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Abstract— This paper addresses the problem of Fault De-
tection and Isolation (FDI) for navigation systems equipped
with sensors providing inertial measurements and vector ob-
servations. Two strategies are proposed. The first one takes
advantage of existing hardware redundancy, providing suffi-
cient conditions for the isolation of faults. The second approach
exploits the analytical redundancy between the angular velocity
measurements and the vector observations, by resorting to Set-
Valued Observers (SVOs). The behavior of both strategies are
illustrated in simulation.

I. INTRODUCTION

The navigation system is a critical component in any
aircraft or spacecraft. It provides key information – the
attitude and position of the system – and, in case of failure,
there is serious risk of damage or even human losses. In high
reliability systems it is not only necessary to detect faults,
but also to isolate the defective sensor. This has motivated
a considerable amount of research to devise Fault Detection
and Isolation (FDI) schemes for navigation systems – see for
instance [19], [28] and references therein.

The field of FDI has been studied since the early 70’s
[29], and several techniques have, since then, been applied
to different systems. For a survey of FDI methods in the
literature, see, for instance, [13]. An FDI system must be
able to bear with different types of faults in sensors and/or
actuators, which can occur abruptly or slowly in time.
Moreover, model uncertainty (such as unmodeled dynamics)
and disturbances must never be interpreted as faults.

An active deterministic model-based Fault Detection (FD)
system (see [9] for a description of the typical FD classes
available in the literature) is usually composed of two parts:
a filter that generates residuals that should be large under
faulty environments; and a decision threshold, which is used
to decide whether a fault is present or not – see [1], [2],
[8], [9], [11], [18], [29] and references therein. The isolation
of the fault can, in some cases, be done by using a similar
approach, i.e., by designing filters for families of faults, and
identifying the most likely fault as the one associated to the
filter with the smallest residuals.

The FDI schemes for navigation systems available in
the literature exploit two types of redundancy, namely, the
hardware redundancy and the analytical or dynamic redun-
dancy. The former takes advantage of the existing redundant
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measurements to detect incoherences among them. In [12],
an FDI solution is proposed that is based on algebraic
invariants. Parity-based methods are proposed in [15], [27].
The work in [25] proposes a geometric method based on the
singular value decomposition of the measurement matrix. A
comparison between several FDI techniques using hardware
redundancy is presented in [28]. The analytical redundancy
emerges from the dynamic relationship between the sensor
data. In [5], distributed Kalman filters are used. A solution
based on parameter estimation, where the residuals are gen-
erated by least-squares estimation techniques, is presented in
[14]. The work in [6] proposes two statistical schemes based
on nonlinear autoregressive moving average. In [7], a left
eigenvector assignment approach is developed to an aircraft
accelerometer FD filter. A survey on FDI methods exploiting
analytical redundancy can be found in [19].

The main contribution of the work presented in this paper
is the development of FDI schemes for Inertial Measurement
Units (IMUs) and vector observations, where the sensor mea-
surements are assumed to be corrupted by bounded noise.
Such bounds are suitable, for instance, in robust control
designs, where worst-case guarantees are provided regarding
the performance of the closed-loop system. We propose two
schemes to exploit the different types of redundancy:

• hardware redundancy – resorting to intersection of sets;
• analytical redundancy – using SVOs to model the dy-

namic relation between the sensor measurements.
For further details on SVOs and SVO-based FDI, the inter-
ested reader is referred to [17], [21], [22], [24] and references
therein. The proposed solutions guarantee that there will be
no false alarms. Moreover, the computation of a decision
rule, based on a threshold to be tuned, used to declare
whether or not a fault has occurred in residual-based FDI
approaches, is not needed.

The remainder of this article is organized as follows. In
Section II, the problem of FDI in IMU measurements and
vector observations is introduced. In Section III, a method for
FDI that exploits sensor redundancy is proposed. The deriva-
tion of an FDI filter that takes advantage of the dynamic
relation between the sensor measurements using the SVOs
is presented in Section IV. In Section V, simulation results
illustrating the performance of the proposed strategies are
presented. Finally, some concluding remarks are discussed
in Section VI.

NOMENCLATURE

To enhance the readability of this paper, we introduce the
following notation. The skew-symmetric operator in R3 is
denoted by [.]× and satisfies [v]×w = v×w, v,w ∈ R3. The
real exponential function and exponential map a of matrix
is denoted by exp(.). The Kronecker product of matrices
is denoted by A ⊗ B (for further details see [31, p. 25]).
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The 3 × 3 matrix whose elements are zeros except the
element ij is denoted by Ei,j . The maximum vector and
matrix norms is denoted by ||.||max and is defined as the
maximum of the absolute value of all vector and matrix
elements, respectively, i.e., ∥x∥max := max{|x1|, . . . , |xN |}
and ∥A∥max := max{|[A]ij |}, where [A]ij denotes the
element of column j and row i of matrix A. Let a polytope
be defined as Set(A,b) = {x ∈ Rnx : Ax ≤ b}.

II. PROBLEM FORMULATION

In this paper, we assume that a craft is equipped with a
strapdown navigation system comprising an IMU fixed in the
body reference frame {B}. Vector observations that are con-
stant in the inertial reference frame {I}, are also available to
mitigate the errors associated with dead reckoning. Without
loss of generality, throughout the remainder of this paper,
assume that {I} shares the origin with {B}. We denote the
angular velocity of {B} with respect to {I} and expressed
in {B} as ω ∈ R3, and the specific force, which is the time-
rate-of-change of the velocity of {B}, with respect to {I},
relative to a local gravitational space and expressed in {B},
as aSF ∈ R3. It is given by

aSF = Ba− Bg, (1)
where Ba ∈ R3 corresponds to the linear acceleration term
and Bg corresponds to the gravity, both expressed in the
body-fixed coordinates {B}. We will see later that, if the
linear acceleration is negligible, the specific force can be
regarded as a vector observation.

The IMU is composed of a set of rate gyros and a set
of accelerometers. The ideal i-th rate gyro measures the
projection of ω into its measurement axis, h(i)

Ω ∈ R3, which
is constant in {B}, i = 1, . . . , NΩ,

Ω(i) = h
(i)
Ω

Tω. (2)

However, the actual rate gyro measurements, Ω(i)
r , are cor-

rupted by bias and noise, which are assumed to be bounded,
i.e.,

Ω(i)
r = Ω(i) + b(i) +∆

(i)
b + n(i)

ω , (3)

where b(i) ∈ R and n
(i)
ω ∈ R denote the measurement bias

and noise, respectively, and |∆(i)
b | ≤ ∆̄

(i)
b . The measurement

noise is assumed to be bounded by a positive constant,
|n(i)

ω | ≤ n̄
(i)
ω . The bound ∆̄

(i)
b can be seen as a bias tolerance,

which reflects the confidence that one has on b(i) remaining
constant. Let the measurement axis of the i-th accelerometer
be given by h

(i)
α ∈ R3, i = 1, . . . , Nα, which is constant

when expressed in {B}. This sensor ideally measures the
specific force on its measurement axis α(i) = h

(i)
α

TaSF.
However, the sensed data are corrupted by bounded sensor
noise α

(i)
r = α(i) + n

(i)
α , where |n(i)

α | ≤ n̄
(i)
α denotes the

measurement noise.
The following assumption guarantees that one can recover

ω and aSF from Ω = [Ω(1) . . . Ω(NΩ)]T and α =
[α(1) . . . α(Nα)]T , respectively.

Assumption 1: Assume that the measurement axis of the
rate gyros and accelerometers form a basis for R3, i.e.,

span{h(1)
ω , . . . , h(NΩ)

ω } = span{h(1)
α , . . . , h(Nα)

α } = R3.
Note that, under this constraint, the following expres-

sion can be used to compute the angular velocity ω =

(HT

ΩHΩ)
−1HT

ΩΩ, where HΩ = [h
(1)
Ω . . . h

(NΩ)
Ω ]T , and

aSF = (HT
αHα)

−1HT
αα, where Hα = [h

(1)
α . . . h

(Nα)
α ]T ,

can be used to compute the specific force. The matrices
HΩ and Hα are called measurement matrices of the angular
velocity and angular acceleration, respectively.

To obtain estimates of position and attitude from the iner-
tial data, it is necessary to integrate the measurements. This
process introduces cumulative errors in the estimates. To cor-
rect them, it is typical to add sensors such as magnetometers,
star trackers, and Sun sensors [10]. These sensors measure a
vector expressed in {B}, which, for most practical proposes,
can be considered constant in the inertial coordinates, {I}.
These vectors satisfy the kinematic equation

v̇ = −[ω]×v, (4)

where v ∈ R3 denotes a generic vector observation expressed
in {B}. We assume that sensors provide uncertain data of
Nv vector observations in the form

νri = Hvivi + nνi, i = 1, . . . , Nv, (5)

where Hvi is the measurement matrix for the vector vi, and
nνi is the measurement noise vector. Each component of this
vector, denoted by n

(j)
νi , satisfies

|n(j)
νi | ≤ n̄

(j)
νi , (6)

where n̄
(j)
νi ∈ R+, i = 1, . . . , Nv identifies the different

vector observations and j ∈ N identifies the j-th component.
In many practical applications, the external accelerations

can be neglected when compared with the gravity. Under this
assumption, the dynamics of (1) can be rewritten as

ȧSF = [ω]×
Bg.

Apart from the sign, the specific force has a similar behaviour
to a vector observation as described in (4), and, hence, the
faults in the accelerometers can be treated as the faults in
vector observations.

A comprehensive study on the faults affecting mechanical
rate gyros is present in [30]. In this work, we follow the
characterization of faults described in [16] , separating them
into hard and soft faults. The hard faults include step-type
failures, such as zero output and stuck at faults. Changes in
noise level and bias variation are typical examples of soft
faults.

In this paper, we propose a novel technique based on
Set-Valued Observers (SVOs) to detect and isolate faults in
sensors of navigation systems, namely, rate gyros, accelerom-
eters, and sensors providing vector observations, such as
magnetometers, Sun sensors, and star trackers. As described
in the sequel, this is done by building upon recent results
that extend the applicability of SVOs for FDI [3], [22].

III. FDI USING HARDWARE REDUNDANCY

In this section, we describe a technique to detect faults on
sensor measurements using hardware redundancy. We illus-
trate the method using rate gyros measurements, although it
is equally fitted to exploit redundancy in other sensors, such
as accelerometers and magnetometers.

The optimal sensor configuration depends on how many
sensors are available. In [26], the optimal configuration using
different number of redundant sensors is studied assuming
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ω(k)

(a) Non faulty rate gyros.

ω(k)

(b) Faulty rate gyros.

Fig. 1. Illustration of the proposed FD method to exploit hardware
redundancy.

equal probabilistic properties for the noise of each sensor. It
is shown that the optimal configuration is obtained when the
measurement matrix satisfies HTH = N

3 I3, where N is the
number of available sensor measurements.

From the model of the rate gyros measurements in (3) and
the boundedness of the measurement noise, we have that Ω
satisfies the following inequality[

INΩ

−INΩ

]
Ω ≤

[
Ωr−b+δΩ

−Ωr+b+δΩ

]
,

where INΩ is the NΩ × NΩ identity matrix, Ωr =

[Ω
(1)
r . . . Ω

(NΩ)
r ]T ∈ RNΩ , δΩ = [δ

(1)
Ω . . . δ

(NΩ)
Ω ]T ∈ RNΩ ,

b = [b(1) . . . b(NΩ)]T ∈ RNΩ and

δ
(i)
Ω = ∆̄

(i)
b + n̄(i)

ω . (7)
Therefore,

Ω ∈ Set(MΩ,mΩ), (8)

where MΩ = [ INΩ
−INΩ ]

T
, mΩ =

[
Ωr−b+δΩ

−Ωr+b+δΩ

]
. The

matrix form of (2) is given by

Ω = HΩω. (9)
From (8) and (9), we conclude that ω must satisfy

ω ∈ Set(MΩHΩ,mΩ). (10)
Definition 1: A rate gyro is faulty if its measurements

does not satisfy the relations (2)-(3).
The following proposition characterizes the proposed FD
method, illustrated in Fig. 1(b), which exploits the existence
of redundant sensor measurements.

Proposition 1: Consider the rate gyros model (3) and
the linear transformation between the ideal sensor measure-
ments Ω and the angular velocity ω given in (9). Then, if
Set(MΩHΩ,mΩ) = ∅, there exists at least one faulty rate
gyro.

Proof: Assume that all rate gyros are healty and that
Set(MΩHΩ,mΩ) = ∅. Since all rate gyros are healthy,
the rate gyros model (3) holds and Ω ∈ Set(MΩ,mΩ).
Then, from the linear transformation (9), we have that ω ∈
Set(MΩHΩ,mΩ). But this contradicts the initial assumption
that Set(MΩHΩ,mΩ) = ∅. Thus, we conclude that there
must be at least one faulty sensor.

This strategy has the advantages of not requiring the tuning
of a limit threshold and that it is guaranteed that no false
alarms are issued.

The proposed scheme for fault isolation consists in eval-
uating the emptiness of Si = Set(MΩHΩ\{i},mΩ), where

HΩ\{i} = [h
(1)
Ω . . . h

(i−1)
Ω h

(i+1)
Ω . . . h

(NΩ)
Ω ]T .

If only for one i, Si is non-empty, the faulty measurement is
Ω

(i)
r . If more that one Si is non-empty, it is not possible

to isolate the fault. The following proposition provides
sufficient conditions on the magnitude of a detected fault
that ensure that isolation is feasible.

Proposition 2: Let the model of the faulty rate gyro i be
given by

Ω(i)
r = Ω(i) + b(i) +∆

(i)
b + n(i)

ω + ε,

where b(i) ∈ R, |n(i)
ω | ≤ n̄

(i)
ω , |∆(i)

b | ≤ ∆̄
(i)
b , and ε ∈ R

encodes the measurement error resulting from a detected
fault. If

|ε| > 4σmax(HΩ)∥δΩ∥,

then the proposed FDI scheme is able to isolate non-
simultaneous faults.

Proof: Start by noting that, for any x1,x2 ∈
Set(MΩ,mΩ), ∥x1−x2∥ ≤ ρ, where ρ = ∥2δΩ∥. Moreover,
∥HΩx1−HΩx2∥ ≤ σmax(HΩ)ρ, where σmax(HΩ) denotes
the maximum singular value of HΩ, i.e., the maximum dis-
tance between two points belonging to the polytope defined
by

PH = Set(MΩHΩ,mΩ)

is given by σmax(HΩ)ρ. On the other hand, any polytope
P that can be enclosed in a ball of radius σmax(HΩ)ρ and
that contains the fixed point ω, is also enclosed in a ball of
radius 2σmax(HΩ)ρ centered at ω. Consider such a polytope,
P and note that if a hyperplane intersecting to the boundary
of P is displaced by 2σmax(HΩ)ρ from its initial position,
it will no longer intersect P .

Since that PH satisfies the constraints assumed for P , and
the hyperplanes that define the polytope PH are given by

{x ∈ R3 : h
(i)
Ω

Tx = m
(i)
Ω }, i = 1, . . . , NΩ,

where, for all i, ∥h(i)
Ω ∥ = 1, we conclude that any hyperplane

{x ∈ R3 : h
(i)
Ω

Tx = m
(i)
Ω + ε}, i = 1, . . . , NΩ,

with ε = 2σmax(HΩ)ρ, does not intersect PH .
Remark 1: To isolate non-simultaneous faults it is re-

quired, at least, five sensors. With more sensors and the ap-
propriate modifications, the proposed method is also suitable
to isolate simultaneous faults of two or more sensors.

IV. FDI USING ANALYTICAL REDUNDANCY AND SVOS

In this section, we present an FDI filter for rate gyros mea-
surements and vector observations. We propose a technique
based on SVOs [23] that takes advantage of the analytical
redundancy between the sensed data to detect and isolate
sensor faults.

A. Fault Detection

As most physical phenomena, the kinematic model de-
scribed in (4) is in continuous time and, hence, not in
the desired discrete-time framework of the SVOs. In the
following, we devise a discrete-time approximation of the
model based on the knowledge of upper bounds on the
magnitude of the angular acceleration.

The solution of the differential equation (4) is given by

v(t) = exp
(
−
∫ t

t0
[ω(τ)]×dτ

)
v(t0), (11)
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where t0 < t. Using the Mean Value Theorem and (11), we
can rewrite (11) at the discrete-time instants as

v((k + 1)T ) = exp
(
−T 2

2 [ω̇(ξ)]× − T [ω(kT )]×

)
v(kT ),

(12)
for some ξ ∈ [kT (k + 1)T ].

In (12), the angular velocity and the angular acceleration
are not fully known and hence are not suitable to be used in
the SVO. On the other hand, from (10) the angular velocity
satisfies

ω(kT ) ∈ Set(Mω(kT ),mω(kT )), (13)

where Mω(kT ) = MΩ(kT )HΩ and mω(kT ) = mΩ(kT ).
Since (13) defines a convex polytope, the center of the
polytope, denoted by ωr(kT ), can be computed by resorting
to a linear optimization problem. Define ω̄r = ∥ωr(kT )∥max

as the maximum distance between the center and the border
of the polytope, and define the uncertainty in the angular
velocity as δω(kT ), such that

δω(kT ) = ω(kT )− ωr(kT ). (14)
The uncertainty δω(kT ) satisfies δω(kT ) ∈
Set(Mω(kT ),mω(kT )−Mω(kT )ωr(kT )), which denotes
a polytope centred at the origin, and let the maximum
distance along any major axis to the boundary of this
polytope be given by

δ̄ω = ∥δω(kT )∥max. (15)
The angular acceleration is inherently bounded due to

the limitations on the energy that can be provided to any
physical system. Moreover, in many applications, either due
to constraints on the thrusters, or due to the action of
friction, it is in fact possible to derive an upper bound on
the magnitude of the angular acceleration. Hence, we pose
the following assumption.

Assumption 2: Assume that the magnitude of the angular
acceleration is bounded by a known (but possibly conserva-
tive) positive scalar α, i.e.,

∥ω̇∥max ≤ ᾱ, ᾱ ∈ R+. (16)
For simplicity of notation, in the remainder of this paper

the time dependence of the variables will be simply denoted
by k, k ∈ N.

Using the result from [4, Appendix A] and the magnitude
bounds on the uncertainty of the angular velocity measure-
ments (16) and on the angular acceleration (14), we devise
the following relation for each element of the dynamic matrix

[exp(−T [ωr(k)+
T

2
ω̇(ξ) + δω(k)]×)]ij

=[exp(−T [ωr(k)]×)]ij + ϵ∆ϵ(i, j),

for some |∆ϵ(i, j)| ≤ 1, where

ϵ = 1
2

(
exp(2T (ω̄r + δ̄ω + T

2 ᾱ))− exp(2T ω̄r)
)
. (17)

With this construction, we have obtained a discrete-time
approximate system that depends solely on sensor data in
the framework of the SVOs [4], [21], [22], [24]. The upper
bound on the error of the approximation, ϵ, can be handled
by the same framework. Hence, an SVO can be designed to
the system{

x(k + 1) = A0(k)x(k) +A∆(k)x(k)

y(k) = C(k)x(k) + n(k)
, (18)

(model)
Predict Update

(measurements)

∩

Set(M,m)=Ø

SVO

Physical
System

Sensor noise

n (k)v

FD Filter

ωr(k) v(k)i

n (k)ω

Fault Detected

yes no

No Fault Detected

Fig. 2. Proposed fault detection (FD) filter for navigation systems.

where x(k + 1) = [vT
1 . . . vT

Nv
]T , A0(k) =

INv ⊗ exp(−T [ωr(k)]×), Ai(k) = ϵEm,n, m =
1, . . . , 3, n = 1, . . . , 3, i = m + 3(n − 1), C(k) =
blkdiag(Hv1, . . . ,HvNv), and n = [nT

ν1 . . . nT

νNv
]T .

If, at some point, the set containing the state,
Set(M(k),m(k)), degenerates into the empty set, we con-
clude that the model no longer describes the system and
sensor data, and hence a fault has occurred. The proposed
FD architecture is illustrated in Fig. 2 and its main property
is formally stated in the following proposition

Proposition 3: Consider the model of the rate gyros (3)
and the model of the vector observations (5), which are
dynamically related by the model (4), and the corresponding
SVO described in (18). Then, if Set(M(k),m(k)) = ∅,
for some k ≥ 0, a fault has occurred at some time instant
kf ≤ k.

Remark 2: The proposed FD filter guarantees that there
will be no false alarms. However, it may not be able to
detect some sensor faults. This may be due to severe sensor
noise or to the conservatism added to the model in (18). This
problem is related with the concept of indistinguishability.
The interested reader is referred to [20].

Remark 3: This method may lead to some implementation
issues, since it might not be suitable for systems with
very low computational power. However, nowadays, many
aircrafts and spacecraft are equipped with powerful state-
of-the-art computers. In addition, the proposed solution is
highly parallelizable and thus can take advantage of the
recent multi-core and multi-processor systems.

B. Fault Isolation
To design fault-tolerant systems, it is required not only

to detect that a fault has happened, but also to determine
its exact location. Therefore, if redundant sensors exist, the
system should be reconfigured, so that the normal operation
can be resumed using the remaining healthy sensors.

In this work, we adopt the strategy proposed in [22] and
illustrated in Fig. 3. This strategy relies on the concept of
model invalidation. A bank of SVOs is designed modeling
each different fault, and another one modeling the nominal
(non-faulty) system. Since only one model is consistent with
the sensor data, all the others SVOs will be invalidated, i.e.,
their estimated sets containing the state will degenerate into
the empty set. The remaining SVO, if any, identifies the fault.

To spare unnecessary computational burden, and since the
faults can occur at any time, we use the following scheme.
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FD Filter for the
Nominal System

SVO Robust
to Faults

FD Filter Robust
to Fault #1

Physical System
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to Fault #2
Filter R
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to Fault #N
Filter R

.

.

.

.

.

.

Sensor noise

n (k)vn (k)ω

Sensor
data

Conservative
State Bounds

FD Signal

Fault #1
invalidated / not

invalidated

.

.

.

Isotation

FDI Filter

Fault #2
invalidated / not

invalidated

Fault #N
invalidated / not

invalidated

Fig. 3. Proposed fault detection and isolation (FDI) filter for navigation
systems.

Firstly, only the nominal FD filter and one SVO robust to all
faults are active, i.e., the set estimated by the robust SVO will
always include the true state of the system, even if a fault
in the sensors has occurred. If, at some point, the FD filter
for the nominal system is invalidated, a fault has occurred.
Hence, the bank of FD filters modeling the faults is initialized
with the set estimated by the robust SVO. Once all the filters
describing faults that did not occur have been invalidated, we
have isolated the fault.

After this general description of the proposed FDI filter,
we are now in condition of stating how this can be applied
to inertial measurements and vector observations.

1) Faults in the Vector Observations: The faults in the
vector observations can be modeled directly in the SVO. The
hard faults considered are the zero output and the stuck at
types of faults. The zero output fault is modeled by zeroing
the row in the measurement matrix corresponding to the
faulty sensor, whereas, a stuck at type of fault is modeled
assuming a constant value in the sensor measurements. Thus,
the SVO for this fault, performs the intersection of the
set obtained from the measurements that contains v(i) at
successive time instants, neglecting the dynamics of the
system (for this sensor). The soft faults are modeled as an
unexpected increase in the magnitude of the sensor noise,
i.e., a greater value n̄

(j)
vi in (6).

2) Faults in the Rate Gyros: The kinematics of the rigid
body attitude depends nonlinearly on the angular velocity.
For that reason, this method is not suitable to isolate faults
that affect only one rate gyro. On the other hand, it can
isolate faults affecting all the rate gyros. A higher noise
magnitude in the rate gyros bias is modeled using an SVO
with greater δ̄ω in (15). A bias variation greater than what
was anticipated can be modeled by a greater ∆(i)

b in (7) and,
consequently, a greater δ̄ω in (17). Since these two sources of
uncertainty influence the dynamics in a similar way, they are
indistinguishable (see [20]). As a consequence, we can only
design an SVO that is tolerant to both faults. The hard faults
– zeroing the measurements and the stuck at type of faults
– invalidate any information regarding the model. Hence, to
isolate a hard fault in the rate gyros it is necessary to design
a different SVO for each faulty rate gyro assuming constant
measurements as model.

V. SIMULATIONS RESULTS

In this section, we present some simulation results illus-
trating the performance of the two proposed FDI schemes.
We consider two different system configurations: i) five rate

TABLE I
NUMBER OF ITERATIONS NECESSARY TO DETECT AND ISOLATE THE

FAULTS WITH FIVE GYROS AND FIVE SENSORS PER VECTOR

Fault # kd HW ki HW kd An. ki An.
1 0 0 1 7
2 0 0 1 5
3 3 10 3 -
4 54 99 55 -
5 37 51 11 22
6 10 19 2 12
7 11 17 10 19

gyros, and two vector observations, each of which with five
sensors, with installation matrices described by

HΩ = Hv1 = Hv2 =

[
1 0 0
0 1 0

0.47 0.47 0.75
−0.64 0.17 0.75
0.17 −0.64 0.75

]
,

and satisfying HTH = N
3 I; ii) three rate gyros, and two

vector observations, each of which with three sensors, with
installation matrices given by HΩ = Hv1 = Hv2 = I.
In both cases, we assume that the sensors are installed
onboard a vehicle describing oscillatory angular movements
characterized by the following angular velocity vector

ω(t) =

[
40 sin(2π0.05t)

−29 sin(2π0.04t)
34 sin(2π0.02t)

]
deg s−1.

It is assumed that, under normal operation, the rate gyros
measurements are corrupted by uniform noise with amplitude
of 0.2 deg s−1 and for the bias calibrated at the beginning of
the mission, we assume a tolerance of |∆̄(i)

b | = 0.06 deg s−1,
i = 1, . . . , 5. Each vector has unit norm, and each sensor
measurement is corrupted by uniform noise with maximum
amplitude of 0.1. The sampling period of all sensors is set
to T = 0.1 s.

We assume that one of the following seven faults can
occur:

1) a stuck at type of fault has occurred in rate gyro one;
2) rate gyro #2 has been badly damaged, producing a

measurement of zero;
3) the maximum amplitude of the noise in the rate gyro

#3 increases ten times;
4) the bias in rate gyro #3 changes more than ten times

the specified tolerance;
5) a stuck at type of fault has occurred in first sensor of

vector #1;
6) the second component of vector #1 starts proving only

the output zero;
7) the maximum amplitude of the noise in the third sensor

of vector #2 increases three times.
Table I provides the number of iterations, i.e., the number

of sampling periods, required to detect and isolate each
fault using the methods for hardware redundancy (HW) and
analytical redundancy (An.) for the case where there are five
rate gyros and five sensors for each vector. In this table, kd
and ki stand for the number of iterations for detection and
isolation, respectively. The number of iterations required to
detect and isolate each fault for the case where there are
three rate gyros and five sensors for each vector is presented
in Table II. Note that, since there are no redundant sensors
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TABLE II
NUMBER OF ITERATIONS NECESSARY TO DETECT AND ISOLATE THE

FAULTS WITH THREE GYROS AND THREE SENSORS PER VECTOR

Fault # Td An. Ti An.
1 8 16
2 7 17
3 76 -
4 42 -
5 4 34
6 3 17
7 0 9

is not possible to detect or isolate faults using the method
that exploits the hardware redundancy.

The results presented in Table I show that both methods
are able to detect the considered faults. The method based
on SVOs is not able to isolate the faults 3 and 4 since,
as discussed in Section IV-B.2, they impact the model in
a similar way and hence are indistinguishable. It is apparent
from the results that no method is superior in detecting
all faults. The method based on hardware redundancy has
the advantage of requiring less computational power than
the method based on SVOs, while the latter, by exploiting
the dynamic relation between sensor measurements, has the
advantage of not requiring redundant sensors. Table II shows
that, as expected, with less sensors the detection and isolation
of faults requires more iterations. It should be also noted that,
even with a sampling time set to T = 0.1 s, the two proposed
methods are able to detect and isolate all the distinguishable
faults in less that 10 s.

VI. CONCLUSIONS

In this paper, we have proposed two novel FDI method-
ologies for IMUs and vector observations. The first scheme
takes advantage of hardware redundancy in the sensor mea-
surements to detect incoherences between them. Sufficient
conditions have been provided that depend on the mea-
surement matrix and on the measurements uncertainty that
guarantees isolation of non-simultaneous faults. To exploit
the dynamic relation between the angular velocity and the
vector measurements, a second methodology was proposed
based on set-valued state estimates provided by SVOs, which
can be used to validate or falsify different models of faults.
Neither solution generates false detections, as long as the
non-faulty model of the system remains valid. Simulation
results show that the detection and isolation of the faults
take, in general, only a few iterations.
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