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Abstract—The main goal of this paper is to present a visual
odometry system using only ceiling depth images, captured by a
Kinect sensor, for mobile robot localization. An odometric sensor
is central for localization of mobile robot in indoor unstructured
environments. The method proposed in this work exploits in-
formation from an independent source of depth data and thus
allows to complement or substitute the use of classic odometric
sensors, like wheels encoders, with well known limitations. The
experimental validation of the proposed solution shows that the
method is able to accurately compute the attitude and linear
velocities that allow a more precise mobile robot localization,
even in presence of corrupted data from the sensor. Furthermore,
the method works in an extended range of lighting conditions,
without the need to perform any feature extraction.

I. INTRODUCTION

The localization of mobile robots to navigate in indoor
environments has been a great challenge to the scientific
community in the area of mobile robotics [10], [3], [8]. GPS
(Global Position System) allows to obtain the global position
and attitude of a mobile robot with great precision. Actually
GPS became the standard solution for outdoor environments.
However, for indoor environments, or any environment where
the GPS signal is not available, to solve the localization
problem the creation of alternative approaches is required to
obtain the global position of mobile robots [1], [18], [12], [7].

The use of Computer Vision techniques is a common
practice to obtain information about the environment in robot
localization, due to the large amount of information that can be
extracted from a RGB image [17], [16], [9]. However, cameras
are very sensitive to the environment lighting conditions,
which has a negative impact in the robustness of localization
systems. Recently, new devices with a RGB and a depth
camera developed initially for video games, e.g Kinect from
PrimeSense and Microsoft, became very popular in the mobile
robotics community[4], [13].

Whatever the sensors implemented in the location system,
its main function is to look at the environment and rapidly help
the robot to answer two questions: where am I? and what am I
facing? The global localization of a mobile robot is obtained by
the fusion of the information about the environment, captured
by sensors, and the knowledge about the robot motion given by
the robot model. A Bayes filter is an appropriated technique to
fuse these information [19], [8]. Usually, the prediction of the
robot motion is performed with the odometry of the wheels,
obtained by the encoders installed on the robot. Nevertheless,
due to different causes like uncertainty in robot dimensions,

misalignment of wheels or slippage in uneven terrain or other
adverse conditions, the wheel odometry rapidly degrades the
measure of the prediction motion, causing a negative impact
on the final results.

As an alternative to wheel odometry, some localization
systems have implemented cameras to predict the robot motion
based on computer vision techniques. This class of methods,
denominated visual odometry, allows the robot position de-
termination, velocity and acceleration based on examination
of the changes that motion induces on consecutive images
captured by the cameras [15]. In addition, visual odometry
can complement other sensors systems like GPS or inertial
measurement units (IMU) [2], [14]. The visual odometry has
been successfully applied in places where the GPS signal is
not available [1] and will be the central focus of this paper.

Unlike most common localization systems that uses visual
odometry with RGB images captured by cameras pointed to
the ground [5] or looking around [2], the method presented in
this paper resorts to depth images captured by a Kinect sensor,
installed onboard of a mobile robot and pointed upwards to the
ceiling. The use of vision from the ceiling has the advantage
that images can be considered without scaling, i.e. a 2D image
problem results. The use of ceiling vision in mobile robot
navigation is successfully implemented in [11], [20], [7].

The method described in this paper aims to present a
visual odometry system that is experimentally validated in
a mobile robot, namely to extract the attitude and linear
displacement that is integrated in a localization system for
indoor navigation. Furthermore, the proposed method allows
the operation in unstructured environments, i.e. without the
need of any knowledge about the environment or the extraction
of features.

This paper is organized as follows: Section II presents the
mobile robot platform and the motivation for the use of visual
odometry, instead of wheel odometry; Section III presents
visual odometry in more detail; Section IV shows in detail the
experimental results that allow the assessment of the approach
for a number of high level tasks. Finally, Section V presents
some conclusions and unveils future work.

II. MOBILE ROBOT PLATFORM

The type of mobile robot used in this tests is a low
cost mobile robotic platform [6], with a differential drive
configuration. On top of the mobile robot there is a PC
laptop that controls the motors and a Microsoft Kinect pointing



Fig. 1. Mobile platform equipped with Kinect sensor

Fig. 2. RGB (left) and Depth (right) images captured by Kinect sensor

upwards to the ceiling (see Fig. 1). On the right of the picture
an extension with a magnetometer can be seen, to provide
alternative attitude measurements, but not used in the scope of
this paper.

The Microsoft Kinect is a bundle of sensors, which includes
a RGB camera with a VGA resolution (640 × 480 pixels)
using 8 bits and a 2D depth sensor (640 × 480 pixels) with
11 bits of resolution. In the work reported in this paper, the
robot is moving in an indoor environment under a ceiling
with some information (e.g. building-related systems such as
HVAC, electrical and security systems, etc.), which is used to
provide the ceiling vision navigation. Thus, the captured RGB
and depth images that can be captured by the Kinect sensor
are shown in Fig. 2.

For the development of a localization method to work in
places with illumination changes and to reduce the computa-
tional efforts, the proposed visual odometry localization system
only uses the depth signal of the Kinect sensor.

III. VISUAL ODOMETRY SYSTEM

In robotics, visual odometry [15] is the process that predicts
the motion based on consecutive images captured by cameras
installed onboard of the robot and has the advantage to be
more immune to wheel slippage than wheel odometry and
does not suffer from magnetic distortion effects observed in
magnetometers. In this section a visual odometry approach
is detailed, to be used in robot localization in unstructured
environments. The proposed method just requires a depth
camera pointing to the ceiling and uses the captured depth
information to compute the localization of the mobile robot,
without the need of a previous mapping and any feature
extraction. Thus, analyzing the general architecture of the
proposed system (Fig. 3), the method consist in the mobile
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robot localization and the construction of the environment map
based on depth images captured from the ceiling. The first step
of the method is the definition of the new position in the map,
which is performed with the depth image and the knowledge
that the robot has about the environment and, in a second
step, the new depth image is added to the map, increasing the
database.

Looking to Fig. 4 that details the proposed visual odometry
localization method, the localization of the robot is performed
considering the computation of attitude and position of the
mobile robot.

A. Attitude computation

Following the sequence of the algorithm, the value of
the mobile robot attitude is obtained comparing the captured
depth image with map testing possible turning angles of the
robot. Thus, considering a depth image dimage(k) captured
in instant k, a set of possible rotated images is created based
on the robot attitude in the previous instant of time for
ψj ∈ [ψ(k − 1)−∆ψ,ψ(k − 1) + ∆ψ], resulting in j rotated
images

dimrj = imrotate(dimage(k), ψj), j = 1, ...,M (1)

where M is the number of images to be analyzed, to be
selected in the implementation phase.

Since the data is captured by a depth camera based on
an infra-red grid, several waves are not well reflected, due
to geometry and properties of some objects, resulting in
missing data in the depth image, represented by null value



(0 mm). Thus, to eliminate the possible disturbances caused by
the missing data considering signals the comparison between
images is only calculated in pixels with non corrupted data,
i.e. for values in the map and in the captured image with valid
depth information.

The new robot attitude is computed, finding the angle ψj

that minimizes the mean square error between the image stored
in the map, in the previous position of the robot (mapx,y(k−
1)), and the rotation of the captured depth image (2)–(4),

mj = (mapx,y(k − 1)− dimrj)
2 (2)

m̄j =

∑N
i=1 mj

nd
(3)

where N is the number of pixels of map and nd, the number
of pixels of mj with depth information (mj > 0 mm).

Finally, the robot attitude is obtained, finding the ψj that
minimizes (3):

ψ(k) = min
j

(m̄j). (4)

B. Velocity computation

In a similar way, the velocity is computed by testing
different values and finding the one that results in the best fit.
Thus, considering a depth image dimage captured in instant
k and rotated by the obtained attitude previously mentioned
in Section III-A, results in dimt. A set of possible displaced
images along the direction of ψ(k) is created based on the
velocity of the robot in the previous instant inside the range
uj ∈ [u(k − 1) − ∆u, u(k − 1) + ∆u]. Following the same
process that lead to the attitude computation, the robot velocity
value is obtained by the mean square error of the possible
tested images (5)–(7).

muj = (mapx,y(k − 1)− dimtj)
2, (5)

where dimtj is the image translated with the possible velocity
uj .

m̄uj =

∑N
i=1 muj

nd
(6)

Finally, the robot velocity is obtained, finding the uj that
minimizes (6):

u(k) = min
j

(m̄uj). (7)

C. Position computation

After the computation of the attitude and the velocity of
the mobile robot based on the depth information, the robot
kinematics is used to allow the computation of the new
position, based on the well know Euler discretization of the
differential drive robot:

x(k) = x(k − 1) + u(k)T cos(ψ(k)) (8)
y(k) = y(k − 1) + u(k)T sin(ψ(k)) (9)

where T is the sampling time.

D. Mapping

Mapping is crucial in mobile robot navigation because
improve the knowledge about the environment in future local-
ization. Therefore, in the fourth part of the proposed method,
the new captured depth image is added into the global map of
the environment in the localization computed as described in
Section III-A and Section III-C. For experimental assessment
purposes, a naive approach to map building was exploited in
this phase of the work. Thus the addition of the new captured
depth image in the map is performed replacing all null pixels
existing in the global image by the pixels captured by the
Kinect sensor. In this process only the non corrupted data of
the captured depth image is considered. With this method, the
created global map is immune to the corrupted data and only
the rich information about the environment is stored.

IV. EXPERIMENTAL RESULTS

To test the proposed approach several tests have been
performed with different trajectories, combining both straight
lines and curves. In the experiences, the robot starts at x0 =
0 m, y0 = 0 m, u0 = ẏ0 = 0.1 m ·s−1, ẋ0 = 0 m ·s−1. During
the motion at constant speed along the predefined trajectory,
the mobile robot captures depth images from the ceiling with
5 Hz of sampling rate and several points are marked on the
ground to be measured afterwards the test end up . All experi-
ences are performed under a ceiling height of 5.2 m resulting
in a depth images with resolution 7.8×10−3 m/pixel. Notice
that mobile robot motion is aligned with the vertical axis of
Kinect sensor, which has 480 captured pixels and a vision
angle of 43◦. The attitude and velocity computation (green
filled circle in Fig. 5) have been performed considering a range
of ∆ψ = 7◦ and ∆u = 0.12 m · s1. In this process, the
attitude step is 0.1◦ for |ψj − ψ(k − 1)| <= 0.5◦ and 2◦ for
|ψj −ψ(k− 1)| > 0.5◦. The velocity step is 0.04 m · s1 in all
range (see red circles in Fig. 5).

A. Results for a lawnmower trajectory

The first experience uses the classical lawnmower trajec-
tory, which combines lines with curves, alternating the turning
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Fig. 6. Attitude of the robot along time
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Fig. 7. Results for visual and wheel odometry errors along time

direction of the mobile robot and starting in with initial attitude
of ψ0 = 90 ◦. As it is possible to see in Fig. 6, the proposed
method allows to estimate the attitude of the robot with
accuracy, presenting results near of the measured ground truth
attitude. Looking to Fig. 6, it is possible to observe that the
results provided by the proposed method are indeed better than
the usual wheel odometry.

Analyzing the attitude error considering visual and wheel
odometry shown in Fig. 7 it is also possible to conclude that
visual odometry results are more accurate than the attitude
obtained by wheels odometry. In Fig. 7, it can be seen that the
attitude obtained by visual odometry normally have an error
less than 5 ◦, but sometimes the error increases to values over
10 ◦. Comparing the time of these occurrences with the attitude
presented in Fig. 6, it is possible to concluded that visual
odometry provide the better results when the robot moves
in a straight line, decreasing the accuracy along the curve
trajectories. The same effect happens with wheel odometry.
However, the results of Fig. 6 show that visual odometry is
able to recover the accuracy after finishing the curve, while
wheel odometry is unable to do it, increasing the attitude error
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Fig. 8. Histogram of the attitude error
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Fig. 9. Map with visual and wheel odometry position considering a ground
truth path

along time.

Moreover, observing Fig. 8 that shows the histogram of
the attitude error of both odometry methods, it is also possible
to conclude that visual odometry provides better results than
wheel odometry. In this experience the visual odometry his-
togram is approximate to a zero mean Gaussian distribution,
while wheel odometry presents a distribution with 13◦ of
mean. The large value of the mean error, considering wheel
odometry, denotes the existence of angular slippage in the
motion. Notice that, in this experience, when the robot is
navigating and mapping with a large image overlapping, visual
odometry can compute an attitude value close of the real one,
eliminating the offset caused by angular slippage.

Analyzing the results of the ground truth localization in
Fig. 9, it is possible to observe that the trajectory obtained by
visual odometry is able to follow the real one described by
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Fig. 10. Attitude of the robot along time
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Fig. 11. Attitude of the robot along time

the mobile robot. Moreover, Fig. 9 shows that the position
obtained by wheel odometry, due the wrong results of the
attitude presented in Fig. 6, rapidly diverges from the ground
truth trajectory, causing the robot to lose its own localization.

In addition to the estimation of the attitude, the proposed
algorithm also computes the velocity of the robot. Although,
due to the resolution of this estimator, imposed by the image
translation in the grid, the results have lower accuracy than
the odometer wheel (Fig. 10). The fact that the estimator
provide results with approximately Gaussian error (Fig. 11),
do not disturb the global robot position estimation. This can
be verify by the results shown in Fig. 9, where the global
position obtained by visual odometry are much more accurate
than those obtained by the odometry wheel.

Finally, Fig. 12 shows the ceiling map computed along
the trajectory. Comparing the depth image of Fig. 2, which
shows the first data of this experience, it is possible to observe,
that the knowledge about the environment is larger and well
organized. Comparing the amount of missing data (blue color)
present in map, after the first depth image acquisition (Fig. 2),
is higher than the existed in the final map (Fig. 12). Notice that
the blue area around the final map correspond to a non mapped

Fig. 12. Ceiling map built along the trajectory

area and not to missing data. This allows to concluded that the
mapping method is able to build a ceiling map, reducing the
amount of missing data existing in depth images.

B. Results for a longer trajectory

To test the robustness of visual odometry when the robot
is moving in a longer straight line, a new experience has been
performed. Thus, the robot has been moving along 32 m,
capturing the depth ceiling images for its self-localization
database and create the environment map (Fig. 13).

Analyzing the results presented in Fig. 14, it is possible to
see that the attitude computed by the proposed visual odometry
method provides results closer to the ground truth attitude than
the computed by wheel odometry. This effect is more visible
along time, what denotes that visual odometry presents a
more robust method for attitude computation based on motion
analyzing.

Examining the distribution of the attitude error in both
odometry methods as depicted in Fig. 15, it is possible to
observe that visual odometry is more accurate than wheel
odometry, with an approximate zero mean Gaussian and low

Fig. 13. Built map along a trajectory with few image overlapping
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Fig. 15. Histogram of the attitude error

standard deviation (σ2 = 5◦2). On other hand, the distribution
of wheel odometry attitude errors shows the few accuracy
of this method, characterized by a large distributions with
different modes and high values to attitude errors.

Comparing the results of the odometry localization ob-
tained by wheel odometry with the visual odometry proposed
in this paper (Fig. 16), it is possible to conclude that the
proposed visual odometry provides a better localization than
wheel odometry. However, results shows that, although this
method can predict the mobile robot motion with more ac-
curacy than wheel odometry, visual odometry does not have
enough precision when the robot is navigating during a long
time in unmapped places.

Notice that, in this experience the robot is moving along
32 m, navigating 320 s (5 minutes and 20 seconds) with only
one sensor in an unknown environment. This allow to conclude
that, to develop localization systems able to navigate in an
unknown environment, the proposed visual odometry method
must be fused with other sensors. However, these results shows
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that the use of visual odometry can provide better motion
prediction than wheel odometry.

V. CONCLUSION

In this paper a visual odometry localization system for
mobile robots navigation in indoors unstructured environments
is presented and experimentally validated. The localization
system resorts only in depth images of the ceiling, captured
by a Kinect sensor. Several experiments were carried out and
the real trajectory of the robot was measured to performed
a ground truth test of the localization system. Results show
that visual odometry presents a far better result than wheel
odometry, calculating the robot attitude with a good accuracy
and very close to the ground truth. The attitude error obtained
by wheel odometry increases significantly over time, causing
the robot to degrade its own localization information, unlike
visual odometry, which can get a better localization on the
first trajectory and a reasonable localization in the second
trajectory. Comparing the results considering the different
levels of environment discovery, it is possible to conclude
that, when the robot is moving in known environments, the
proposed visual odometry is able to perform a global accurate
localization, while in continuous environments discover, visual
odometry needs to be fused with other sensor to eliminate
the incremental errors. Hence, as visual odometry computes
the attitude with more accuracy than wheels odometry, the
incremental errors along time is less significant. In the future,
the visual odometry localization system will be integrated in a
self-localization system, complementing the existing odometry
data (compass, magnetometers, encoders, ...), improving the
accuracy of the overall system.
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