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Abstract— In this paper, new methodologies for the estima-
tion of the depth of a target with unknown dimensions, based
on depth from focus strategies, are proposed. The image-based
measurements are detailed, through the minimization of a new
functional, deeply rooted on optical characteristics of the lens
system, namely the point spread function. This work comple-
ments an inexpensive single pan and tilt camera-based indoor
positioning and tracking system, resorting to complementary
filters for depth estimation. A motivation example is provided,
where the target dimensions are assumed as known. Then, an
extension corresponding to an higher-order filter is presented,
that tackles the problem at hand. To assess the performance of
the proposed system, a series of indoor experimental tests for
a range of operation of up to ten meter were carried out. A
centimetric accuracy was obtained under realistic conditions.

I. INTRODUCTION

With the development and widespread use of autonomous

robotic vehicles, localization and tracking have become fun-

damental issues that must be addressed in order to provide

autonomous capabilities to a robot. The availability of reli-

able estimates for the position of a robot is essential to its

navigation and control systems, which justifies the significant

effort that has been put into this domain, see [1]–[3].

Successfully exploited techniques have been reported,

such as infrared radiation, ultrasound, radio frequency, and

vision, see details in [1]. The indoor tracking system ad-

dressed in this work resorts to vision technology, since this

technique has a growing domain of applicability and allows

to achieve interesting results with very low investment,

see the comprehensive survey on monocular 3D tracking

in [4]. This system estimates in real time the position,

velocity, and acceleration of a target that evolves along an

unknown trajectory in the 3D world, as well as its angular

velocity. These estimates are obtained resorting to suboptimal

stochastic multiple-model adaptive estimation techniques that

explore information provided by a single camera.

In monocular configurations, the estimation of the depth

of the target in relation to the camera is a key factor, since

the use of triangulation methods, typical in multi-camera

approaches, is not possible. When a single camera is used,

the depth of a point in the 3D world can be estimated by

exploring the relation between this quantity and the amount

of blur that corrupts the projection of the point into acquired

images. This is done by modelling the influence that some

of the camera intrinsic parameters have on images acquired

with a small depth of field. Based upon this principle, there
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are three main strategies that have been explored: depth from

blur by focusing [5], [6], zooming [7], and irising [8]. In this

paper, we are mainly concerned with depth estimation from

blur by focusing. Two different techniques based upon this

approach can be found in the literature: depth from defocus

[6], [8], and depth from focus [5], [9], [10]. The depth

estimation strategy that will be proposed is based on this

latter method, since this type of approach does not require a

mathematical model for the blurring process of the camera,

i.e. the point spread function responsible for the blurring does

not need to be modeled.

In this work, depth measurements, obtained according to

the strategy described in the previous paragraph, are com-

bined with additional information extracted from acquired

images, by means of a complementary filter. Complementary

filters have been used in a wide variety of sensor fusion

problems, such as attitude estimation [11] or flight control

[12]. These distortionless filters merge information provided

by a given sensor suite over distinct, yet complementary, fre-

quency regions. In the linear time-invariant setting, the filter

design reduces to the problem of decomposing the identity

operator into stable low- and high-pass transfer functions,

which operate on complementary sensor information. The

cutoff frequency of the transfer functions becomes a tuning

parameter that must match the physical characteristics of the

sensors. By exploring sensors redundancy, this strategy re-

jects measurement disturbances in complementary frequency

regions without distorting the original signal [13].

This work is an evolution of a framework recently pro-

posed for target tracking and positioning [14], where a low

cost single pan and tilt camera-based indoor positioning and

tracking system was presented. The focus of this paper is on

the depth estimation module of that system. A novel strategy

to estimate the depth of a target is proposed, which consists

in a complementary filter that combines two different sources

of information extracted from images acquired with a single

camera: i) a measure of the target depth and ii) a biased

measure of the target depth derivative over time (velocity of

the target along the camera optical axis). Typically, the mea-

surement of the depth of a target requires the use of at least

two cameras, or the availability of further information about

the target, such as its dimensions, for instance. However, it

is possible to estimate this quantity using information from

a single camera resorting to strategies based on the concept

of depth from focus [8], [9]. The measurement of the depth

derivative is obtained from the derivative of the dimensions

of the target in acquired images. As before, establishing a

relation between these two quantities would require further

knowledge on the target dimensions. However, the use of a

second-order complementary filter tackles this problem by

estimating the bias that corrupts this measure, which is the
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result of assuming an incorrect value for the target unknown

dimensions. Given the considerations above, this comple-

mentary filter estimates the instantaneous depth of targets

describing arbitrary trajectories in the 3D world, without

requiring the availability of further information about its

dimensions and shape. A new monocular indoor positioning

and tracking system results, which estimates in real time

the target position, linear and angular velocities, and linear

acceleration, for targets with unknown dimensions, see [14].

This document is organized as follows. The required

measurements and the design and analysis of the proposed

complementary filter, responsible for estimating the depth of

the target, are described in sections II and III, respectively. In

section IV, experimental results illustrating the performance

of the proposed depth estimation algorithm are presented,

and in section V, concluding remarks and directions of future

work are addressed.

II. DEPTH MEASUREMENTS

In this section, the process of obtaining the measure-

ments used by the depth complementary filter is described.

Estimates of the depth of the target are obtained using a

depth from focus strategy, and the target depth derivative is

estimated based on the variation of the target boundary in

acquired images.

A. Target depth

The idea of inferring depth from focus is based on the

concept of depth of field, which is a consequence of the

inability of cameras to simultaneously focus planes on the

scene at different depths.

Considering a thin model for the lens of the camera [15],

it is possible to establish a nonlinear relation between the

distance z from the lens to the plane that the camera can

exactly focus at each instant of time, and the distance v
between the lens and the image plane at which the projection

of objects in the scene appears sharply focused. To complete

the relation, the focal length f of the lens must be considered.

This relation is known as the Gaussian Lens Formula [15],

and can be rearranged in the form

z =
fv

v − f
. (1)

The use of expression (1) to estimate the depth of a target

moving in the scene requires the knowledge of both the focal

length of the camera and the value of v, i.e. the value of

the camera focus that minimizes the amount of blur that

corrupts the projection of the target in acquired images. The

estimation of this quantity requires the definition of a metric

that quantifies the sharpness of a transition in an image.

Metrics related with high-frequency energy contents in the

image, Fourier transform, image gradient, or Laplacian, are

detailed in [9]. Our goal is to estimate the depth of a target,

therefore the metric proposed aims to maximize the image

gradient magnitude across lines orthogonal to the target

boundary, which, as described in [14], is obtained resorting to

active contours, see [16] for details. This approach considers

that the real target boundary is on a plane perpendicular to the

camera optical axis, which is the plane that appears sharply

focused when the camera focus value v0 (i.e. the distance

between the lens and the plane of the camera CCD sensor)

is the one that optimizes the metric proposed. The plane in

which the target boundary is considered to be is the plane

that specifies the depth of the target. The problem at hand

can be formulated as minv0 g(v0), where the cost function

g(v0) =
1

1
Nl

Nl∑

i=1

max
(x,y)∈li

||∇Iv0(x, y)||
2

(2)

is the inverse of the mean of the square of the image

gradient magnitude maximum values across lines orthogonal

to the target boundary. Moreover, Nl denotes the number

of lines used, li the i-th line, ∇ the gradient operator,

|| · || the Euclidean norm, and Iv0(x, y) the intensity of the

image acquired with the focus value v0 at point (x, y). The

formulation of this problem as the minimization of g(v0),
instead of the maximization of its inverse, is based on the

model that will be proposed for this function in the sequel.
In order to gain some insight into how to model the cost

function proposed, consider that, for a given focus value

v0, acquired images are obtained from the convolution of

the corresponding sharply focused image Ifv0(x, y) with the

point spread function h(x, y) of the lens system, i.e. with

the function that models the blurring process of the camera:

Iv0(x, y) =
∫ +∞

−∞

∫ +∞

−∞
Ifv0(α, β)h(x− α, y − β)dαdβ.

A common model for the point spread function (PSF) is

a circle of constant intensity. Let, in this situation, the PSF

be

h(x, y) =

{ 1
πR2

c

x2 + y2 ≤ R2
c

0 x2 + y2 > R2
c

,

where Rc denotes the radius of the circle, and consider the

existence of a vertical step in the sharply focused image of

the form Ifv0(x, y) = a1 + a2 u(x − x0), where u(x − x0)
is the standard unit step function centered at point x0, a1

is the intensity of the image when x < x0, and a2 is the

magnitude of the step. Thus, this approach profits from the

target segmentation method used.
In this situation, it is straightforward to show that the

partial derivative of Iv0(x, y) with respect to y is 0, since

Ifv0(x, y) does not depend on this variable, and differentiation

and convolution are linear operations, thus they commute.

Using this fact, and after some mathematical manipulation,

it is also possible to show that the partial derivative of

Iv0(x, y) with respect to x is 0, if |x − x0| > Rc, and
2a2

πR2
c

√

R2
c − (x− x0)2, if |x − x0| ≤ Rc. By considering

a line l orthogonal to the boundary of the target, yields

max
(x,y)∈l

||∇Iv0(x, y)||
2

∣
∣
∣
∣
x=x0

=

(
2a2

πRc

)2

.

Assuming a geometrical optics framework [15], which

disregards the wave nature of light, and resorting to some

trigonometric manipulations, it is possible to write the value

of Rc as a function of the already defined quantities f , z,

and v0, and the diameter of the lens L, see [8] for details.

Replacing the value of Rc in ( 2a2

πRc

)2 by its expression, the

cost function proposed in (2) may be rewritten as

g(v0) =
(f − z)2v2

0 + 2fz(f − z)v0 + (fz)2

[4fza2/(Lπ)]2
.
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According to the discussion above, the cost function in

(2) is expected to depend quadratically on v0. Therefore, a

quadratic model was considered for this function. Since three

coefficients are enough to define the shape of a quadratic

function, the acquisition of at least three images with dif-

ferent focus values provides at least three measurements of

g(v0), one per focus value, which are enough to estimate

the three coefficients of the cost function model. If three

or more images are acquired, a system of linear equations

results, which can be solved resorting to the standard linear

least squares method [13]. The linear dependence of this

model on the parameters that must be estimated is the reason

why the minimization of g(v0) was considered, instead

of the maximization of its inverse, which seemed more

intuitive. The estimated coefficients can be easily converted

into estimates of v = arg minv0 g(v0), i.e. estimates of the

camera focus value that minimizes the cost function for a

given depth of the target, since this value corresponds to the

one that minimizes the quadratic function. By repeating this

procedure over time, successive estimates of the value of v
result, and, as a consequence, estimates of the instantaneous

depth z of the target can be computed resorting to (1).

The measurements of the target depth provided by the

algorithm described in this section can be written in the form

zm = z + zd, where z is the real target depth and zd is the

noise that corrupts its measurement.

B. Target depth derivative

Considering a pinhole model for the camera [17], the

cartesian coordinates of a point in the camera reference

frame (x, y, z) are related to the coordinates (xp, yp) of its

projection into the image plane by expressions

xp = f
x

z
and yp = f

y

z
, (3)

where the origin of the camera reference frame was consid-

ered to be coincident with the camera optical centre, and the

origin of the image frame is in the image centre.

From the relations in (3), it is straightforward to show that

the distance R, between two points in a plane at a distance z
from the camera, and the distance r, between the projection

of these points into the image plane, are related by

r =
f

z
R. (4)

In particular, if two points of the real target, lying in the plane

in which the target boundary is considered to be, are used

to obtain a measure of the real target dimensions, they will

verify this relation. However, the use of a distance between

two points as a measure of the target dimensions would

require a precise identification of those points in each image,

which is a very difficult problem to solve, especially when

the projection of the target appears with different orientations

in different images.

In order to obtain a measure of the target dimensions

invariant to rotations of the image of the target, consider that

the coordinates x ∈ R
2, of a point of the curve that describes

the target boundary, consist of two discrete random variables,

and that the covariance of x is Σx. Moreover, let xa ∈ R
2

be the coordinates of a point of the curve that describes

the boundary of a target in an image, and xb = Rxxa the

coordinates of the same point when the target boundary is

rotated by an amount Rx, where Rx is an element of the

Special Orthogonal group SO(2). Consider also that both

quantities are random variables with covariance matrices Σxa

and Σxb
. If ra =

√

tr(Σxa
) and rb =

√

tr(Σxb
) are the

dimensions of the image of the target associated with xa
and xb, respectively, then

rb =
√

tr(Σxb
)=

√

tr(RxΣxa
RT

x
)=

√

tr(Σxa
RT

x
Rx)= ra,

since RT
x
Rx = I2×2, where I2×2 is the identity matrix of

dimensions 2 × 2. Therefore, the square root of the trace of

the covariance matrix associated with the boundary of the

image of the target was used as a measure of its dimensions,

since this quantity is invariant to rotations of the boundary

of the target.

According to (4), and assuming that the focal length of the

lens remains constant, it is possible to write the derivative

of the depth of the target with respect to time in the form

ż = −
ṙ

r2
Rf , (5)

where r and ṙ denote the square root of the trace of the

covariance matrix associated with the boundary of the image

of the target and its derivative with respect to time, respec-

tively. Both quantities follow directly from the boundary of

the target in the image, and their measurements are here

denoted rm and ṙm.

Relation (5) is a function of the value of R, which depends

on the dimensions of the real target. However, when the

dimensions of the target are not available, this quantity is not

known. Therefore, an extra term γ, that takes this uncertainty

into account, must be added to the value of R, resulting in

the expression

ż′ = −
ṙ

r2
Rf

︸ ︷︷ ︸

ż

−
ṙ

r2
γf

︸ ︷︷ ︸

β

for the target depth derivative. The value of ż corresponds to

the real target velocity in the direction of the camera optical

axis, and β corresponds to a bias term that results from taking

γ into account.

The measurements ψm of the target depth derivative

provided by the method described can be written in the form

ψm = ψ + β + ψd + βd, (6)

where ψ denotes the real target depth derivative over time,

ψd the noise that corrupts the measurements of this quantity,

and βd is a disturbance related to the bias value.

III. DEPTH COMPLEMENTARY FILTER

In this section, a complementary filter that provides esti-

mates for the depth of a moving target is proposed. Initially,

for motivation, a simple continuous-time complementary

structure for situations where the dimensions of the target

are known is presented. Afterwards, this structure is modified

to address the same problem when the dimensions of the

target are not known. A rigorous formulation of the problem

addressed in this section is presented next.
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Problem statement 1: Consider a moving target with un-

known dimensions and unknown position p = (x, y, z).
Suppose that measurements

{
zm = z + zd
ψm = ψ + β + ψd + βd

of the target depth and its derivative are provided by a single

camera, and that both quantities are corrupted by noise (zd
and ψd, respectively) in complementary frequency regions.

These quantities are measured in relation to the camera

reference frame. The value of the target depth derivative is

affected by a bias term β, which results from the unknown

nature of the target dimensions, and which is corrupted by a

disturbance βd. Given these assumptions, design a filter that

provides an optimal solution in the minimum mean square

error sense for the problem of estimating the instantaneous

depth of the moving target.

A. First-order: known target dimensions

When the real target dimensions R are known, the mea-

surements of the target depth derivative (6) are not biased,

since the value of γ, and as a consequence the value of

β, are null. A filter that estimates the target depth using

measurements zm and ψm is deduced below.

Let z(s) and ψ(s) denote the Laplace transforms of z and

ψ, respectively. Then, for every k > 0, z(s) admits the stable

decomposition

z(s) =
k

s+ k
︸ ︷︷ ︸

T1(s)

z(s) +
s

s+ k
︸ ︷︷ ︸

T2(s)

z(s), (7)

with T1(s) and T2(s) satisfying the equality T1(s)+T2(s) =
I , where I denotes the identity operator.

Using relation ψ(s) = sz(s), it follows from (7) that

z(s) = Fz(s)z(s) +Fψ(s)ψ(s), which suggests a filter with

the structure

ẑ = Fzzm + Fψψm, (8)

where Fz and Fψ are linear time-invariant operators with

transfer functions Fz(s) and Fψ(s), respectively. From the

equations above, it is straightforward to deduce that the filter

admits the state-space realization F

˙̂z = ψm + k(zm − ẑ). (9)

Considering that T1 and T2 denote linear time-invariant

operators with transfer functions T1(s) and T2(s), respec-

tively, it is possible to rewrite (8) in the form

ẑ = (T1 + T2)z + Fzzd + Fψψd, (10)

that shows that the estimate ẑ provided by the filter consists

of an undistorted copy (T1 + T2)z = z of the original signal

z, corrupted by the measurement noises zd and ψd.

From the deduction above, it is possible to conclude

that the filter proposed relies on information provided by

the depth from focus algorithm at low frequencies only,

since T1(s) corresponds to a low-pass filter. Moreover, the

complementary filter derived blends the previous information

with that from the target depth derivative at high frequencies,

since T2(s) = I − T1(s) corresponds to a high-pass filter.

This decomposition into different frequency regions, that

results from the complementary filter structure, holds the

key to its practical success, as it mimics the natural frequency

decomposition induced by the physical nature of the sensors.

In this situation, for instance, the target depth measurement,

provided by the depth from focus algorithm, provides reliable

information at low frequencies only, whereas the target depth

derivative measurements may be corrupted by a bias in

the same frequency region (as exemplified in next section),

which makes it useful at higher frequencies.

The complementary filter design corresponds to the choice

of the parameter k, i.e. to the choice of the cutoff frequency

of the low- and high-pass filters, which is entirely dictated

by the physical characteristics of the sensors. Therefore, the

emphasis, that in Wiener and Kalman filtering is put into

describing process and measurement noises [13], is shifted

from a statistical framework to a deterministic framework,

where the aim is to shape the filter closed-form transfer

function. The design of the filter can be done resorting to

any efficient method, and the analysis of the filter can be

performed in the frequency domain using Bode plots.

In the simple case described, the stochastic underlying

process model, here called M, can be written relying on

the realization

ΣM :=

{
ż = ψm − ψd
zm = z + zd

,

where ψd and zd play the roles of process and measurement

noises, respectively. In an H2 setting, the objective is to

minimize the estimation error z − ẑ for given values of

the covariances of ψd and zd. The optimal solution to

this problem has the complementary structure described in

relation (9). The covariances of ψd and zd are simply viewed

as design parameters to vary the cutoff frequency of the filter.

B. Second-order: unknown target dimensions

In most situations, there is no information about the

dimensions of the target. Therefore, the value of γ, and

as a consequence the value of β, are not known, and the

measurements of the target depth derivative (6) are biased.

The simple complementary structure described previously

does not allow steady-state bias estimation. However, a

modified version of its structure, augmented with an extra

integrator, will meet this additional constraint. This strategy

results in a new complementary filter, depicted in Fig. 1 and

described in the remainder of this section, with the realization

ΣM :=







[
˙̂x1
˙̂x2

]

=

[
−k1 1
−k2 0

][
x̂1

x̂2

]

+

[
k1

k2

]

zm+

[
1
0

]

ψm

ẑ =
[

1 0
]
[
x̂1

x̂2

] ,

(11)

where x1 and x2 denote the states associated with the depth

of the target and with the bias term, respectively, and k1 and

k2 are filter gains.

From (11), it is simple to show that the estimation of

the target depth can be rewritten as in (10), where the

transfer functions of T1 and T2 take the form T1(s) =
(k1s+k2)/(s

2 +k1s+k2) and T2(s) = s2/(s2 +k1s+k2),
respectively, and the intensity of the noise term Fzzd+Fψψd
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-

+
1
s

F

1
sk2

+

k1

ψm

zm ẑ

Fig. 1. Complementary filter with bias estimation.

is given by Fz(s) = T1(s) and Fψ(s) = s/(s2 + k1s+ k2).
As before, T1(s) + T2(s) = I , where T1(s) and T2(s)
correspond to low- and high-pass filters, respectively. The

second-order complementary filter proposed blends the infor-

mation provided by the depth from focus algorithm at low

frequency regions, with that of the target depth derivative

in the complementary frequency range, leaving the original

signal z undistorted. Therefore, low frequency bias in the

disturbance that corrupts measurements ψm will be naturally

rejected at the output. Note also that the filter rejects high

frequency noise present in measurements zm.

In this situation, the underlying process model can be

written relying on the realization

ΣM :=







[
ẋ1

ẋ2

]

=

[
0 1
0 0

][
x1

x2

]

+

[
1
0

]

ψm−

[
ψd
βd

]

zm =
[

1 0
]
[
x1

x2

]

+ zd

,

(12)

where ψd and βd correspond to the process noise and zd to

the measurement noise. One of the two measurements avail-

able (ψm) is used as an input to the differential equation that

models the process, and the other (zm) as the observation.

If the process and measurement noises are stationary, white,

and Gaussian processes with zero mean, then, as stated in

Lemma 1, the complementary filter described in this section

corresponds to a stationary Kalman filter for the realization

presented in (12). Therefore, according to the properties

of Kalman filters [13], the proposed complementary filter

provides a stable and optimal solution, in the minimum mean

square error sense, for the problem of estimating the depth of

a target evolving according to the underlying process model

presented.

Lemma 1: Let the stationary process and observation

noises in realization (12) correspond to stationary white

Gaussian noises with zero mean and spectral densities σ2
ψ ,

σ2
β , and σ2

z , respectively (i.e. ψd ∼ N (0, σ2
ψ), βd ∼

N (0, σ2
β), and zd ∼ N (0, σ2

z)), and β denote a low fre-

quency bias that corrupts the measurements of the target

depth derivative. Then the complementary filter in (11) is

the stationary Kalman filter for the system (12) if k1 =
√

2σβ/σz + (σψ/σz)2 and k2 = σβ/σz .

Proof: The proof of this lemma is omitted here due to

space constraints.

In an H2 setting, the objective is to minimize the state

estimation error for given values of the covariances of ψd,

βd, and zd. As seen, the optimal solution to this problem has

the complementary structure described in relation (11). The

covariances of ψd, βd, and zd are simply viewed as design

parameters to vary the cutoff frequency of the filter.

IV. EXPERIMENTAL RESULTS

In this section, some brief considerations about the imple-

mentation of the proposed system and experimental results

illustrating the performance of the depth estimation algorithm

are presented.

The results in this section were obtained with the 215

PTZ camera from AXIS. Images with the spatial resolution

704 × 576 pixels were used. For the sake of simplicity,

only the red component of acquired images was considered,

since the target in the experiments described in this section

was red. However, the algorithm proposed in this paper is

straightforward adapted to targets with other colours.

As in most cameras, the value of the distance v0, between

the plane of the CCD sensor of the used camera and the lens

of the camera, is not accessible to the operator. Instead, a

different parameter ranging from 1 to 9999 is available. This

parameter is specified by the manufacturer and is usually

known as the camera focus setting. The use of the depth

estimation algorithm proposed requires the calibration of the

relation between these two quantities, see [18] for details

about this procedure.

In practice, the strategies described in section II lead to

discrete measurements, zmk
and ψmk

, of the depth of the

target and its derivative with respect to time, respectively.

The index k represents the time instant kT , k = k0, k0 +
1, . . . , where the index k0 is associated with the initial

instant k0T and T > 0 is the sampling interval. The

measurements of the target depth zmk
are obtained directly

from the depth from focus algorithm, and the measurements

of the target depth derivative ψmk
are computed according to

ψmk
= −fR′ṙmk

/r2mk
, with rmk

=
√

tr(Σxk
) and ṙmk

=
(rmk

−rmk−1
)/T , where R′ = R+γ is the value considered

for the target unknown dimensions and Σxk
is the covariance

matrix associated with the boundary of the projection of

the target into the image acquired at instant kT . These two

measurements were provided to a discrete-time version of

the filter with the realization in (11). The discretization of

this expression is not detailed in this document due to lack

of space, however, details about this procedure, in which a

strategy referred by some authors as emulation was used, can

be found in [19].

In the sequel, two experiments are reported: one in which

the target, a balloon attached to a robot Pioneer P3-DX as

in Fig. 2, moves along a straight line, and other in which the

target describes a circumference. In both experiments, the

nominal sampling interval T for the application was set to

1.3 s, due to limitations imposed by the resources available,

the focal length of the lens was set to its maximum, f =
45.6 mm, and the value considered for the target unknown

dimensions was R′ = 2.5 mm.

The performance of the depth estimates provided by the

discrete-time complementary filter in both experiments is

illustrated in Figs. 3, 4, and 5. The target nominal (plot in

blue) and estimated (plot in green) depths are depicted in

Fig. 3. As can be seen, the estimates provided by the filter

converge to the target real depth, i.e. the depth estimation

error, depicted in Fig. 4, converges to zero. From the standard

deviations σss of the steady-state depth estimation errors
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