CB) and line of sight (LOS). LOS is one popular

method, and widely used for autonomous ships [3 , 14 , 15 , 30 , 36 , 49] .

Lekkas and Fossen [30] , proposed a revised version of LOS, look-

ahead LOS, for the autonomous ships, where the look-ahead dis-

tance is a time-varying function of the cross-track error. Follow-up

work can be found in [37] . An integral LOS (ILOS) was proposed

to compensate the drift forces due to environmental disturbance

[3 , 12 , 29] . LOS guidance law is a geometry method, because the de-

sired heading angle is determined with a triangle, which consists

of the location of the ship, path, and look-ahead distance. 

Vector field guidance law is a mathematical method that was

proposed by borrowing the concept of potential flow. Vector field

generates the vectors near the path, and the vectors indicate the

desired course angle. When the ship follows the vectors, she will

converge to the desired path. The core part of the vector field guid-

ance law is the mathematical function that defines the vectors. It

was used for autonomous air vehicles [27 , 38] . Recently, the vec-

tor field method has been used for path-following control of au-

tonomous ships [52 , 53] , and shows a good performance. One ad-

vantage of the vector field is its flexible structure. It calculates the

desired heading angle using a vector generation function, which

can be defined with the requirement of the tasks, for example, ar-

rival angle [32] , trajectory-tracking [27] , obstacles avoidance. 

The guidance and control system are a typical coupled nonlin-

ear system, and the stability properties need to be analysed. The
Please cite this article as: H. Xu, P. Oliveira and C. Guedes Soares, L1 a
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ost desired stability for a closed-loop nonlinear system is global

xponential stable (GES) [2 , 25 , 34] , because the convergence of

he error dynamic equations is bounded by an exponential decay.

owever, unfortunately, it cannot be achieved for path-following

ontrol of autonomous ships. The kinematics of the path-following

ntroduces saturation through trigonometric functions [13] . 

Global κ-exponential stability of LOS guidance law was firstly

roved by Fredriksen and Pettersen [15] . Fossen and Pettersen

13] gave the proof of uniform semiglobal exponential stability

USGES) for LOS guidance law. Do et al. [7] used a robust adap-

ive controller for path-following control of underactuated ships.

he following works can found in [5 , 8 , 9] , 

In this paper, L1 adaptive backstepping controller is proposed

or path-following control, and the performance is evaluated with

 fully nonlinear manoeuvring model of an underactuated au-

onomous ship. The key feature of L1 adaptive-control architectures

s the decoupling of estimation and control, which enables the use

f arbitrarily fast estimation rates without sacrificing robustness.

 nonlinear steering model considering the environmental distur-

ance is employed for the control system design. The Lyapunov

ontrol function is used to derive the control law, where the pa-

ameter update law is also given. The stability proof shows that the

1 adaptive backstepping controller is a uniform global asymptotic

table (UGAS). The guidance system is designed based on the vec-

or field method, and a time-varying vector field guidance law is

roposed. The coupled guidance and control system are proved to

e uniform global asymptotic stable (UGAS) using a cascaded sys-

em theory. The proposed control law and guidance law are vali-

ated with a fully nonlinear manoeuvring mode in the presence of

tochastic ocean current. 

This paper is organized as follows. Sections 2 describes the

inematic of path-following control for an underactuated marine

urface ship. Section 3 proposed the L1 adaptive backstepping con-

roller and stability proof is also outlined. The parameters update

aw is also given in this section. In Section 4 , the error dynamic

quations of the guidance and control system are summarised, and

he theorem and proof for UGAS are given using cascaded sys-

em theory. Section 5 presented the path-following simulations.

he performance of the proposed guidance and control system is

iscussed. Conclusions are given in Section 6 . 

. Problem formulation 

Path-following control of marine surface ships is briefly in-

roduced in this section. As presented in Fig. 1 , a typical path-

ollowing control system consists of path generation (waypoints),

uidance law, controller and the marine craft. Here, several as-

umptions are given. First, the drift angle β can be directly mea-

ured. As discussed in [29] , the drift angle can be measured using

 global navigation satellite system an inertial navigation system

nd inertial measurement unit. Second, the velocities of the ship

an be measured correctly. 

This paper considers the straight path, where the path tangen-

ial angle is constant. Fig. 2 shows the geometric information of

wo-dimensional path-following control for a marine craft. The red

ine is the predefined path. Two coordinate frames are defined in

his figure. The straight path, which connects the predefined way

oints ( x j , y j ) , j = 1 · · · N, is defined in the North-East-Down (NED)

oordinate frame. The body-fixed frame is a moving coordinate

rame that is fixed to the craft. The ship motions, such as surge

nd sway speed ( u,v ), are measured in the body-fixed frame. The

ath-tangential frame is a moving coordinate frame, whose origin

s the projection of the ship’s centre of gravity ( x p , y p ) . γp is the

ath tangential angle. The yaw angle and position are measured

elative to the NED frame. 
daptive backstepping control for path-following of underactuated 
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Fig. 1. Marine control system for path following, where the path is defined by waypoints; β is the drift angle. 

Fig. 2. Geometry description of two-dimensional path-following. 
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.1. Path-following control objective 

As presented in Fig. 2 , the path connects the N way-

oints ( x j , y j ) for j = 1 , · · · , N. The cross-track error y e is the distance

etween the ship and the predefined path. From Fig. 2 , the equa-

ions of cross-track error is given: 

0 

y e 

]
= R ( γp ) 

[
x (t) − x p (t) 
y (t) − y p (t) 

]
(1) 

here, ( x ( t) , y ( t) ) is the ship’s location in real-time, ( x p (t) , y p (t) )

s the projection of the centre of the ship. γp is the path tangential

ngle. R ( γp ) is the rotation matrix, and given as: 

 ( γp ) = 

[
cos ( γp ) − sin ( γp ) 
sin ( γp ) cos ( γp ) 

]
∈ SO (2) (2)

Expanding (1), leads to the cross-track error y e : 

 e ( t ) = −( x (t) − x p (t) ) sin ( γp ) + ( y (t) − y p (t) ) cos ( γp ) (3) 

Obviously, the control object of the path-following is to make

ross-track error converge to zero. It is given as: 

lim y e ( t ) = 0 (4) 

→ + ∞ 

y

Please cite this article as: H. Xu, P. Oliveira and C. Guedes Soares, L1 a
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.2. Kinematic-error equations of path-following 

Considering a ship moving in a horizontal plane, the kinematic

quations of a marine surface vessel moving in 3DOF (surge, sway,

nd yaw) can be described: 

˙ 
 = u cos ( ψ ) − v sin ( ψ ) 
˙ 
 = u sin ( ψ ) + v cos ( ψ ) 
˙ 
 = r 

(5) 

Differentiation of the Eq. (3) , gives: 

˙ 
 e = − ˙ x sin ( γp ( θ ) ) + 

˙ y cos ( γp ( θ ) ) 
= U sin ( ψ − γp ( θ ) + β) 

(6) 

It can be further simplified by substituting Eq. (5) into Eq. (6) ,

esulting: 

˙ 
 e = U sin ( ψ − γp + β) (7) 

here, U is the ground speed of a ship, ( U = 

√ 

u 2 + v 2 ). The β
s the drift angle β = atan2( v, u ). Finally, the time differential, y e ,

ecomes: 

˙ 
 e = U sin ( χ − γp ) (8) 
daptive backstepping control for path-following of underactuated 
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Fig. 3. Vectors around the straight path. 
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where the χ = ψ + β is the course angle of the ship. 

The principle of vector field method is to generate vectors to-

wards the predefined path. The vectors denote the desired travel-

ling direction for the autonomous vessels, as presented in Fig. 3 .

A guidance law is used to generate the vector around the desired

path (red line). The vectors indicate the reference heading (course)

angle for the control system. Obviously, if the ship tracks the vec-

tors successfully, it will converge to the path finally. In this paper,

vector field method is chosen as the guidance law. Here, a time-

varying vector field guidance law is proposed: 

χd = γp − tan 

−1 

(
sgn ( y e ) 

| y e | θ (t, y e ) 

�

)

= γp − sgn ( y e ) tan 

−1 

( | y e | θ (t, y e ) 

�

)
(9)

where θ ( t, y e ) is a time-varying function and � > 0 is a pre-

defined constant and 0 < �min < � < �max . The function, θ ( t, y e ) ,

is defined as: 

Definition 1. The function θ ( t, y e ) is a non-decreasing pos-

itive semi-definite function and θ ( t, y e = 0 ) ≥ 1 . Furthermore,

θ ′ ( t, y e ) ≥ 0 . 

Remark. . The function, θ ( t, y e ) plays an important role in the pro-

posed guidance law. It controls the convergence rate. In order to

make sure the errors converge fast, the function θ ( t, y e ) should in-

crease with the variable, y e . It means that the system has a higher

convergence rate when y e is large. It can also be chosen as a con-

stant value. For example, if θ ( t, y e ) = 1, then the vector field guid-

ance law degenerate to the classical LOS guidance law. 

The heading tracking error satisfies: 

˜ ψ = ψ − ψ d = χ − χd == ˜ χ (10)

With the Eqs. (9) - (10), the Eq. (7) can be simplified: 

˙ y e = U sin 

(
˜ ψ − sgn ( y e ) tan 

−1 

( | y e | θ (t, y e ) 

�

))
(11)
Please cite this article as: H. Xu, P. Oliveira and C. Guedes Soares, L1 a
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Expanding the formula gives: 

˙ 
 e = U sin 

(
˜ ψ 

)
cos 

(
tan 

−1 

( | y e | θ (t, y e ) 

�

))

− sgn ( y e ) U cos 
(

˜ ψ 

)
sin 

(
tan 

−1 

( | y e | θ (t, y e ) 

�

))
(12)

It can be further simplified as: 

˙ 
 e = −sgn ( y e ) 

U | y e | θ ( t, y e ) √ 

�2 + | y e | 2 θ ( t, y e ) ︸ ︷︷ ︸ 
f 1 (t, y e ) 

+ Uφ
(
t, y e , ˜ ψ 

)
˜ ψ ︸ ︷︷ ︸ 

g(t, y e , ̃  ψ ) 

(13)

here φ( t, y e , ˜ ψ ) is defined as: 

(
t, y e , ˜ ψ 

)
= 

sin 

(
˜ ψ 

)
˜ χ

�√ 

�2 + | y e | 2 θ ( t, y e ) 

− sgn ( y e ) 
cos 

(
˜ ψ 

)
− 1 

˜ χ

| y e | θ ( t, y e ) √ 

�2 + | y e | 2 θ ( t, y e ) 
(14)

. L1 adaptive controller for heading 

In this section, the L1 adaptive controller is proposed for the

eading control of autonomous ships. The classical autopilot for

hips is usually designed based on Nomoto model. It is a linearized

anoeuvring model, and describes the yaw dynamic response to

he rudder steering. The oversimplified structure decreases the ac-

uracy of the yaw motion’s prediction. So, in this paper, a non-

inear Nomoto model with bounded environmental disturbance is

hosen: 

˙ ψ = r 
 

∗ ˙ r + H 

∗(r) r = K 

∗δ + b ∗
(15)

here, T ∗ and K 

∗ are the Nomoto constants. They can be esti-

ated using a system identification method resorting for instance

o zigzag manoeuvring test [43 , 44 , 56] . H 

∗(r) = 1 + a 2 r 
2 , is the pos-

tive nonlinear damping term. δ is the rudder angle. b ∗ ≤ b max 
daptive backstepping control for path-following of underactuated 
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Fig. 4. Block diagram of the L1 adaptive controller. 
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epresent the environmental disturbance. Assume there are uncer-

ainties associated with the parameters. The relationship between

he real and estimated parameter is assumed as: 

T ∗ = ηT 
 

∗(r) = σH(r) 
K 

∗ = ρK 

(16) 

here, η ∈ R 

+ , σ ∈ R 

+ , ρ ∈ R 

+ are the uncertainties associated

ith the T , H (r) and K , respectively. Additionally, it is assumed that

he uncertainty and environmental disturbance, b ∗, is slowly vary-

ng relative to the ship dynamics, the derivative of the uncertainty

s negligible, (i.e. ˙ η = 0 , ˙ σ = 0 , ˙ ρ = 0 , and , ˙ b ∗ = 0 ). Substituting (16)

nto (15) gives: 

˙ ψ = r 
T ˙ r + σH(r) r = ρKδ + b ∗

(17) 

.1. State predictor with adaptation laws 

Fig. 4 shows the block diagram of L1 adaptive controller. It con-

ists mainly of a state predictor, parameters adaptation, and con-

rol law with low-pass filter. In the following part, a L1 adaptive

ackstepping controller is proposed, and the control law is given.

he parameter adaption laws are derived first. The stability proof

or the closed-loop control system is also presented and UGAS is

roved. The control law is derived using the backstepping method

10 , 28] . 

Given a state predictor, the prediction errors are: 

˜ 
 = 

ˆ ψ − ψ ; ˜ r = 

ˆ r − r (18) 

here, ˆ ψ and ˆ r are the estimated value, respectively. The ideal pre-

iction errors are defined as: 

˙ ˜ 
 ideal = −�1 

˜ ψ ; ˙ ˜ r ideal = −�2 ̃  r (19) 

here, �1 and �2 are positive constants, which render their equi-

ibrium point exponentially stable. Then the state prediction is de-

ned as: 

˙ ˆ 
 = −�1 

˜ ψ + r 

˙ ˆ 
 = −�2 ̃  r + T −1 

(
ˆ ρηKδ + ̂

 b ∗η − ˆ σηH(r) r 
) (20) 

here, ˆ ρη = ˆ ρ/ ̂  η, ˆ ση = ˆ σ/ ̂  η, ˆ b ∗η = ̂

 b ∗/ ̂  η, and the superscript repre-

ents the estimated value, and ˆ η is assumed positive, i.e. ˆ η ∈ R 

+ .
 candidate Lyapunov function is used to design the adaption laws

or the uncertainties. The prediction errors are defined as: 

˙ ˜ 
 = −�1 

˜ ψ 

˙ ˜ 
 = −�2 ̃  r + T −1 ( ̃  ρηKδ + ̃

 b ∗η − ˜ σηH(r ) r ) 
(21) 

here, ˜ ρη = ˆ ρη − ρη is the error of the parameter ρη . ˜ b ∗η = ̂

 b ∗η −
 η

∗
is the error of the parameter, b η

∗
. ˜ ση = ˆ ση − ση is the error
Please cite this article as: H. Xu, P. Oliveira and C. Guedes Soares, L1 a
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f the parameter ση . Then, consider the positive defined Control

yapunov Function (CLF), 

 pred = 

1 

2 

(
1 

γρη

˜ ρ2 
η + 

1 

γση

˜ σ 2 
η + 

1 

γb η

˜ b ∗η
T ˜ b ∗η

)
+ 

1 

2 

T ̃  r 2 + 

1 

2 

˜ ψ 

2 (22) 

here, γρη , γση and γb η are the adaptation gains. Differentiation of

22) yields: 

˙ 
 pred = 

1 

γρη

˜ ρη
˙ ˆ ρη + 

1 

γση

˜ ση
˙ ˆ ση + 

1 

γb η

˜ b ∗η
˙ ˆ b 
∗
η + 

˜ ψ 

˙ ˜ ψ + ̃

 r T ˙ ˜ r 

= 

1 

γρη

˜ ρη
˙ ˆ ρη + 

1 

γση

˜ ση
˙ ˆ ση + 

1 

γb η

˜ b ∗η
˙ ˆ b 
∗
η − �1 

˜ ψ 

2 − T �2 ̃  r 2 

+ ̃

 r 
(

˜ ρηKδ + ̃

 b ∗η − ˜ σηH(r) r 
)

= ˜ ρη

(
1 

γρη

˙ ˆ ρη + ̃

 r Kδ

)
+ ˜ ση

(
1 

γση

˙ ˆ ση − ˜ r H(r) r 

)

+ ̃

 b ∗
(

1 

γb η

˙ ˆ b 
∗
η + ̃

 r 

)
− �1 

˜ ψ 

2 − T �2 ̃  r 2 (23) 

From the Eq. (28) , the following adaption laws are given: 

˙ ˆ η = −γρη
˜ r Kδ

˙ ˆ η = γση
˜ r H(r) r 

˙ ˆ 
 

∗
η = −γb η ˜ r 

(24) 

In order to prevent parameter drift in adaptation schemes, the

rojection-based adaptation laws are given: 

˙ ˆ η = γρη Proj ( ρη, −˜ r Kδ) 
˙ ˆ η = γση Proj( ση, ̃  r H(r ) r ) 
˙ ˆ 
 

∗
η = γb η Proj( b ∗η, −˜ r ) 

(25) 

Since the structure of the control law and the definition of the

eference model do not change, the tracking error dynamics will

e same. The advantage of using projection-type adaptation is that

ne ensures boundedness of the adaptive parameters [21] . 

Substituting (24) into (23) gives: 

˙ 
 pred = −�1 

˜ ψ 

2 − T �2 ̃  r 2 ≤ 0 (26) 

.2. Adaptive backstepping control law 

In this part, the control law of the adaptive backstepping

ontroller is derived using Lyapunov control function (CLF). For

he heading control of autonomous ships, the object is to make

 ψ − ψ d | → 0 , where ψ d is specified by the vector field guidance

aw. Defining the error variables, z 1 and z 2 as: 

 1 = ψ − ψ d 

 2 = r − α
(27) 
daptive backstepping control for path-following of underactuated 
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Fig. 5. Closed-loop system of the L1 adaptive backstepping controller for an underactuated marine surface ship. 

Fig. 6. Error dynamics equations of the guidance and control system. 
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where, α is a stabilising function. A positive defined CLF is defined

as: 

 1 = 

1 

2 

z 1 
2 (28)

The time differential of V 1 is given: 

˙ 
 1 = z 1 ̇ z 1 = z 1 

(
r − ˙ ψ d 

)
= z 1 z 2 + z 1 

(
α − ˙ ψ d 

)
(29)

Choose the stabilising function, α = 

˙ ψ d − K 1 z 1 , and submit intro

(29), gives: 

˙ 
 1 = −K 1 z 

2 
1 + z 1 z 2 (30)

The time differential z 2 is given: 

T ˙ z 2 = T ˙ r − T ˙ α = ˆ ρηKδ + ̂

 b ∗η − ˆ σηH(r) r − T ˙ α (31)

where, ˙ α = ψ̈ d − K 1 ̇ z 1 . Considering the new variables, z 1 and z 2 ,

the CLF is modified to 

 2 = 

1 

2 

z 2 T 
−1 z 2 + V 1 (32)

The derivative of V ctrl is given: 

˙ 
 2 = z 2 T 

−1 ˙ z 2 + 

˙ V 1 = z 2 

(
ˆ ρηKδ + ̂

 b ∗η − ˆ σηH(r) r − T ˙ α
)

− z 1 K 1 z 1 + z 1 z 2 

= z 2 

(
ˆ ρηKδ + ̂

 b ∗η − ˆ σηH(r) r − T ˙ α + z 1 

)
− z 1 K 1 z 1 (33)

Submitting, r = z 2 + α, into the Eq. (33) , resulting, 

˙ 
 2 = z 2 

(
ˆ ρηKδ + ̂

 b ∗η − ˆ σηH(r) α − T ˙ α + z 1 − ˆ σηH(r) 
)

z 2 − K 1 z 
2 

1 (34)
Please cite this article as: H. Xu, P. Oliveira and C. Guedes Soares, L1 a
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The control law is given: 

ˆ ηKδ = T ˙ α + ˆ σηH(r) α − ˆ b ∗η − z 1 + ˆ σηH(r) z 2 − K 2 z 2 (35)

here, K 2 > 0. Submitting Eq. (35) into Eq. (34) , resulting: 

˙ 
 2 = −K 2 z 

2 
2 − K 1 z 

2 
1 ≤ 0 (36)

As discussed above, the parameters ˆ ρη , ˆ ση and 

ˆ b ∗η are adaptive

pdating using Eq. (24) . The CLF considering the parameter uncer-

ainty can be expanded to: 

 ctrl = V pred + V 2 = 

1 

2 

(
1 

γρη

˜ ρ2 
η + 

1 

γση

˜ σ 2 
η + 

1 

γb η

˜ b ∗η
T ˜ b ∗η

)

+ 

1 

2 

T ̃  r 2 + 

1 

2 

˜ ψ 

2 + 

1 

2 

z 1 
2 + 

1 

2 

z 2 T 
−1 z 2 (37)

The derivative of V ctrl becomes: 

˙ 
 ctrl = 

˙ V pred + 

˙ V 2 = −L 1 ˜ ψ 

2 − T L 2 ̃ r 2 −
(
K 2 + ˆ σηH(r) 

)
z 2 2 − K 1 z 

2 
1 ≤ 0 

(38)

From the above discussion, the origin of the error system,

( ˜ ψ , ̃  r , z 1 , z 2 , ˜ ρη, ˜ ση, ̃  b ∗η) , is uniformly globally asymptotically stable

UGAS), [10] . The adaption of uncertainties of parameters may con-

ain high-frequency signals. A low pass filer is applied to control

ignals [21 , 47] . It is given as: 

c trl = C ( s ) δ = 

ω 

2 

s 2 + 2 ζωs + ω 

2 
δ (39)

here, C(s ) is a second-order low-pass filter, ζ > 0 is the damp-

ng ratio. ω > 0 is the natural frequency. Fig. 5 shows the closed-

oop system of the C(s ) is a second-order low-pass filter, ζ > 0 is

he damping ratio. ω > 0 is the natural frequency. Fig. 5 shows
daptive backstepping control for path-following of underactuated 
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Fig. 7. The geometrical information of a straight path in the NED frame. 

Fig. 8. The magnitude of 2D irrotational stochastic ocean current. 
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he closed-loop system of the L 1 adaptive backstepping controller.

he control law, parameter adaption laws and state estimator are

resented in this figure. The underactuated nonlinear manoeuvring

odel is given the following part. 

. Stability analysis of guidance and control system 

The L1 adaptive backstepping heading controller proposed in

he above can be used in cascade with the vector field for path-

ollowing control of underactuated ships. If the guidance law in

q. (9) is chosen, the cross-track error in Eq (13) forms a cascade

ystem, as described in Eqs. (40) and ( 41 ). Fig. 6 shows the error

ynamics of the cascaded system [4 , 40 , 41] . As can be observed, the

rrors of the heading control system are fed into the error dynamic

f the guidance system. It means that the two sub-systems are

oupled together. The performance of the controller will directly

ffect the guidance system. 

The error dynamics of the coupled guidance and control system

s given: 

1 : ˙ y e = −sgn ( y e ) 
U | y e | θ ( t, y e ) √ 

�2 + | y e | 2 θ ( t, y e ) ︸ ︷︷ ︸ 
f 1 ( t, y e ) 

+ Uφ
(
t, y e , ˜ ψ 

)
︸ ︷︷ ︸ 

g ( t, y e , ̃  ψ ) 

˜ ψ (40) 
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2 : 
˙ ˜ ψ = f 2 

(
t, ˜ ψ 

)
(41) 

here f 2 (t, ˜ ψ ) is the heading tracking error dynamics discussed

n Section 3 , corresponding to Eqs. (20) –( 24 ), ( 35 ). From the above

iscussion, the error dynamic equation of the heading controller,

2, is the driving system. The driving system output the heading

rrors, which is feed-forward to the driven system, �1. The driven

ystem is described by Eq. (40) , and its performance is affected by

he input, ˜ ψ . In the following phase, the stability property of the

roposed guidance and control system is proved by using the cas-

ade system theory. 

roperty 1. For a typical marine surface ship, the ground speed is

ositive and up bounded, 

 < U min < U < U max . (43)

Based on the above discussion, a theorem is presented and it

uarantees that the cascade system Eqs. (40) and ( 41 ) of the vec-

or field guidance law and L1 adaptive backstepping controller is

niformly global asymptotically stable (UGAS). 

heorem 1. Assume the system �2 are stabilized using the adaptive

ontrol law in Eq. (35) , where the parameters are dynamically up-
daptive backstepping control for path-following of underactuated 
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Fig. 9. The trajectory of the ship model in the simulations. 
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dated using Eq. (25) , the guidance law given by Eq. (9) defines the ref-

erence heading angle, ψ d . Then the equilibrium point ( y e , ˜ ψ ) = (0 , 0)

of the coupled guidance and control system (40) - (41) is UGAS, if the

function, θ (t, y e ) satisfies the Definition 1 . 

Proof. See Appendix A . 

5. Simulation 

Path-following simulations for an underactuated marine surface

ship model will be carried out to evaluate the performance of the

proposed guidance and control system. The robustness of the L1

adaptive backstepping controller with environmental disturbance

is emphatically discussed. A 3-DOF (surge, sway and yaw) nonlin-

ear mathematical model of the “Esso Osaka” is chosen to describe
Please cite this article as: H. Xu, P. Oliveira and C. Guedes Soares, L1 a

marine surface ships, European Journal of Control, https://doi.org/10.10
he motion of the marine surface ship. This model was validated

ith sea-trials of full-scale ship test, is quite comprehensive, and

t gives highly realistic results [22 , 37 , 53 , 55] . 

.1. Nonlinear manoeuvring model 

During the simulations, the current force will be considered as

he main environmental disturbance for manoeuvring modelling.

he effect of the current can be directly included in the mathemat-

cal model. The relative forward velocity u r and transverse velocity

 r are given by: 

 r = u − u c cos (ψ − α) 
v r = v + u c sin (ψ − α) 

(44)

here, u c is the magnitude of the current, α is the direction of the
daptive backstepping control for path-following of underactuated 
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Fig. 10. The motions (yaw angle, surge speed, sway speed) measured in the simulations. 

c
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f

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
urrent. The time derivatives of u and v are given: 

˙ u = 

˙ u r − u c r sin (ψ − α) 
˙ v = 

˙ v r − u c r cos (ψ − α) 
(45) 

here ˙ u r and 

˙ v r are defined by: 

 

 

 

 

 

˙ u 

′ 
r = 

f ′ 1 
m 

′ −X ′ ˙ u r 
˙ v ′ r = 

1 

f 4 
′ 
[
( I ′ z − N 

′ 
˙ r ) f 

′ 
2 − (m 

′ x G − Y ˙ r 
′ ) f ′ 3 

]
˙ r ′ = 

1 
f ′ 4 

[
(m 

′ − Y ˙ v r 
′ ) f ′ 3 − (m 

′ x G − N 

′ 
˙ v r ) f 

′ 
2 

] (46) 
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here, f ′ 
1 
, f ′ 

2 
and f ′ 

3 
are the nondimensionalized hydrodynamic

orces and moment. They are defined as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ′ 1 = η′ 
1 u 

′ 2 
r + η′ 

2 n 
′ u ′ r + η′ 

3 n 
′ 2 − C ′ R + X 

′ 2 
v r v 

′ 2 
r + X ′ 

e 2 
e 2 

+ 

(
X ′ r 2 + m 

′ x ′ G 
)
r 

′ 2 + 

(
X ′ v r r + m 

′ )v ′ r r ′ + X ′ v 2 r r 
2 v ′ 2 r r 

′ 2 

f ′ 2 = Y ′ 0 + 

{
Y ′ v r v 

′ 
r + Y ′ 

δ ( c − c 0 ) v ′ r 
}

+ 

{(
Y ′ r − m 

′ u ′ r 
)
r− − Y ′ 

δ

2 ( c − c 0 ) r 
′ 
} 

+ Y ′ 
δ
δ + Y ′ 

r 2 v r 
r 

′ 2 v ′ r + Y ′ 
e 3 

e 3 

f ′ 3 = N 

′ 
0 + 

{
N 

′ 
v r v 

′ 
r − N 

′ 
δ ( c − c 0 ) v ′ r 

}
+ 

{(
N 

′ 
r − m 

′ x ′ G u ′ r 
)

r+ 

1 
2 

N 

′ 
δ ( c − c 0 ) r 

′ }
+ N 

′ 
δ
δ + N 

′ 
r 2 v r 

r 
′ 2 v ′ r + N 

′ 
e 3 

e 3 

f ′ 4 = 

(
m 

′ − Y ′ 
˙ v r 

)(
I ′ z − N 

′ 
˙ r 

)
−

(
m 

′ x ′ G − N 

′ 
˙ v r 

)(
m 

′ x ′ G − Y ′ 
˙ r 

)
(47) 
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Fig. 11. The measured course angle and drift angle. 

 

 

 

 

 

 

 

 

 

 

Table 1 

Nondimensional hydrodynamic coefficients of “Esso Os- 

aka” ship model (scale factor = 100). 

Coefficient Value Coefficient Value 

( m − Y ˙ v ) 
′ 0.0352 Y ′ 0 1.90 ∗e-6 

( I z − N ˙ r ) 
′ 0.00222 Y ′ v r −0.0261 

( m − X ˙ u r ) 
′ 0.0116 Y ′ 

δ
0.00508 

η′ 
1 −0.962 ∗e-5 Y ′ r 0.00365 

η′ 
2 −0.446 ∗e-5 Y ′ r r v r −0.0450 

η′ 
3 0.0309 ∗e-5 Y ′ eee −0.00185 

C ′ R 0.00226 N ′ 0 −0.00028 

X ′ v 2 r 
−0.006 N ′ v r −0.0105 

X ′ ee −0.00224 N ′ 
δ

−0.00283 

X ′ rr 0.00515 N ′ r −0.00480 

( X v r r + m ) ′ 0.0266 N ′ r r v r 0.00611 

X ′ r r vv −0.00715 N ′ eee 0.00116 
The detailed description of this mathematical model can be

found in the [53 , 54] . The hydrodynamic coefficients in Eq. (47) are

presented in Table 1 . 

5.2. Path-following study 

As discussed above, the control objective for path following is

to follow a predefined path. In this paper, straight-line is used to

connect the waypoints. The waypoints are given: wpt1 = (40 , 20),

wpt2 = (120, 25), wpt3 = (160, 18), wpt4 = (200 , 22), wpt5 = (280,

5), wpt6 = (360 , 20), and wpt7 = (440 , 18), where the units are

meters. The geometrical information of the predefined paths is

presented in Fig. 7 . There are 8 waypoints. Without loss of

generality, they are chosen randomly in a Cartesian coordinate

frame. 
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Fig. 12. The measured cross-track error and rudder angle. 
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The ship is assumed to start from the origin point. 2D irrota-

ional stochastic ocean current with constant direction ( βc = 180 ̊)

s considered in the simulation, as shown in Fig. 8 . The stochas-

ic ocean current is divided into two phases. A weak ocean cur-

ent is assumed in the first phase, where the magnitude oscillates

round 0.1 m/s. In the second phase, a stronger current is consid-

red, where the mean magnitude is 0.2 m/s. 

A saturation is used for rudder dynamics, where the maximum

udder angle is set as 3 5 ◦. During the simulation, the ship’s speed

s kept constant, U 0 = 0 . 41 m/s. The ship starts from the initial

oint, and the initial heading angle is set ψ 0 = 2 6 ◦, which equals

o the path-tangent angle of predefined path. The initial yaw rate

s zero, r 0 = 0, and initial rudder angle is zero. The surge speed is

ontrolled using a classical PID controller. 
t  

Please cite this article as: H. Xu, P. Oliveira and C. Guedes Soares, L1 a
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The parameters of the L1 adaptive backstepping controller are

iven based on experience. The positive constants, K1 and K 2 , in

he control law are given as, K 1 = 0.02, K 2 = 15. The parameters,

1 and �2 , in the state prediction, are given as: �1 = 100 ∗I Z , �2 

 10 ∗ I Z , where I Z is the inertia moment of the scaled ship model.

he initial values of the uncertainties, ˆ ρη, ˆ ση, ̂  b ∗η , are ˆ ρη = 1 , ˆ ση = 1

nd 

ˆ b ∗η = 0 . The adaptation gains in Eq. (24) are γρη = 20 , γση =
0 , γb η = 10 . 

As discussed above, the time-varying function, θ (t, y e ) , plays

n important role in guidance law, and affects the overall perfor-

ance. Here, the time-varying function as chosen as: θ (t, y e ) =
 . 05 | y e | + 1 . As can be observed, it increases with the variable y e ,

nd it is continuous, positive. The minimum of the function is 1. So

his time-varying function fulfils the Definition 1 . The vector field
daptive backstepping control for path-following of underactuated 
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Fig. 13. The predictions of the heading angle and yaw rate versus the real values in the simulations. 
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guidance law is given: 

ψ d = γp − sgn ( y e ) tan 

−1 

(
( | y e | ) 0 . 05 | y e | +1 

�

)
− β (48)

The predefined parameter is chosen as twice the ship length,

� = 2 Lpp [10] . The adaptation of the uncertainties usually con-

tains high-frequency signals. These high-frequency signals will eas-

ily cause frequently back-and-forth steering of the rudder. High-

frequency steering is not desired and impossible to implement

in real ships, because, on the one hand, it will make more fuel

consumption, and on another hand, the ship rudder is usually

steered using a hydraulic system, it cannot respond in time. Here,

a second-order low pass filter is employed to eliminate the high-

frequency signals. The parameters are ω = 0.25 rad/s and critical
Please cite this article as: H. Xu, P. Oliveira and C. Guedes Soares, L1 a
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amping with ζ = 1. The following simulations will show the ef-

ect of the low-pass filter. If the low pass filter is turned off, the

roposed controller is a typical adaptive backstepping controller. 

Fig. 9 shows the predefined path and the trajectory of the ship

odel during the simulations. The low pass filler was used in

ig. 9 (b), and it is turned off in Fig. 9 (a). From the figure, the ship

an follow the straight-line path successfully in both cases. It can

e concluded that the proposed vector field guidance law and L1

daptive backstepping controller works properly. 

Fig. 10 , shows the performance of the L1 adaptive backstepping

ontroller during the path-following simulations. Fig. 10 (a) shows

he results when the low pass filter was turned off. The desired

nd true values of the heading angle are presented in Fig. 10 . The

utopilot can track the desired heading angles. The surge velocities
daptive backstepping control for path-following of underactuated 
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Fig. 14. The evaluations of the parameters in the simulations. 
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n simulations are also presented in Fig. 10 . The ship can keep a

onstant surge speed during the simulations. The sway speed in

oth cases is also given in Fig. 10 . As can be observed from the

gure, the fluctuation of sway speed is larger when the low pass

lter is turned off, as presented in Fig. 10 (a). This results from

he high-frequency rudder steering when the low pass filter was

urned off. It can also be observed in Fig. 11 , which shows the

ourse angle (desired versus true) and drift angle for both cases. In

ig. 11 (a), the drift angle has a large oscillation without the low-

ass filter. The sway speed is related to the drift angle. Usually, the

arge fluctuation of sway speed or drift angle indicated that the

hip was steering a lot to stabilize the system. This high-frequency

teering output is due to the adaptation of the uncertainties. 

Fig. 12 shows the cross-track errors and rudder angles in the

imulations. Obviously, when the low pass filter is turned off, the

udder angle contains the high-frequency signals, which induced
Please cite this article as: H. Xu, P. Oliveira and C. Guedes Soares, L1 a
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y the adaption of the uncertainty. In both cases, the cross-track

rrors are nearly same. This is because the cross-track error dy-

amics in Eq. (40) are directly affected by the guidance law and

eading error. In both cases, the ship can track the predefined

ath, but, the rudder angle is more stable when the low pass filter

s turned on. 

Fig. 13 shows the state predictor of the yaw angle and yaw

ate in the simulations. The estimations of the yaw angle ( ˆ ψ ) and

aw rate ( ̂ r ) agrees well with the real values. The evaluations of

he parameters, ˆ ρη, ˆ ση, ̂  b ∗η , are presented in Fig. 14 . When the low

ass filter was turned off, as presented in Fig. 13 (a), the param-

ters ˆ ρη, ˆ ση, ̂  b ∗η contains high-frequency signals, especially the ˆ b ∗η ,

hich represented the environmental disturbance and unmodeled

ynamics. 

In order to show its effective performance of the L 1 adap-

ive backstepping controller, the classical PID controller was used
daptive backstepping control for path-following of underactuated 
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Fig. 15. The cross-track error (above) and rudder angles (below) compared with the classical PID controller for path-following. 
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in the previous simulations. The predefined parameters and way-

points are same with the previous simulations. The parameters for

the PID controller are chosen as: K p = ω 

2 
n T /K; K d = (2 ζω n T − 1) /K;

K i = ω 

3 
n T / (10 K) [10] , where ω n is the natural frequency and ζ is

the relative damping ratio of the first order system. In this case,

ω n = 1 rad/s and critical damping with ζ = 1. The cross-track error

and rudder angles are plotted in Fig. 15 . As can be observed, the

PID controller takes more time to converge. The L1 adaptive back-

stepping controller response fast and have a better performance. 

6. Conclusions 

In this paper, L1 adaptive backstepping controller was proposed

for path-following control of autonomous ships. L1 adaptive back-

stepping was designed based on nonlinear steering model. The pa-

rameter update laws and control law were derived using Lyapunov

functions. The stability proof shows that the equilibrium point

of the error system, ( ˜ ψ , ̃  r , z 1 , z 2 , ˜ ρη, ˜ ση, ̃  b ∗η) , is uniformly globally

asymptotically stable. A novel time-varying vector field guidance

law was proposed in this paper. It formed a cascade system with

the control system. The whole guidance and control system were

proved to be uniformly global asymptotically stable using cascade

system theory. A theorem and proof were given to guarantee sta-

bility performance. 

The effectiveness of the proposed control law and vector field

guidance law was assessed with a fully nonlinear manoeuvring

model of an underactuated tanker in the presence of stochastic

ocean current. This manoeuvring model has been validated with

experiments and it gave confidence to the results. The results

obtained indicated that the proposed heading controller and

guidance law can control the underactuated ship to follow the

path, while rejecting the environmental disturbance. The low pass

filter can eliminate the unnecessary high-frequency signals, which

were caused by the adaptation of the uncertainties, in the control

input. This paper investigates the important system, guidance and

control, of autonomous ships. The proposed time-varying guidance

law and the adaptive controller can improve the performance of

the autonomous ship in a complex environment, such as shallow
Please cite this article as: H. Xu, P. Oliveira and C. Guedes Soares, L1 a

marine surface ships, European Journal of Control, https://doi.org/10.10
ater, confined waterway etc. The proposed system can also be

sed for other autonomous vehicles. 

eclaration of Competing Interest 

There are no conflicts of interest. 

cknowledgement 

This work contributes to M&MSHIPS -“manoeuvring & Moored

HIPS in ports” ( PTDC/EMSTRA/5628/2014 ), funded by the Por-

uguese Foundation for Science and Technology. This work also

ontributes to the Strategic Research Plan of the Centre for Ma-

ine Technology and Ocean Engineering (CENTEC), which is fi-

anced by the Portuguese Foundation for Science and Technol-

gy ( Fundação para a Ciência e Tecnologia - FCT) under contract

IDB/UIDP/00134/2020 . 

ppendix A. Proof of Theorem 1 

roof. . As presented in Eq. (14) , it can be observed, the sub-

unction, | sin (x ) 
x | ≤ 1 , and | cos (x ) −1 

x | ≤ 0 . 73 , are upper bounded,

nd, 

| y e | θ ( t, y e ) √ 

�2 + | y e | 2 θ ( t, y e ) 

∣∣∣∣∣ ≤ 1 ; and 

∣∣∣∣∣ �√ 

�2 + | y e | 2 θ ( t, y e ) 

∣∣∣∣∣
≤ 1 , where , 0 < �min < � < �max (A1)

Then, the function, φ( t, y e , ˜ ψ ) , is upper bounded, φ( t, y e , ˜ ψ ) ≤
for all y e and 

˜ ψ . 

| y e | θ ( t, y e ) √ 

�2 + | y e | 2 θ ( t, y e ) 

∣∣∣∣∣ ≤ 1 ; and 

∣∣∣∣∣ �√ 

�2 + | y e | 2 θ ( t, y e ) 

∣∣∣∣∣ ≤ 1 (A2)

Then, the function, φ(t, y e , ˜ ψ ) , is upper bounded [12] . 

As discussed in Section 3 , the equilibrium point of the heading

utopilot system � given by Eq. (40) is UGAS. The nominal system
2 
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f the driven system �1 ( �1 system with 

˜ ψ = 0) is: 

˙ 
 e = −sgn ( y e ) 

U | y e | θ ( t, y e ) √ 

�2 + | y e | 2 θ ( t, y e ) 
(A3) 

The function θ (t, y e ) is time-varying, so the nominal system in

q. (A3) is nonautonomous. Consider the CLF, 

 1 ( t, y e ) = 

1 

2 

y 2 e (A4) 

here V 1 (t, y e ) > 0 if y e 
 = 0 . The time derivative of V 1 ( t, y e ) is

iven: 

˙ 
 1 ( t, y e ) = −sgn ( y e ) y e 

U | y e | θ ( t, y e ) √ 

�2 + | y e | 2 θ ( t, y e ) 
= − U | y e | θ ( t, y e ) +1 √ 

�2 + | y e | 2 θ ( t, y e ) 

≤ 0 (A5) 

ince V 1 (t, y e ) > 0 and 

˙ V 1 (t, y e ) ≤ 0 , according to the Theorem 4.9

y Khalil [25] , the equilibrium point, y e = 0 , is globally uniformly

symptotically stable (UGAS). Moreover, every trajectory starting in

 x ∈ B r } and B r = {‖ x ‖ ≤ r} , satisfies 

 

y e ( t ) | ≤ β( ‖ 

y e ( t 0 ) ‖ 

, t − t 0 ) ∀ t ≥ t 0 ≥ 0 (A6)

Then, the cross tracked error is globally bounded and it will

lobally asymptotically converge to zero. Finally, the equilibrium

oint ( y e = 0 , ˜ ψ = 0) of the cascaded system described by (39) - (40)

s UGAS [6 , 12 , 13 , 34] . 
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